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Abstract

Let G = (V,E) be a graph and uv ∈ E be an edge then u strongly dominates v if
deg(u) ≥ deg(v). A set S is a strong dominating set (sd − set) if every vertex v ∈ V − S
is strongly dominated by some u in S. We investigate strong domination number of some
path related graphs.
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1 Introduction

We consider simple, finite, connected and undirected graph G with vertex set V and edge
set E. For all standard terminology and notations we follow West [15] while the terms related
to the theory of domination in graphs are used in the sense of Haynes et al. [6].

Definition 1.1. A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set if
every vertex v ∈ V is either an element of S or is adjacent to an element of S. A dominating set
S is a minimal dominating set if no proper subset S′ ⊂ S is a dominating set. The domination
number γ(G) of a graph G is the minimum cardinality of a dominating set in graph G.

Definition 1.2. A set S ⊆ V is an independent set of G, if ∀u, v ∈ S, N(u) ∩ {v} = φ. A
dominating set which is independent, is called an independent dominating set. The minimum
cardinality of an independent dominating set inG is called the independent domination number
i(G) of a graph G.

The theory of independent domination was formalized by Berge [2] and Ore [8] in 1962.
Allan and Laskar [1] have identified the graphs G for which γ(G) = i(G) whereas bounds on
the independent domination number are determined by Goddard and Henning [5]. Vaidya and
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Pandit [14] have investigated the exact value of independent domination number of some wheel
related graphs.

We denote the degree of a vertex v in a graph G by deg(v) while the maximum and minimum
degree of the graph G are denoted by 4(G) and δ(G) respectively.

Definition 1.3. Let G = (V,E) be a graph and uv ∈ E. Then, u strongly dominates v if
deg(u) ≥ deg(v). A set S is a strong dominating set (sd − set) if every vertex v ∈ V − S
is strongly dominated by some u in S. Analogously, one can define a weak dominating set
(wd− set).

The concept of strong (weak) domination was introduced by Sampathkumar and Pushpa
Latha [11]. Rautenbach[10] has derived a new bound on γst(G) and Meena et al.[7] have found
the classes of graphs which are strong efficient. Domke et al.[4] have proved that the problems of
computing iw and ist are NP-hard. Bounds on strong domination number are also reported by
Rautenbach[9]. Swaminathan and Thangaraju [12] have established the relation between strong
domination and maximum degree of the graph as well as weak domination and minimum degree
of the graph.

Definition 1.4. The independent strong(weak) domination number of a graph G is the min-
imum cardinality of a strongly (weak) dominating set which is independent. The independent
strong domination number and the independent weak domination number are denoted by ist(G)
and iw(G) respectively.

2 Main Results

Proposition 2.1. [13] If S ⊆ V is a strong dominating set and v ∈ V is the only vertex of
maximum degree in G then v ∈ S.

Proposition 2.2. [13] Let v be a vertex with deg(v) = ∆(G) = k and v is not adjacent to any
other vertex of degree k then v must be in sd− set.

Proposition 2.3. [3] γst(Pn) =
⌈
n

3

⌉
.

Definition 2.4. Let G be a graph with V (G) = S1 ∪ S2 ∪ . . . St ∪ T where Si is the set having
at least two vertices of same degree and T = V (G) − ∪Si where i = 1, 2, . . . , t. The degree
splitting graph DS(G) is obtained from G by adding vertices w1, w2, . . . , wt and joining wi to
each vertex of Si for 1 ≤ i ≤ t.

Theorem 2.5. γst(DS(Pn)) = ist(DS(Pn)) = 2 for n ≥ 5.

