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ABSTRACT

Objective: To investigate the use of a biomarker for assessment of the effects on the
tropical chironomid, Chironomus javanus (C. javanus), Kiffer of sediment contaminated
with an insecticide (chlorpyrifos).
Methods: A wide range of biological responses to the tropical chironomid exposed were
measured, including survival, growth rate and Acetylcholinesterase (AChE) activity.
Results: The measured median lethal concentration (96 h LC50) of chlorpyrifos to
C. javanus was 0.056 (95% CI 0.024–0.124) mg/kg. For sub-chronic levels of chlor-
pyrifos between 0.001 and 0.25 mg/kg administered for 10 days, the effects on the growth
of C. javanus were reduced (larva size, head structure width and dry weight) at the
significance level (P < 0.01) and the effects were concentration dependent. Following
exposure to chlorpyrifos at the level of 0.001 mg/kg for 48 and 96 h, the AChE activity in
C. javanus was inhibited compared with control samples (P < 0.05).
Conclusions: This study demonstrated that C. javanus was sensitive when exposed to
chlorpyrifos. This species could serve as a potential biomarker for assessing pesticide
contamination at low environmental persistence and provides limited effects data on the
sensitivity of tropical biota to contaminants for ecological risk assessment of organo-
phosphate pesticides in the tropical aquatic ecosystem.
1. Introduction

Contamination of the aquatic ecosystem is recognized as a
significant issue when the sediment becomes a sink for pollutants
such as pesticides [1]. Many pollutants can bind physically and
chemically with sediments and persist for long periods of time to
become bio-available depending under certain hydrological con-
ditions and exert adverse effects on aquatic organisms [2].
Therefore, sediments may act both as a sink and as a source of
pollution and sources of pollutants to the overlying water
column and biota [3]. Consequently, sediment quality is crucial
to the health of an aquatic ecosystem [4]. Herbicide and pesticide
contamination of surface water is demonstrated worldwide as a
major issue locally, regionally, nationally and globally [5,6].

In tropical countries having agro-economies, pesticides are
used intensively. Growing concern has arisen from the effects of
organophosphate (OP) and carbamate pesticides on aquatic or-
ganisms in fresh waters and sediments as a consequence of
increased and continuous use [7–9]. This is particularly the case
in Thailand being a principal global agricultural producer.
Thailand is a rural country with a significant agricultural
component of the economy. Thailand has increased
agricultural exports by importing fertilizers and pesticides for
intensive agricultural production. Pesticide use increases
agricultural yield by protecting plant crops from pests, weeds
and parasites [10]. Since importing pesticides began under the
‘Green Revolution Policy’ as part of Thailand's 1st National
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Economic and Social Development Plan in 1966, the total
quantity has increased each year. More recently, pesticides use
in Thailand has increased 3 times during 1995–2014,
exceeding 100 thousand tons in 2015 [11]. Vegetable and fruit
farming require the highest application of pesticides, in
response to market demand for visually-perfect products. In
2015, organophosphates were the imported pesticides with the
largest quantity followed by carbamates and organochlorines
(OC); mostly herbicides were followed by insect control, disease
control agents and plant growth regulators [11].

The widely used OP, chlorpyrifos whose primary application
is for protection against pest and disease control in agriculture
(paddy field, corn and cotton) in Thailand was the first imported
high-volume insecticide [10]. Chlorpyrifos affects enzyme
activity by inhibiting Acetylcholinesterase (AChE) activity and
thereby affects neuromuscular functions of target species [12].
Acetylcholinesterase inhibitors cause toxic effects on
organisms by chemical disruption of the normal nervous
system function due to excessive accumulation of
acetylcholine in the synapse area, leading to rapid muscular
twitching and paralysis in the affected animals [13]. In
particular, aquatic invertebrates in rivers and lakes can be
exposed to concentrations of chlorpyrifos ranging from sub-
lethal with several changes in behavioral and physiological
patterns of aquatic organism to mortality when application rates
are high (Pérez et al., 2013). Besides, accidental exposure
pesticide of edible aquatic species enters the food chain and can
cause ecotoxicological effects, if not degraded [14,15].

