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ABSTRACT

Objective: To investigate the effects of quercetin (Q) and rutin on 5-fluorouracil (5-FU)-
induced hepatotoxicity.
Methods: The control group was corn oil. The 5-FU group rats were corn oil and injected
intraperitoneal 5-FU 50 mg/kg. Groups rutin 50 + 5-FU and rutin 100 + 5-FU were
respectively 50 mg/kg and 100 mg/kg rutin. These groups were given 5-FU (50 mg/kg) in
the 18th day. The group rutin 100 was rutin (100 mg/kg i.g.). Groups Q50 + 5-FU and
Q100 + 5-FU were respectively 50 mg/kg and 100 mg/kg quercetin. These groups were
given 5-FU (50 mg/kg) in the 18th day of quercetin application. The group Q100 was
quercetin (100 mg/kg i.g.). In the end of experimental applications, blood was collected
from anesthetized rats.
Results: TheMDA level was significantly higher in the 5-FU group comparedwith control
group, and determined to be decreased in other groups. GPx and GSH levels were signif-
icantly decreased in the 5-FU group compared to the control, rutin 100 + 5-FU and
Q100 + 5-FU groups. AST, ALT, LDH and ALP levels in the serum were significantly
increased in the 5-FU group compared with the other groups. The results from this analysis
show that while the caspase-3 level increases in the 5-FU group, it decreases in the Q50 + 5-
FU,Q100 + 5-FU, rutin 50 + 5-FU and rutin 100 + 5-FU groups. Bcl-2 level decreased in the
5-FU group compared to the control group, but increased in the rutin 100 + 5-FU, Q50 + 5-
FU and Q100 + 5-FU groups.
Conclusions: In this study it was determined that the rutin and Q have protective effects
on 5-FU-induced hepatotoxicity.
1. Introduction

Chemotherapy is widely used to treat various types of
cancers [1]. However, chemotherapeutic drug use can result in
unwanted side effects and toxicity in various organs and
tissues [2]. 5-Fluorouracil (5-FU) is a chemotherapeutic agent
that functions throughout the S phase of the cell cycle. 5-FU,
thymidine phosphorylase activates thromidylate synthase-
inhibiting fluorodeoxyuridine, thus preventing DNA synthe-
sis. This leads to cell growth and ultimately cell death [3]. In
addition, 5-FU is metabolized to 5-fluorouridine mono-
phosphate (5-FUMP), which degrades its function by binding
to RNA. 5-FU is metabolized by the liver and has a half-life of
10 min [4]. It has previously been determined that 5-FU causes
liver damage [5]. 5-FU is primarily eliminated via liver meta-
bolism; only a small portion is removed by the kidney.
Dihydropyrimidine dehydrogenase (DPD), which is found in
the liver during 5-FU catabolism, is enzymatically effective. A
variety of studies have shown that 5-FU causes damage to the
liver. Like other chemotherapeutic agents, 5-FU creates over-
reactive oxygen species (ROS) and suppresses the antioxi-
dant defense mechanism. Therefore, much attention has been
paid to the potential role of antioxidants in protecting against
chemotherapy-induced hepatotoxicity [6].
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Quercetin (Q) and rutin are natural flavonoids found in many
fruits and vegetables. Several experimental studies have reported
that these molecules have many effective qualities; they are anti-
ischemic, hypolipidemic, cytoprotective, anti-angiogenic, anti-
spasmitic, anti-mutagenic, antiplatelet, antihypertensive, antioxi-
dant, anti-inflammatory, anti-thrombotic, anti-cancer, anti-
proliferative, and anti-viral [7–11]. In studies performed in several
cancer toxicity models, Q and rutin were reported to prevent
toxicity and tissue damage induced by anti-cancer agents [12,13].
The aim of this study was to investigate the hepatoprotective
effects of Q and rutin, which have shown strong antioxidant
properties in experimental hepatotoxicity-induced rats treated
with 5-FU.