Proof: The path Pn has two pendant vertices and the remaining n − 2 vertices are of degree
2. Thus, V (Pn) = {vi; 1 ≤ i ≤ n} = S1 ∪ S2 where S1 = {v1, vn} and S2 = {vi; 2 ≤ i ≤ n− 1}.
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To obtain DS(Pn) from Pn, add two vertices w1 and w2 corresponding to S1 and S2 respec-
tively.
Thus, V (DS(Pn)) = V (Pn) ∪ {w1, w2} and |V (DS(Pn))| = n+ 2.
As w2 is adjacent to n − 2 vertices of degree 3, it strongly dominates them and the vertex w1

strongly dominates both the pendant vertices v1 and vn. Thus all the vertices of the graph
including w1 and w2 are strongly dominated by {w1, w2}. Thus, S = {w1, w2} is the strong
dominating set as well as independent set of minimum cardinality. Hence γst(DS(Pn)) =
ist(DS(Pn)) = 2.

Definition 2.6. A uniform t-ply is vertex disjoint union of t paths of same length having
common end points. A uniform ply has t number of paths of length k. It is denoted by Pt(k).
The paths are called threads.

Theorem 2.7. γst(Pt(k)) = 2 + t

⌈
k − 3

3

⌉
for t ≥ 3 and k ≥ 3.

Proof: Let Pt(k) be the graph with t number of paths of length k, where u and v are the
common points with degree t. So, |V (Pt(k)| = t(k − 1) + 2.

By Proposition 2.2, the vertices u and v must be in strong dominating set. As there are t
paths between u and v, the vertex u strongly dominates t vertices which are adjacent to it and
the vertex v strongly dominates t vertices which are adjacent to it. Therefore, total 2t+2 vertices
are strongly dominated by u and v including themselves. Now, there are t(k−1)+2−(2t+2) =
tk − 3t = (k − 3)t vertices which are not strongly dominated. That is, from each path there
are k− 3 vertices which are not strongly dominated. Sincet the strongly domination number of
the path Pn is

⌈
n

3

⌉
, we need

⌈
k − 3

3

⌉
vertices from each path to strongly dominate remaining

vertices of the graph. Therefore, t
⌈
k − 3

3

⌉
vertices are enough to strongly dominate remaining

vertices of the graph. So, total 2 + t

⌈
k − 3

3

⌉
vertices are enough to strongly dominate all the

vertices of the graph.

Hence, γst(Pt(k)) = 2 + t

⌈
k − 3

3

⌉
.

Theorem 2.8. 1. γst(P1(k)) =
⌈
k + 1

3

⌉
for k ∈ N .

2. γst(P2(k)) =
⌈2k

3

⌉
for k ∈ N .

3. γst(Pt(1)) = 1

4. γst(Pt(2)) = 2
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Proof: In γst(Pt(k)), if t = 1, k ∈ N then P1(k) becomes path of length k with k + 1 vertices.
Hence, γst(P1(k)) =

⌈
k + 1

3

⌉
.

If t = 2, k ∈ N then P2(k) becomes cycle with (k + 1) + (k + 1) − 2 = 2k vertices. Hence,
γst(P2(k)) =

⌈2k
3

⌉
for k ∈ N .

If k = 1, t ∈ N then there are only two vertices u and v which can strongly dominate
each other. Therefore, the minimal strong dominating set contains either u or v. Hence,
γst(Pt(1)) = 1.

If k = 2, t ∈ N then from Pt(2) the vertices u and v strongly dominate all the vertices of
the graph. Hence, γst(Pt(2)) = 2.

Definition 2.9. The middle graph M(G) of a graph G is the graph whose vertex set is V (G)∪
E(G) and two vertices in M(G) are adjacent whenever either they are adjacent edges of G or
one is a vertex of G and the other is an edge incident with it.

Theorem 2.10. γst(M(Pn)) =
⌈
n

2

⌉
for n ≥ 5.