Because of potential pollution problems, ecological risk
assessment and environmental impact monitoring have become
important tools for pollution and contamination management to
assess effects in aquatic ecosystems by establishing effective
risk-reducing measures [16,17]. A biomarker response is an
efficient method for assessing the effect of a contaminant in an
ecosystem using biological responses of an organism. A
biomarker can be used to assess the effects of small quantities
of pollutants on organisms subjected to long-term exposure
[18]. Biomarker responses are measured by observing physical,
biological and/or biochemical changes such as in growth,
reproduction, and enzyme activity in organisms [19,20].
Biomarkers enable discrete effects of exposure from pollutants
to be detected, and identify the incidence of exposure to, and
the effects caused by pollutants thus providing an indication of
potential effects to higher trophic levels of species [20,21].
However, limited studies using species sensitivity distributions
have shown that tropical aquatic species do not differ in
sensitivity to contaminants for similar temperate species and
that it may be difficult to predict sensitivity between different
climatic regions [22]. However, tropical aquatic ecosystems
differ ecologically from habitats of temperate localities in both
physicochemical and biological structures. The diversity of the
subtropics and tropics is usually higher than that found in
temperate zones and thus the number of species potentially
affected by exposure to particular pollutants can be greater [23].

In this study, the tropical chironomid species, (Chironomus
javanus, Kiffer) (C. javanus) were selected as the test bio-
indicator organism, because they are commonly found benthic
organism and adapted to both temperate and tropical aquatic
ecosystems and well suited to test the toxicity of sediments, both
in situ and in the laboratory [24]. Their discrete life stages are
easily identified a short life cycle under laboratory conditions
and food source for juvenile and adult fish and aquatic birds
[25]. Chironomids are demonstrated as indicators of acute and
chronic toxicity in sediments and water contaminated with a
variety of pollutants [26,27]. The aim of this study was to
evaluate the acute and chronic effects of chlorpyrifos toxicity
on C. javanus, by using biological responses of C. javanus
(survival, growth rate and AChE activity as a biomarker).

2. Materials and methods

2.1. Test organism

The test species employed was the tropical chironomid C.
javanus, Kiffer which was isolated from an upstream part of the
Nam Phong River catchment, above the Ubolratana dam
(16�4601300N 102�3701600E) in North East Thailand. It was
cultured under controlled laboratory conditions following the
OECD 218 method [28]. The chironomid was held in the
Ecotoxicology and Environmental Sciences Laboratory at Khon
Kaen University, 50 km south of Ubolratana dam. The
chironomid was held at a temperature of (25 ± 2) �C under a
light sequence of 16 h: 8 h light and dark photoperiod in plastic
aquaria of size 30 × 60 × 35 cm3. A pure culture of C. javanus
was obtained from egg masses and placed in 500 mL beakers
containing 250 mL of laboratory water with shredded tissue
paper prepared following Batac-Catalan and White [29]. The top
of each beaker was covered with a net to trap emerging
chironomids. Continuous gentle aeration to maintain optimum
oxygen level was provided by an aquarium pump and the test
water was replaced weekly. Following hatching, the cultured
larvae grew to the second larval stage (instar 2) before being
used in survival and growth experiments, and the fourth larval
stage (instar 4) before being used in enzyme activity experiment.