2. Materials and methods

The study involved the use of 80 adult male Sprague
Dawley rats, whose weights were 220–250 g. The animals
were provided with proper moisture, light, and room temper-
ature, as well as free water and food, until the day of the
experiment. Animal experiments were performed in accor-
dance with the national guidelines for the use and care of
laboratory animals and were approved by the local animal-care
committee of the Local Ethics Committee of Ataturk Univer-
sity for Animal Experiments. The rats were divided into eight
groups, consisting of a control and 7 experimental groups,
respectively. Control group was given only intragastric (i.g.)
solvent (corn oil) for 21 days. Group 5-FU was given i.g. corn
oil for 21 days as a placebo, and single-dose intraperitoneal
(i.p.) 5-FU (50 mg/kg) was given on the 9th day of the study.
Groups rutin 50 + 5-FU and rutin 100 + 5-FU, respectively,
were administered i.g. doses of 50 and 100 mg/kg of rutin
dissolved in corn oil for 21 days, and single injection of i.p. 5-
FU (50 mg/kg) was administered on the 18th day. In Group
rutin 100, rutin's 100 mg/kg dose was given to rats i.g. for 21
days. Groups Q50 + 5-FU and Q100 + 5-FU, respectively,
were administered i.g. doses of 50 and 100 mg/kg of quercetin
dissolved in corn oil for 21 days, and single injection of i.p. 5-
FU (50 mg/kg) was administered on the 18th day. In Group
Q100, quercetin's 100 mg/kg dose was given to rats i.g. for 21
days (Table 1). On the 22th day of the experiment, the rats in
all groups were anesthetized, intracardiac blood samples were
taken, and all animals were sacrificed. The blood and liver
tissue samples were collected for biochemical analysis,
oxidative stress (MDA, GPx, and GSH), immun-histochemical
and histopathological examination.
Table 1

All groups of study and animal protocols.

Groups Treatment No. of rats in
groups

Control Control (corn oil i.g.) 10
5-FU 5-Fluorouracil (50 mg/kg i.p.) 10
Rutin 50 + 5-
FU

50 mg/kg Rutin (i.g.) + 5-
fluorouracil (50 mg/kg i.p.)

10

Rutin
100 + 5-FU

100 mg/kg Rutin (i.g.) + 5-
fluorouracil (50 mg/kg i.p.)

10

Rutin 100 100 mg/kg rutin (i.g.) 10
Q50 + 5-FU 50 mg/kg Q (i.g.) + 5-fluorouracil

(50 mg/kg i.p.)
10

Q100 + 5-FU 100 mg/kg Q (i.g.) + 5-fluorouracil
(50 mg/kg i.p.)

10

Q100 100 mg/kg Q (i.g.) 10
2.1. Blood sample collection

Three days after from the 5-FU treatment or in other words
15th day of the experiment, rats were anesthetized with ketamine
hydrochloride (i.p., 75 mg/kg) (Ketalar, Pfizer, Turkey)-xylazine
(15 mg/kg) (Rompun, Bayer, Turkey) and blood samples were
separately collected from the liver of each rat. After rats were
euthanized with cervical dislocation. The blood samples were
centrifuged at 1 500 ×g for 12 min within 1 h after collection to
obtain serum samples. The serum samples were immediately
studied with an autoanalyzer.

2.2. Biochemical analysis

The liver tissues were homogenized by a tissue homogenizer.
The homogenates were centrifuged at 10 000 ×g for 20 min at
4 �C, and the supernatants were obtained. The malondialdehyde
(MDA), glutathione (GSH) and glutathione peroxidase (GPx)
levels were measured by respectively the methods of Placer et al.
[14], Sedlak and Lindsay [15] and Matkovics et al. [16].

2.3. Histopathological and immuno-histochemical
analysis

At the end of the experiment, all rats were sacrificed and their
livers were removed. The livers were fixed in 10% formalin,
dehydrated in ascending grades of ethyl alcohol, cleared in xylol
series and embedded in paraffin blocks. The blocks were cut at
5-mm thickness by using microtome and liver tissue sections
stained with Crossman's modified Mallory triple staining were
evaluated for any structural changes under a light microscope.
For hepatic immunohistochemistry, Bcl-2 and Caspase-3 stain-
ing were performed. Also, the Bcl-2 positive cell intensity and
Caspase-3 positivity were scored as follows: none = −;
weak = +; moderate = ++; strong = +++; very strong = ++++.

2.4. Statistical analysis

All data were statistically evaluated by one-way ANOVA
using SPSS 20.00, followed by Tukey post hoc test. The data
were expressed as mean ± SD. P < 0.05 was considered sta-
tistically significant.

3. Results

3.1. Biochemical findings

The animals' values of the liver enzymes (AST, LDH, ALT,
ALP) in experimental groups on 21th day are shown in Table 2.
Table 2

The values of the liver enzymes in the experimental groups.

