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ABSTRACT

Objective: To investigate a dysregulation of Notch signaling in oral lichen planus (OLP)
using public available microarray dataset.
Methods: A mRNA expression profiling dataset from Gene Expression Omnibus was
downloaded. Differential gene expression between OLP and normal oral epithelium was
examined using NetworkAnalyst. The dysregulated genes related to Notch signaling were
identified.
Results: Thirteen genes in Notch signaling pathway were significantly differential
expressed between OLP and normal epithelium. OLP samples significantly increased the
mRNA levels of HEYL, APH1B, CNTN1 and PSEN2. Whilst, ITCH, HES1, TLE2, DLK2,
DTX2, NOTCH3, JAG2, RFNG, and SPEN were downregulated in OLP groups.
Conclusions: Notch signaling was dysregulated and may participate in pathophysiologic
process in OLP.
1. Introduction

Oral lichen planus (OLP) is a immune-mediated disease of
oral mucosa frequently found in adult female [1]. For
pathophysiology, it has been shown that an activation of CD8+

T cells triggers oral epithelial cell apoptosis via TNF-a or
Fas–Fas ligand mechanism [1]. T cells isolated from OLP
express a high level of matrix metalloproteinase leading to the
destruction of basement membrane [1]. In addition, mast cells
also participate in OLP pathophysiology as they secrete
various pro-inflammatory cytokines initiating epithelial cell
apoptosis and activating matrix metalloproteinase enzyme,
resulting in the disruption of basement membrane [1].

Gene expression analysis of OLP illustrates that epithelial
specific keratins, keratin 4 and 8, are downregulated in OLP
compared with the normal epithelium while genes related to
epithelial cell differentiation (such as filaggrin, loricrin, and
repetin) are upregulated [2]. Further, OLP and genital lichen
planus shared sets of common differentially expressed genes,
implying the similar disease mechanism [2]. Another study
demonstrated that the dysregulated genes were categorized in
various functional pathways for example signal transduction,
transcriptional regulation, cell adhesion, cell proliferation and
apoptosis as well as inflammation and immune response [3].

Notch signaling pathway regulates epithelial cell proliferation,
migration and differentiation [4,5]. Notch1 and Jagged1 are
expressed in basal cell layer in human and rat esophageal
epithelium [4]. Activation of Notch signaling results in the
increased expression of involucrin, cytokeratin 10, and filaggrin
in keratinocytes as well as the formation of stratification
in vitro, implying the induction of epithelial cell differentiation
[4]. Limited evidences are reported regarding Notch signaling in
oral epithelial cells. It has been demonstrated that Notch1
expression was weakly observed in normal oral epithelium [6].
After serial in vitro subculture, Notch target gene, HES1, is
upregulated [7]. Dysregulation of Notch signaling expression in
oral epithelium has previously been reported in several oral
epithelial diseases including oral dysplasia and oral squamous
cell carcinoma [8–10]. Inhibition of Notch signaling leads to the
reduction of cell proliferation in oral squamous cell carcinoma
cell line [10]. However, Notch signaling regulation in OLP has
not yet been reported. The present study aims to investigate the
dysregulation of Notch signaling related genes in OLP.
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Figure 3. Protein–protein interaction network of the differential genes
related to Notch signaling.
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2. Materials and methods

Gene expression profiling in public database was searched and
the dataset describing the mRNA expression profile of OLP
compared with the normal epithelium was identified. The identi-
fied dataset, GSE52130, was downloaded from Gene Expression
Omnibus (GEO) database [2]. Subsequently, the differential gene
expression was performed using a network-based visual analytics
for gene expression profiling, meta-analysis and interpretation,
NetworkAnalyst [11–13]. After upload dataset, a data annotation
was performed. Mean calculation was employed for gene-level
summarization. Inter quartile range at 15% was used for vari-
ance data filtering and Limma algorithms was applied. Differen-
tial gene expression analysis was calculated with the selection of
false discovery rate adjusted P-value < 0.05. Heatmap visuali-
zation and enriched pathway analysis were performed using add-
in function of NetworkAnalyst. Notch signaling related genes
were listed according to previous publication [14]. Protein–protein
interaction network was analyzed and first-order network was
performed using NetworkAnalyst with STRING interactome
database [15] at the confidence score cutoff 900.

3. Results

3.1. Overall differential gene expression

A total of 508 genes were significantly differential expressed
more than 2 folds between the normal epithelium and OLP.
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Figure 1. Heatmap illustrated the differential expression of Notch
signaling component in OLP samples compared with the normal
epithelium.
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Figure 2. Graphs demonstrated expression values of differentially expressed N
KEGG enriched pathway analysis illustrated that the dysregu-
lated genes were categorized in 1) ECM-receptor interaction and
2) histidine metabolism pathway. Corresponding with Reactome
pathway investigation, the dysregulated genes were in the
following categories: 1) degradation of collagen, 2) assembly of
collagen fibrils and other multimeric structures, 3) degradation
of the extracellular matrix, 4) Phase 1-Functionalization of
compound, 5) extracellular matrix organization, 6) collagen
formation, 7) collagen biosynthesis and modifying enzymes, 8)
amine oxidase reactions, and 9) crosslinking of collagen fibrils.