2.2. Test chemical

The OP chlorpyrifos (40% W/V) preparation (‘the chemical’)
was purchased from the local market of Khon Kaen province,
Thailand, under the trade name Lorsban, supplied by Sotus In-
ternational Chemical Supplies Limited, Bang Kong, Thailand.
Gas chromatography (GC) analysis was used to quantify 40%
W/V chlorpyrifos stock solution. Calibration standard were
prepared with 99.5% purity chlorpyrifos (Chem Service, Inc.,
city, USA.) Stock solutions were prepared by dissolving ‘the
chemical’ in a salt solution (NaHCO3: 48 mg/L; CaCl2�2H2O:
30 mg/L; MgSO4�H2O: 30 mg/L; KCl: 2 mg/L) in 50 mL
deionized water according to OECD 218 [27] and immediately
before use. Further diluting of stock solutions was made in
deionized water. Gas chromatography (GC) analysis was used
to check the chlorpyrifos concentrations in each stock solution.

2.3. Experiment design

The study investigated the use of biological responses for
evaluation of effects of chlorpyrifos on C. javanus: (i) the acute
toxicity (96 h-LC50) for survival; (ii) the sub-chronic effect on
growth after 10 days exposure; and (iii) the effect on AChE
activity after 48 and 96 h exposure.

2.3.1. Acute toxicity test
The test sediment was OECD artificial sediment [28]. The

sediment comprised 75% quartz sand, 20% kaolin clay, 5%
sphagnum peat and calcium carbonate to adjust the pH to 6.5–



Table 1

Acute toxicity of chlorpyrifos contaminated sediment on survival (%) of

C. javanus 96 h.

Chlorpyrifos (mg/kg) Survival

0 90.00 ± 0.87a

0.001 75.56 ± 3.53b*
0.01 54.44 ± 1.13c

0.1 48.89 ± 0.93c

1 36.67 ± 0.71d

10 18.89 ± 1.36e

CV (%) 10.83

Note: Values are expressed as mean ± SD. *Indicate lowest observed
effect concentration; LOEC) superscript indicate significant difference
(LSD, P < 0.05) from control at 96 h.
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7.5. The sediment was prepared by adding different
concentrations of chlorpyrifos (dry weight basis) and de-
ionized water to give the final moisture in the range of 30–
50% and chlorpyrifos at 0, 0.001, 0.01, 0.1, 1 and 10 mg/kg dry
sediment. The desired amount of chlorpyrifos was thoroughly
mixed into sediment as an aqueous solution to give the working
concentration of chlorpyrifos, and sediment was placed into
glass jars. All concentrations in this study were the stated
nominal concentrations based on the measured ‘chemical’ con-
centration. Acute toxicity tests were performed to measure the
chlorpyrifos LC50 data of second instar of chironomid larvae in
test sediments. The static bioassay procedure was used in all
experiments and performed according to OECD 218 [27]. Five
test concentrations of chlorpyrifos in sediment and a control
with six replications of each concentration were used. The day
before the addition of second instar larvae, 500 mL glass
beakers were filled with 100 g sediment and 400 mL
reconstituted commercial mineral water. Ten chironomid
larvae were placed into each container test for 96 h. Following
completion of the test, the sediments were passed through a
425 mm stainless steel sieve and mortality of the larvae was
observed. The test water quality (temperature, pH,
conductivity, dissolved oxygen (DO) concentration and
hardness) were measured according to the APHA 2013 test
procedures [30].

2.3.2. Sub-chronic effect of chlorpyrifos on growth rate
of chironomids

This evaluation was performed to determine the temperature
influence on chlorpyrifos toxicity and the growth of chironomid
test organisms (head capsule width, body length, and dry
weight). Second instar C. javanus were exposed for 10 days to
non-lethal concentrations of chlorpyrifos (0, 0.001, 0.01, 0.05
and 0.25 mg/kg dry sediment) based on the method used for the
acute test (LC10) described above. Ten C. javanus were added to
each of six replication beakers for different exposures treat-
ments. Chironomids were removed from the containers after 10
days of exposure and then were passed through a 425 mm
stainless steel sieve and rinsed with distilled water. For
measuring dry weight, chironomids were transferred to
aluminum weighing boats, dried for 24 h at 60 �C in an oven,
and weighed using an analytical balance. Chironomid samples
were preserved in 70% ethanol before measurement of width of
head capsule as the distance between most distant lateral sides of
head capsule margins. Body length was measured as distance
between posterior points of head capsule and posterior prologs
with the use of an OLYMPUS SZX7 binocular microscope
(Olympus Corp., Tokyo, Japan) with a calibrated eye-piece
micrometer.