Proof: Let v1, v2 . . . vn be the vertices and e1, e2, . . . , en−1 be the edges of path Pn. Then,
V (M(Pn)) = {v1, v2, v3, . . . , vn, e1, e2, e3, . . . , en−1}. Therefore, |V (M(Pn))| = 2n − 1. Let
V (M(Pn)) = P ∪ P ′ where P = {v1, v2, v3, . . . , vn} and P

′
= {e1, e2, e3, . . . , en−1}. Every

vi(i = 1, 2, . . . n) strongly dominates itself and every ei(i = 2, 3, . . . , n − 2) strongly dominates
four vertices (ei−1, ei+1, vi, vi+1) other than itself. We can observe that for any n ∈ N , v1 and
vn are strongly dominated by only e1 and en−1 respectively except themselves. Therefore, to
strongly dominate v1 and vn the vertices e1 and en−1 must be in sd− set S. In order to prove
the result we consider following cases.
Case (i): n is odd.

If n = 5 then by the argument given in the beginning of the proof, e1, e4 ∈ S. Now e1

strongly dominates v1 and v2 other than itself whereas e4 strongly dominates v4 and v5 other
than itself. The vertices e2, e3 and v4 are not strongly dominated by e1 or e4. We know that v3

is strongly dominated by e2, e3 or itself while e2 and e3 strongly dominate each other. Therefore,
we must consider at least one vertex from {e2, e3} in S to obtain strong dominating set. As S
is an sd− set of minimum cardinality, γst(M(P5)) = 3.

If n = 7 then by the argument given in the beginning of the proof, e1, e6 ∈ S. Now e1

strongly dominates v1 and v2 other than itself while e6 strongly dominates v6 and v7 other than
itself. We observe that the vertices e2, v3, e3, v4, e4, v5, e5 are not strongly dominated by e1 or
e6. If e3 ∈ S then the vertices of the set {e1, e3, e6} strongly dominate all the vertices except v5

and e5 while if e4 ∈ S then the vertices of the set {e1, e4, e6} strongly dominate all the vertices
except v3, e2. If e3 is included in S then e5 or e4 must be in S or if e4 is included in S then e2

or e3 must be in S. Hence, we need to include two vertices in S other than e1 and e7 to obtain
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a strong dominating set of minimum cardinality. Hence, γst(M(P7)) = 4.
In general, if n = 2k + 1 where k = 2, 3, ..... then e1, en−1 ∈ S. That is, only six vertices
are strongly dominated by e1 and en−1. Therefore, to strongly dominate remaining vertices of
M(Pn) we consider n− 3

2 alternate vertices from P
′ . Therefore, to obtain a strong dominating

set S of minimum cardinality, we have to include e1, en−1 and n− 3
2 vertices from P

′ . Hence,

γst(M(Pn)) = 2 + n− 3
2 = n+ 1

2 .
Case (ii): n is even.

If n = 6 then by the argument given in the beginning of the proof, e1, e5 ∈ S. Now e1

strongly dominates v1 and v2 other than itself and e5 strongly dominates v5 and v6 other than
itself. The vertices e2, v3, e3, v4 and e4 are not strongly dominated by e1 or e5. By including
e3 in S the remaining vertices e2, v3, e3, v4 and e4 are strongly dominated by e3. Therefore, e3

must be in S. So, S = {e1, e3, e5} becomes a strong dominating set of minimum cardinality.
Hence, γst(M(P6)) = 3.

If n = 8 then by the argument given in the beginning of the proof, e1, e7 ∈ S. Now e1

strongly dominates v1 and v2 other than itself and e7 strongly dominates v7 and v8 other than
itself. The vertices e2, v3, e3, v4, e4, v5, e5, v6, e6 are not strongly dominated by e1 or e7. If we
consider any one vertex from {e2, e3, e4, e5, e6} then some vertices of M(P8) are not strongly
dominated.

Therefore, we must include at least two vertices in S from {e3, e4, e5} such that S will become
a strong dominating set of minimum cardinality. If we consider any two successive vertices e3,
e4 then v6, e6 are not dominated and e4, e5 are considered then v3, e3 are not dominated. In
the same way we can not consider e2 and e4. Therefore, we must consider e3 and e5 in S. So,
S = {e1, e3, e5, e7} and S becomes an sd− set of minimum cardinality. Hence, γst(M(P8)) = 4.