3.2. Notch signaling pathway dysregulation

Thirteen genes related to Notch signaling pathway were
significantly different between the control and OLP samples
(Figure 1). However, five genes were differentially expressed
more than 2 folds change, namely DTX2, HES1, TLE2, CNTN1
and APH1B (Figure 1B). DTX2, HES1, and TLE2 were down-
regulated while CNTN1 and APH1B were upregulated in OLP
samples (Figure 2). Protein–protein interaction network of the
differential genes related to Notch signaling was constructed.
DLK2 was not shown in the network, indicating no protein
interaction (Figure 3).
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4. Discussion

Dysregulation of Notch signaling has been reported in several
oral diseases, including oral epithelial dysplasia and oral squa-
mous cell carcinoma. Previous report illustrated Notch signaling
upregulation in oral squamous cell carcinoma compared with the
control epithelium [10]. Chemical inhibition of g-secretase
preventing Notch signaling transduction led to the reduction of
cancer cell proliferation [10]. Correspondingly, HES1 expression
increased in oral squamous cell carcinoma and dysplastic lesion
[8]. On the contrary, Notch1 downregulation was observed in
oral cancer and oral epithelial dysplasia [16]. Further, the
evidences demonstrated the relationship of Notch1 mutation in
oral squamous cell carcinoma patients [17]. Thus, the influence
of Notch signaling on oral cancer is still controversial. Role of
Notch signaling in OLP lesion has not yet been identified. The
present study showed the dysregulation of Notch signaling
component in OLP samples. The downregulated genes were
involved in several Notch components: endosomal sorting/
membrane trafficking regulators, target genes, ligand, receptor,
glycosyltransferase modifiers, and nuclear effectors. While the
upregulated genes were categorized in target genes, ligands, and
receptor proteolysis. Thus, the current information could not
conclude the direction of upregulation or reduction of Notch
signaling participating in OLP. Further molecular
pathophysiological study should be investigated to elucidate the
role of Notch signaling in OLP.

HES1 is a common target gene in canonical Notch signaling
pathway. The present study reported the downregulation of HES1
in OLP samples compared with the normal epithelium. Corre-
sponding with previous work, RNA sequencing analysis revealed
that HES1 expression was decreased in both OLP and oral
squamous cell carcinoma samples [18], implying the participation
of HES1 in the molecular pathophysiology mechanism in OLP.

DTX2 is a member of Deltex proteins, regulating and acti-
vating Notch signaling depended on cellular context. Notch/
Deltex pathway is considered as non-canonical pathway since it
is not mediated by CSL pathway. Study on the function of
DTX2 in mammalian cells is limited. It was previously shown
that DTX2 regulated myogenic differentiation of skeletal muscle
stem cells [19]. Influence of DTX2 in OLP and oral epithelial
cells should be further investigated to identify the significant
function in the progression of OLP.

TLE corepressors interact with various transcriptional factors
and subsequently convert these transcriptional factors from acti-
vators to repressors [20]. However, role of TLE2 in oral
keratinocyte as well as the pathophysiology of oral mucosal
diseases has not yet been reported. It has been shown in
epithelial cells that TLE expression correlated with Notch
expression [21]. Correspondingly, the present study
demonstrated the downregulation of TLE2 corresponding with
the decrease of HES1 expression, confirming the association of
Notch signaling upregulation and TLE expression. These
evidences may imply the role of TLE in epithelial
transformation in OLP patients (i.e. metaplasia and neoplasia).

CNTN1 is a glycosylphosphatidylinositol-anchored neuronal
membrane protein, acting as cell adhesion molecule [22]. This
protein could bind to Notch1 and further activate Notch
signaling pathway [23]. CNTN1 was reported as the molecule
regulating cancer cell metastasis [24]. CNTN1 expression
correlated with the regional lymph node metastasis status in
oral squamous cell carcinoma patients [25]. Consistently,
upregulation of CNTN1 in esophageal squamous cell carcinoma
was related to the cancer stage, lymph node metastasis and
lymphatic invasion [26]. Knockdown CNTN1 expression in oral
squamous cell carcinoma resulted in the reduction of cancer cell
invasion in vitro [25]. The present study reports the upregulation
of CNTN1 in OLP samples similar to those observed in oral
squamous cell carcinoma, implying the potential involvement of
CNTN1 on transformation of OLP.

APH1B is a core subunit of g-secretase which cleaves Notch
receptors at intracellular site, leading to the release of Notch
intracellular domain. It has been demonstrated that the down-
regulation of APH1B expression correlated with a poor survival
rate in breast cancer patients [27]. Further, an APH1B expression
has been identified as a biomarker for risk prediction of
atherosclerosis progression [28]. However, a role of APH1B in
epithelial cells and its associated with oral diseases has not yet
been reported. The present study demonstrated the upregulation
of APH1B in OLP samples corresponding with the increase of
PSEN2 expression. PSEN2 is also a component of g-secretase
enzyme and its expression significantly correlates with APH1B
in breast cancer [27]. The combination of PSEN and APH1
subunits (PSEN1, PSEN2, APH1A, and APH1B) led to the
different types of g-secretase enzyme and exhibited preferential
substrate specificity [29].

In conclusion, Notch signaling components are dysregulation
in OLP lesion. Both upregulated and downregulated genes were
identified. However, further investigation should be performed
to clarify the role of Notch signaling in OLP pathogenesis.
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