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Abstract
The notion of an Almost Distributive Lattice (abbreviated as ADL) is a common ab-

straction of several lattice theoretic generalization of Boolean algebras and Boolean rings.
In this paper we introduce the notion of Relative pseudo-complementation on ADL’s and
discuss several properties of this.

Keywords: Almost Distributive Lattice (ADL), relative annulet, pseudo-complementation,
relative pseudo-complementation.
AMS Subject Classification(2010): 06D99.

1 Introduction

The notion of an Almost Distributive Lattice (abbreviated as ADL) was introduced by
U.M.Swamy and G.C.Rao [3] as a common abstraction of several lattice theoretic generalization
of Boolean algebras and Boolean rings. Mark. Mandelker [1] has introduced the concepts of
relative annhilators in lattices and relatively pseudo-complemented lattices and studied their
properties. Further U.M.Swamy, G.C.Rao and G.N.Rao [4] have introduced the notion of
pseudo-complementation on an Almost Distributive Lattice (ADL) and proved that the class of
pseudo-complemented ADL’s is equationally definable and discussed inter-relationship between
the annhilator ideals and pseudo-complementations on an ADL. Also, they exhibited an one
to one correspondence between the pseudo-complementations and the maximal elements of an
ADL A, provided there is one pseudo-complementation on A. In this paper, we introduce
the concepts of relative annulets and relative pseudo-complementations on an ADL A and
discuss several properties of ADL’s with a relative pseudo-complementation. In particular, we
prove that an ADL with a relative pseudo-complementation is a pseudo-complemented ADL.
It is observed that an ADL A can have more than one relative pseudo-complementation. In
fact, there exists an induced surjective correspondence between the set of maximal elements
and the set of relative pseudo-complementations on A, provided there is a relative pseudo-
complementation on A.
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2 Preliminaries

In this section, we recall from [3] certain elementary concepts and results concerning ADL’s.

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an Almost Distributive
Lattice (abbreviated as ADL) if it satisfies the following conditions for all a, b and c ∈ A.

(1) 0 ∧ a = 0

(2) a ∨ 0 = a

(3) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(5) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(6) (a ∨ b) ∧ b = b.

Example 2.2. Let X be a non-empty set and fix an arbitrarily chosen element 0 ∈ X. For
any a and b ∈ X, define

a ∧ b =

0 if a = 0

b if a 6= 0
and a ∨ b =

b if a = 0

a if a 6= 0.

Then (X,∧,∨, 0) is an ADL and is called a discrete ADL.

Definition 2.3. Let A = (A,∧,∨, 0) be an ADL. For any a and b ∈ A, define

a ≤ b if a = a ∧ b (⇔ a ∨ b = b).

Then ≤ is a partial order on A with respect to which 0 is the smallest element in A.

Theorem 2.4. The following hold for any elements a, b and c in an ADL A = (A,∧,∨, 0).

(1) a ∧ 0 = 0 = 0 ∧ a and a ∨ 0 = a = 0 ∨ a

(2) a ∧ a = a = a ∨ a

(3) a ∧ b ≤ b ≤ b ∨ a

(4) a ∧ b = a ⇔ a ∨ b = b; and a ∧ b = b ⇔ a ∨ b = a

(5) (a ∧ b) ∧ c = a ∧ (b ∧ c)

(6) a ∧ b = b ∧ a⇔ a ∨ b = b ∨ a
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(7) If a ≤ b, then a ∧ b = a = b ∧ a and a ∨ b = b = b ∨ a

(8) (a ∧ b) ∧ c = (b ∧ a) ∧ c and (a ∨ b) ∧ c = (b ∨ a) ∧ c

(9) a ∧ b = inf{a, b} ⇔ a ∧ b = b ∧ a⇔ a ∨ b = sup{a, b}.

Definition 2.5. Let I be a non empty subset of an ADL A. Then I is called

(1) an ideal of A if a ∨ b ∈ I and a ∧ x ∈ I for all a and b ∈ I, x ∈ A.

(2) a filter of A if a ∧ b ∈ I and x ∨ a ∈ I for all a and b ∈ I, x ∈ A.

As consequence, for any ideal I of A, x ∧ a ∈ I for all x ∈ A and a ∈ I and for any filter F
of A, a ∨ x ∈ F for all x ∈ A and a ∈ F.
The set I(A) of all ideals of A is a complete distributive lattice under set inclusion in which, for
any I, J ∈ I(A), I ∩ J is the infimum of I and J and the supremum is given by I ∨ J = {i ∨ j |
i ∈ I, j ∈ J}. For any X ⊆ A, (X] =

{(∨n
i=1 ai

)
∧ x | ai ∈ X,x ∈ A,n ∈ N

}
is the smallest

ideal of A containing X and is called the ideal generated by X. If X = {a}, then we write (a]
for (X]. Therefore, for any a ∈ A, (a] = {a ∧ x | x ∈ A} is called the principal ideal generated
by a and [a) = {x ∨ a | x ∈ A} is called the principal filter generated by a.

Theorem 2.6. Let A be an ADL. For any a, b ∈ A, we have the following:

(1) (a] ∨ (b] = (a ∨ b] = (b ∨ a]

(2) (a] ∧ (b] = (a ∧ b] = (b ∧ a]

(3) [a) ∨ [b) = [a ∧ b) = [b ∧ a)

(4) [a) ∧ [b) = [a ∨ b) = [b ∨ a).

3 Relative Annulets

In this section, we introduce the concept of relative annulets in an ADL and study some
basic properties of these annulets.
First, let us recall that, for any elements a and b in an ADL A, a ∧ b = 0 ⇔ b ∧ a = 0 (since
a ∧ b = b ∧ a). Let us recall from [2], for any subset S of A, the annihilator of S to be the set

Ann S = {a ∈ A | a ∧ s = 0 for all s ∈ S}.