In general, if n = 2k where k = 3, 4, ..... then e1, en−1 ∈ S. That is, only eight vertices
are strongly dominated by e1 and en−1. Therefore, to strongly dominate remaining vertices of
M(Pn) we consider n− 4

2 alternate vertices from P
′ . Therefore, S = {e1, e3, e5 . . . en−1} is an

sd− set. As S− ei will no longer remain an sd− set, S is minimal sd− set. Since S is the only
strong dominating set of minimum cardinality, γst(M(Pn)) = 2 + n− 4

2 = n

2 . Hence, in each

case γst(M(Pn)) =
⌈
n

2

⌉
.

Definition 2.11. [11] Let G = (V,E) be a graph and D ⊂ V . Then,

1. D is full if every u ∈ D is adjacent to some v ∈ V −D.

2. D is s-full (w-full) if every u ∈ D strongly (weakly) dominates some v ∈ V −D.

Definition 2.12. [11] A graph G is domination balanced (d − balanced) if there exists an
sd-set D1 and a wd-set D2 such that D1 ∩D2 = φ.
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Proposition 2.13. [11] For a graph G, the following statements are equivalent.

1. G is d-balanced.

2. There exists an sd-set D which is s-full.

3. There exists an wd-set D which is w-full.

Theorem 2.14. For the complete bipartite graph Km,n,

1. ist(Km,n) + iw(Km,n) = m+ n, for m 6= n.

2. γ(Km,n) + iw(Km,n) = m+ n, for m 6= n.

Proof: (1) If m > n then by the definition of independent strong domination number and
independent weak domination number is(Km,n) = n and iw(Km,n) = m. Therefore, is(Km,n)+
iw(Km,n) = m+ n.
If m < n then by the definition of independent strong domination number and independent weak
domination number is(Km,n) = m and iw(Km,n) = n. Therefore, is(Km,n)+ iw(Km,n) = m+n.
(2) If m > n then by the definition of domination number and independent weak domination
number γ(Km,n) = n and iw(Km,n) = m. Therefore, γ(Km,n) + iw(Km,n) = m+ n.
If m < n then by the definition of domination number and independent weak domination
number γ(Km,n) = m and iw(Km,n) = n. Therefore, γ(Km,n) + iw(Km,n) = m+ n.

Theorem 2.15. The degree splitting graph DS(Pn) is d-balanced for n ≥ 4.

Proof: In Theorem 2.5, we obtained an sd− set S = {w1, w2} for DS(Pn) for n ≥ 4 which is
s-full as every vertex of S strongly dominates some v ∈ V − S. Therefore, by Proposition 2.13,
DS(Pn) is a d-balanced graph n ≥ 4.

Proposition 2.16. [13] If there exists an isolated vertex in graph G then G is not d- balanced.

Definition 2.17. The switching of a vertex v of G means removing all the edges incident to
v and adding edges joining v to every vertex which is not adjacent to v in G. The resultant
graph is denoted by G̃.

Theorem 2.18. Let G be any graph with order p and there is at least one vertex v such that
4(v) = p − 1. If G̃ is the graph obtained by switching of a vertex v of degree p − 1 from G

then, G̃ is not d-balanced.

Proof: Since G has a vertex with degree p − 1, there is an isolated vertex in G̃, Hence, by
Proposition 2.16 it is not a d-balanced graph.
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3 Concluding Remarks

The concept of strong domination in graphs relates dominating sets and the degree of vertices.
The strong domination numbers of some standard graphs are already available in the literature
while we investigate the strong domination number for the larger graphs obtained from path
Pn by means of some graph operations to derive similar results for other graph families as well
as in the context of various domination models are open areas of research.
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