Experimental groups AST ALT ALP LDH

Control 124 ± 58 52 ± 9 316 ± 28 876 ± 105
5-FU 256 ± 38* 83 ± 14* 125 ± 19* 1 744 ± 124*
Rutin 50 + 5-FU 185 ± 25 44 ± 11 162 ± 22 1 635 ± 112
Rutin 100 + 5-FU 168 ± 43 48 ± 14 282 ± 17 916 ± 69
Rutin 100 116 ± 12 48 ± 17 293 ± 23 707 ± 98
Q50 + 5-FU 192 ± 18 47 ± 9 135 ± 11 840 ± 120
Q100 + 5-FU 152 ± 40 54 ± 12 205 ± 14 691 ± 134
Q100 126 ± 8 52 ± 15 285 ± 36 805 ± 75

Data are shown as mean ± SD, n = 6. *: P < 0.05.
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According to these values, in 5-FU-treated rats, there was sig-
nificant increase in the AST, LDH, ALT and ALP levels in serum
as compared with other groups (P < 0.05), but no statistical
difference was observed among the other groups (P > 0.05). In
the 5-FU group, we found a significant increase in the MDA
level compared with that in the control group (P < 0.05). The
livers MDA levels were reversed to the control values by treated
with rutin and quercetine (Figure 1B). The levels of liver GSH
and GPx were significantly decreased in the 5-FU group
compared with that in the control group (P < 0.05), and in all
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Figure 1. The liver GSH (A), MDA (B) and GPx (C) levels in experimental g
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Figure 2. Histopathologic examinations of rat liver sections.
A: Control; B: 5-FU; C: Rutin 100; D: Quercetin 100; E: Rutin 50 + 5-FU; F:
tissue deposition in the rat liver; Arrows: Sinusoidal dilatation; Arrowheads:
Mallory triple staining.
experimental groups compared with 5-FU group it was observed
that there were significant increased GSH levels in the liver
(P < 0.05). Similarly, the level of GPx in the liver was signifi-
cantly increased in all experimental groups except rutin 50 + 5-
FU compared with 5-FU group (P < 0.05) (Figure 1A–C).

3.2. Histopathological findings

The liver's histological structure (Figure 2A) was normal in
the control group, whereas liver tissues of the 5-FU treatment
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group had significantly degenerated hepatocytes with nuclear
condensation, and sinusoidal dilatation and an increase of con-
nective tissue around the central vein and portal area were seen
(Figure 2B). Rutin 100 and Q100 groups showed no hepatic
abnormalities, and the arrangements of the hepatocytes in the
liver were almost normal (Figure 2C and D). In the rutin 50 + 5-
FU and Q50 + 5-FU treatment, hepatocyte degeneration and
connective tissue deposition were reduced (Figure 2E and F). In
the rutin 100 + 5-FU group tissues were seen nearly normal
hepatic structure according to Q100 + 5-FU group tissues
(Figure 2G and H).
Figure 3. Immunohistochemical staining for the Bcl-2.
A: Control; B: Negative control; C–D: 5-FU; E: Rutin 100; F: Q100; G: Ruti
rowheads show Bcl-2 positivity in cell in the liver sections. Negative control: N
biotin peroxidase staining.
3.3. Immuno-histochemical findings

In the present study, anti-apoptotic (Bcl-2) and pro-
apoptotic (Caspase-3) immunopositive reactions in the liver
sections of all groups were examined with Bcl-2 and Caspase-
3 antibodies, respectively. In Bcl-2 cell density estimation,
there was lower density in 5-FU group than control group
(Figure 3A, C, D). Also, immunopositivity of Bcl-2 was
significantly increased in Rutin 50 + 5-FU, Q50 + 5-FU, rutin
100 + 5-FU and Q100 + 5-FU groups compared with 5-FU
group (Figure 3G–J).
n 50 + 5-FU; H: Q50 + 5-FU; I: Rutin 100 + 5-FU; J: Q100 + 5-FU. Ar-
ot primer antibody used sections of control and other groups. Streptavidin–
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Intensity of Caspase-3 positivity was higher in the 5-FU group
sections compared to the control group sections (Figure 4A, C,D).
Also, there was intense mononuclear cell inflammation in the 5-
FU group (Figure 4D). Furthermore, immunopositivity of
Figure 4. Immunohistochemical staining for the Caspase-3.
A: Control; B: Negative control; C–D: 5-FU; E: Rutin 100; F: Q100; G: Ruti
rowheads show Caspase-3 positivity in cell in the liver sections. Asterisk: Mo
sections of control and other groups. Streptavidin–biotin peroxidase staining.
Caspase-3 was significantly decreased in rutin 100 + 5-FU group
compared with rutin 50 + 5-FU, Q50 + 5-FU and Q100 + 5-FU
groups (Figure 4G–J). The positive cell intensity of Bcl-2 and
Caspase-3 in the groups is shown in Table 3.
n 50 + 5-FU; H: Q50 + 5-FU; I: Rutin 100 + 5-FU; J: Q100 + 5-FU. Ar-
nonuclear cell inflammation; Negative control: Not primer antibody used



Table 3

The positive cell intensity.