2.3.3. Effect of chlorpyrifos on Acetylcholinesterase
(AChE) activity of in chironomid

The assays of enzyme, was performed to determine the
AChE activity in chironomid after exposure to chlorpyrifos for
48 and 96 h. Sediment was spiked with chlorpyrifos to give test
concentrations of 0.001, 0.01, 0.10 and 0.25 mg/kg dry sediment
and four replications of fourth instar larvae per treatment and
control were used. Surviving test chironomids from the tests
were snap-frozen individually in micro centrifuge tubes and then
stored frozen at −20 �C for a maximum of one week. Whole
snap-frozen chironomid were homogenized in ice-cooled buffer
325 mL (0.02 M phosphate buffer pH 8.0, containing 1% Triton
X-100) using a tissue homogenizer (Scilogex D160, Berlin
CT06037, USA). The homogenate was centrifuged at 14 000×g
at 4 �C for 15 min. The supernatant of each sample was stored at
−20 �C for no more than 3 days until enzymatic activity assays
were completed.

The AChE activity assay was based on the method described
by Ellaman [30] and was adapted to a microplate reader. In brief,
the homogenate samples were mixed with 8 mM 5,5-di-thio-
nitrobenzene acid (DTNB) in phosphate buffer containing
0.75 mg/LNaHCO3 and 50 mL of 16 mM acetylthiocholine io-
dide. After incubation at 30 �C for 5 min, AChE level was
determined for rAChE activity at 412 nm. Results were
expressed as nmol/mg protein. Total protein content in the ho-
mogenate was measured using the Bradford method [31] at
595 nm, using bovine serum albumin as a standard protein.

2.4. Statistical analysis

The concentration at the 96 h-LC50 at 95% confidence level
were calculated using Probit Analysis by the statistical package
SPSS [32]. The data obtained from various experiments were
analyzed using one-way analysis of variance (ANOVA) to test
for variations between treatment group and control and a sig-
nificance level of (P < 0.05) with Statistica 8 software 9
(Version 8, USA).

3. Results

3.1. Acute toxicity test

Survival of C. javanus in controlled samples exceeded 90%
after the 96 h test period (Table 1). The significant chlorpyrifos
toxicity effect on mean survival of C. javanus was found at the
chlorpyrifos concentration above 0.001 mg/kg compared with
control (P < 0.05) (Table 1). The 96 h-LC50 value of chlorpyrifos
on C. javanus in this study was 0.056 mg/kg with a 95% confi-
dence interval of 0.024–0.124 mg/kg.

3.2. Sub-chronic effect of chlorpyrifos on growth rate of
chironomids

For sub-chronic effect of chlorpyrifos on C. javanus, the
mean ± SD of head capsule width, body length and dry weight
were (0.28 ± 0.02) mm, (8.27 ± 0.22) and (0.44 ± 0.01) mg,
respectively (Table 2). After 10 days exposure, C. javanus
growth characteristics of larvae in test species had declined with



Table 2

Subchronic effects of chlorpyrifos contaminated sediment on head

capsule width, body length and dry weight of C. javanus at 10 days.

Chlorpyrifos
(mg/kg)

Head capsule
width (mm)

Body length
(mm)

Dry weight (mg)

0 0.28 ± 0.02ab 8.27 ± 0.22a 0.44 ± 0.01ab

0.001 0.27 ± 0.01b 8.00 ± 0.32a 0.39 ± 0.02c*

0.01 0.27 ± 0.06b 6.30 ± 0.44b* 0.38 ± 0.30c

0.05 0.23 ± 0.02c* 6.18 ± 0.38b 0.38 ± 0.51cd

0.25 0.20 ± 0.01cd 5.89 ± 1.89c 0.20 ± 0.80d

Note: Results are expressed as mean ± SD; *P < 0.01 compared with
control; different letters in superscript indicate significant difference
from control as each experiment at 10 days.

Table 3

Effect of chlorpyrifos contaminated sediment on AChE activity in C.

javanusat 48 and 96 h.

Chlorpyrifos
(mg/kg)

AchE activity (nmol/min/mg protein)

48 h 96 h

0 33.68 ± 1.01a (0) 39.70 ± 1.55a (0)
0.001 12.05 ± 0.96b* (64.22) 5.60 ± 0.92b* (85.89)
0.01 9.81 ± 1.16b* (70.87) 5.60 ± 1.22b* (85.89)
0.05 9.50 ± 1.82b* (71.79) 5.13 ± 0.97b* (87.08)
0.25 7.90 ± 1.44b* (76.54) 3.54 ± 1.26b* (91.08)

Note: Values are expressed as mean ± SD; *P < 0.05 compared with
control; different letters in superscript indicate significant difference
among different value as each exposure. Value in parentheses indicates
value of % AChE inhibition relative to control. Under tropical condition
with the temperature of (25 ± 2) �C.
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increasing concentration of chlorpyrifos. Growth was signifi-
cantly affected at �0.05 mg/kg for all test species when
compared with the control (P < 0.01).

3.3. Effect of chlorpyrifos on Acetylcholinesterase
(AChE) activity of in chironomid

The results of the effects of chlorpyrifos on AChE activity in
C. javanus are shown in Table 3. C. javanus after exposure to
chlorpyrifos at concentrations above 0.001 mg/kg showed
significantly increased percentage of inhibition of AChE activity
compared to the controls (P < 0.05), at the respective exposure
time of 48 or 96 h. After exposure to chlorpyrifos for 48 h at the
highest chlorpyrifos concentration (0.25 mg/kg), the AChE ac-
tivity in C. javanus was inhibited up to 76.5% and when
exposed for 96 h inhibition reached 91.08% (Table 3).

4. Discussion

In this study, the 96 h-LC50 value of chlorpyrifos on
C. javanus was 0.056 mg/kg. This indicated that the LC50 value
of chlorpyrifos had a high toxicity on chironomid larvae
(0.1 < LC50 mg/L) based on 96 h-LC50 of an aquatic organism
[33]. Chlorpyrifos is an OP that binds with acethycholinesterase,
and breaks down the neurotransmitted acetylcholine so that
subsequent impulses can be transmitted across the synapse.
The inhibiting acethycholinesterase results in repeated,
uncontrolled firing of neurons leading to mortality usually by
asphyxiation as respiratory control is lost [33,34]. Chlorpyrifos
is relatively more hydrophobic than most other insecticides,
with a log Kow (log octanol–water partition coefficient) that is
5.0 [14]. The Kow value of chlorpyrifos indicates its
preferential partitioning into the organic matter rather than in
water resulting in its strong binding with sediment; and
therefore it has higher toxicity to the sediment dwelling
chironomid. Due to this, the sediment provides a habitat and
food source for larval stages of chironomid, which exposed to
sediment-associated chemicals directly [35]. Ingestion of
sediment particles has been proposed as the major route for
accumulation of elevated pesticide contamination in detritus-
feeding animals [36,37]. Thus toxicity, bioaccumulation levels,
and trophic-transfer of pesticide contaminants in aquatic envi-
ronment and into food chain can cause ecotoxicity problems and
subsequently effect on human health if transferred through the
food chain [38]. The outcome of this study indicated that the
96 h-LC50 of chlorpyrifos for C. javanus was more sensitive
than found for other standard chironomids [Chironomus
riparius (C. riparius) and Chironomus tentans (C. tentans)],
which was 0.09–0.47 mg/kg [39,40].