Groups Bcl-2 Caspase-3

Control ++++ −/+
5-FU + ++++
Rutin 50 + 5-FU + ++
Rutin 100 + 5-FU ++ −/+
Rutin 100 +++ −/+
Q50 + 5-FU ++ ++
Q100 + 5-FU + +
Q100 ++ −/+

None: −; Weak: +; Moderate: ++; Strong: +++; Very strong: ++++.
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4. Discussion

Currently, chemotherapy is the main treatment option for
cancer patients, but its therapeutic use is limited due to severe
clinical side effects [17,18]. In this study, we investigated the
effects of quercetin and rutin on 5-FU-induced oxidative stress
and liver apoptosis. The protective effects of Q and rutin we
observed may be related to lowered oxidative stress and
apoptotic damage in the livers of 5-FU-treated rats.

Enzyme levels such as ALT, AST, and LDH are often used to
assess hepatic damage. Liver injury causes membrane damage or
necrosis, which allows intracellular enzymes to circulate and be
detected in serum. Elevated AST levels indicate hepatic damage
because the area is transformed by ALT-catalyzed reactions, and
glutamate and pyruvate may be released. ALT is a more specific
parameter than AST for determining liver damage. Higher
concentrations of these enzymes in the serum indicate that the
hepatic membrane's functional integrity has been lost. Serum,
total protein, ALP, and total bilirubin levels are also associated
with liver cell function. The rise in serum ALP is influenced by
the increased bile pressure [19,20]. 5-FU administration caused a
significant increase in enzyme levels including ALT, LDH, AST
and ALP compared to the control. Quercetin and rutin admin-
istration significantly restored these parameters. This reversal in
enzyme levels after Q and rutin treatment is probably due to
membrane-stabilizing activities that inhibit intracellular enzyme
leakage. This is consistent with the accepted view that liver cell
regeneration, liver parenchyma recovery, and serum aminase
levels return to normal [19–22].

Lipid peroxidation, one of the mechanisms involved in tissue
damage through ROS formation, is measured using MDA.
Significant increases in MDA levels in liver tissue were reported
in rats treated with 5-FU [23]. Our results are consistent with
previous findings. Q and rutin used as a prophylactic treatment
significantly reduced MDA levels.

GSH is an antioxidant that defends against exogenous toxic
injury, combatting ROS through the release of free radicals.
GSH donates a direct hydrogen atom and neutralizes free radi-
cals. Absence of GSH in tissues reduces the cell's defenses
against oxidative stress. Our findings indicate that 5-FU
precipitated GSH reservoirs, consistent with earlier findings
[23]. However, the prophylactic treatment of Q and rutin
significantly increased GSH levels.

GPx detoxifies H2O2 and the other ROS to H2O2, as well as
H2O and O2 [24]. In this study, GPx activity was significantly
lower in the 5-FU-treated rats than in the control group. The
reduction in antioxidant enzyme activity (GPx and GSH) in the 5-
FU-treated group suggests that oxidative stress interferes in the
pathophysiology of 5-FU liver toxicity. Q and rutin application
increased GPx and GSH activity by removing ROS such as per-
oxy radicals, peroxide, superoxide radicals, and oxygen. The ac-
tivities of enzymatic and non-enzymatic antioxidants increased
significantly after treatment with Q and rutin [25,26]. Our results are
consistent with previous research, indicating that it is responsible
for the protective effects of polyphenolic natural products.

5-FU-induced apoptosis forms in the cell [27]. One way to
measure cell apoptosis is to measure the levels of the caspase-3
and Bcl-2 proteins. In this research, the levels of caspase-3
(a proapoptotic member of the Bcl-2 family) and Bcl-2 (an anti-
apoptotic member) were examined using immuno-histochemical
analysis. The results show that while the caspase-3 level
increased in the 5-FU group, it decreased in the Q50 + 5-FU,
Q100 + 5-FU, rutin 50 + 5-FU, and rutin 100 + 5-FU groups. The
Bcl-2 level decreased in the 5-FU group compared to the control
group, but increased in the rutin 100 + 5-FU, Q50 + 5-FU, and
Q100 + 5-FU groups. Treatment with antioxidants has been re-
ported to help regulate organ functions [28] and prevent apoptosis
[29,30]. Our findings are consistent with this data.

In conclusion, Q and rutin treatment can mitigate liver damage
after 5-FU-induced liver toxicity in rats. The protective roles of Q
and rutin could improve restoration of biochemical oxidative
enzymes and antiapoptotic and liver cells. This may occur due to
the antioxidant effects of Q and rutin. Therefore, our experimental
results suggest that Q and rutin might potentially be protective
agents for 5-FU-induced liver toxicity. Further studies are
necessary to investigate future clinical applications of Q and rutin.
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