The sub-chronic toxicity of chlorpyrifos on C. javanus
growth was observed at a concentration of �0.05 mg/kg. This is
in agreement with the results obtain by Hasenbein et al. [36] who
reported that chlorpyrifos had effects of reducing the growth of
Chironomus dilutus. Also, the findings of Faria et al. [41]

reported that chlorpyrifos caused a reduction of development
time, reproduction, and molting of an aquatic organism.
Moreover, the present study shows low concentration of
chlorpyrifos (�0.05 mg/kg) in sediment, affects the growth of
C. javanus. Therefore, assessing the environmental impacts
growth parameters are expected to be significant indicators of
effects in an ecological system as growth change influences
the biomass, reproduction, food quantity and diversity or
companion of aquatic organisms according to Du et al. [42]

and Hasenbein et al. [36] who also reported that effects of
sediment toxicity on invertebrate organisms include reduction
emergence, case-abandonment and reduced growth are the
most important factors affecting reproductive output of inver-
tebrate organisms. Effect-based endpoints, designed to assess
sublethal impairments are often more sensitive and better pre-
dictors of deleterious effects associated with contaminated
sediment [43,44]. This study supported the idea of using the
biological response of tropical chironomid, C. javanus as
biomarker for assessing pesticide contaminated sediment,
which could predict possible environment impacts for the
organophosphate pollutant chlorpyrifos.

The results for the enzyme activity study indicated that
chlorpyrifos concentration above 0.001 mg/kg caused inhibition
of AChE activity in C. javanus with dose in a time-dependence
manner. The mechanism of the inhibition effects has been pro-
posed as chlorpyrifos-inhibited AChE activity by binding to
active site serine, resulting in irreversible inhibition of enzymes
and thereby increasing both the level and duration of action of
the neurotransmitter acetylcholine. Accumulation of acetylcho-
line will result in prolonged muscle contraction and prolonged
electrical activity at nerve endings causing uncontrolled move-
ment [45,46]. These results are consistent with Pérez et al. [34] and
Kheir et al. [47] who reported that chlorpyrifos has a direct
inhibition effect of AChE activity in C. riparius. Moreover,
previous studies reported that chlorpyrifos has an ability to
inhibit AChE in C. tentans and C. riparius in a dose and
time-dependent manner [48,49]. These studies also indicate that
C. javanus was sensitive to low concentrations of chlorpyrifos
(0.001 mg/kg) and inhibited AChE activity to over 50% from



Atcharaporn Somparn et al./Asian Pac J Trop Biomed 2017; 7(8): 719–724 723
24 h exposure. Thus, AChE activity in C. javanus can be used as
a biomarker for assessing the contamination of sediments with
chlorpyrifos representing the OP group of pesticides that have
low persistence in the environment [50].

Chlorpyrifos had a very toxic effect on the chironomid
C. javanus after short- and long-term exposure (survival, growth
and AChE activity). We have shown the following:

That C. javanus was a more sensitive organism to chlor-
pyrifos than temperate chironomid test species used for standard
testing (C. riparius and C. tentans); Biological response of
C. javanus, especially inhibitor of AChE activity is sensitive to
chlorpyrifos (0.001 mg/kg) after a short term (48 h); The inte-
gration of sublethal endpoints in sediment quality monitoring
and pesticide regulation efforts could improve identification of
low-level pesticide concentrations that may eventually cause
negative effects on food webs and community structure in
aquatic environments; C. javanus can be used as a test organism
for assessing chlorpyrifos contamination and possibly other
pesticides from the OP group that have low persistence in the
environment; and the measurement of the biological responses
of C. javanus could be a promising biomarker for sediment
contaminated with short persistence pesticides and to provide
exposure data for developing environmental risk-assessment
tools for pesticide contamination in tropical freshwater aquatic
ecosystems.

The finding of this work provides useful data for the
ecological risk assessment of chlorpyrifos application in the
tropical aquatic ecosystem.
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