Then Ann S is always an ideal of A for all S ⊆ A. It can be easily proved that Ann S = Ann(S].
For any a ∈ A, we have

Ann(a] = Ann{a} = {x ∈ A | a ∧ x = 0} = {x ∈ A | x ∧ a = 0}.
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Definition 3.1. Let A be an ADL and a ∈ A. Then, for any x ∈ A, we define the annulet
relative to a (or simply called relative annulet) as follows:

〈x, a〉 = {y ∈ A : x ∧ y ∈ (a]}

Lemma 3.2. For any x and a in an ADL A, the relative annulet 〈x, a〉 is an ideal of A.

Proof: 〈x, a〉 is a non empty subset of A since x∧a ∈ (a] and hence a ∈ 〈x, a〉. Let y, z ∈ 〈x, a〉.
Then x∧y and x∧z ∈ (a]. Therefore x∧(y∨z) = (x∧y)∨(x∧z) ∈ (a] and hence y∨z ∈ 〈x, a〉.
Again let y ∈ 〈x, a〉 and t ∈ A. Then x∧y ∈ (a] and hence x∧y∧t ∈ (a]. Therefore y∧t ∈ 〈x, a〉.
Thus 〈x, a〉 is an ideal of A.

We observe that 〈x, 0〉 = {y ∈ A/x ∧ y = 0} = Ann{x}.
In the following we give some elementary properties of relative annulets which can be proved
directly.

Theorem 3.3. Let a, b be two elements in an ADL A. Then we have the following for any
x, y ∈ A.

(1) a ≤ b⇒ 〈x, a〉 ⊆ 〈x, b〉

(2) 〈x, a ∧ b〉 = 〈x, a〉 ∩ 〈x, b〉 = 〈x, b ∧ a〉

(3) 〈x, a〉 ∨ 〈x, b〉 ⊆ 〈x, a ∨ b〉 = 〈x, b ∨ a〉

(4) x ≤ y ⇒ 〈y, a〉 ⊆ 〈x, a〉

(5) 〈x ∧ y, a〉 = 〈y ∧ x, a〉

(6) 〈x ∨ y, a〉 = 〈x, a〉 ∩ 〈y, a〉

(7) 〈x ∨ y, a〉 = 〈y ∨ x, a〉

(8) 〈x, a〉 ∨ 〈y, a〉 ⊆ 〈x ∧ y, a〉

(9) x ∈ (a]⇔ 〈x, a〉 = A

(10) 〈a, a〉 = A = 〈0, a〉

(11) a is maximal ⇒ 〈x, a〉 = A, the converse is not true.

Proof:
(1) This follows from the fact that a ≤ b⇒ (a] ⊆ (b].
(2) y ∈ 〈x, a ∧ b〉 ⇔ x ∧ y ∈ (a ∧ b]⇔ x ∧ y ∈ (a] ∩ (b]⇔ x ∈ 〈x, a〉 ∩ 〈x, b〉.

Therefore, 〈x, a ∧ b〉 = 〈x, a〉 ∩ 〈x, b〉.
(3) Let y ∈ 〈x, a〉 ∨ 〈x, b〉. Then y = y1 ∨ y2 for some y1 ∈ 〈x, a〉 and y2 ∈ 〈x, b〉. Hence, we get
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x ∧ y1 ∈ (a] and x ∧ y2 ∈ (b].
Now, x ∧ y = x ∧ (y1 ∨ y2) = (x ∧ y1) ∨ (x ∧ y2) ∈ (a] ∨ (b] = (a ∨ b] and hence y ∈ 〈x, a ∨ b〉.
Thus, 〈x, a〉 ∨ 〈x, b〉 ⊆ 〈x, a ∨ b〉.
(4) Suppose x ≤ y. Then x ∧ y = x and x ∨ y = y. Now,

z ∈ 〈y, a〉 ⇒ y ∧ z ∈ (a]

⇒ x ∧ y ∧ z ∈ (a]

⇒ x ∧ z ∈ (a]

⇒ z ∈ 〈x, a〉.

Thus, 〈y, a〉 ⊆ 〈x, a〉.
(5) This follows from the Theorem 2.3(9)
(6) z ∈ 〈x ∨ y, a〉 ⇔ (x ∨ y) ∧ z ∈ (a]

⇔ (x ∧ z) ∨ (y ∧ z) ∈ (a]
⇔ x ∧ z and y ∧ z ∈ (a]
⇔ z ∈ 〈x, a〉 ∩ 〈y, a〉.

Therefore, 〈x ∨ y, a〉 = 〈x, a〉 ∩ 〈y, a〉.
(7) It is clear from (6).
(8) Let z ∈ 〈x, a〉 ∨ 〈y, a〉. Then z = z1 ∨ z2 for some z1 ∈ 〈x, a〉 and z2 ∈ 〈y, a〉. We get
x ∧ z1, and y ∧ z2 ∈ (a] and hence y ∧ x ∧ z1 and x ∧ y ∧ z2 ∈ (a]. Now,
x ∧ y ∧ z = (x ∧ y) ∧ (z1 ∨ z2) = (x ∧ y ∧ z1) ∨ (x ∧ y ∧ z2) ∈ (a].
Therefore x ∧ y ∧ z ∈ (a] and hence z ∈ 〈x ∧ y, a〉.
Thus, 〈x, a〉 ∨ 〈y, a〉 ⊆ 〈x ∧ y, a〉.
(9) x ∈ (a] ⇒ a ∧ x = x. Let y ∈ A. Then a ∧ x ∧ y = x ∧ y. Therefore x ∧ y ∈ (a] and hence
y ∈ 〈x, a〉. Thus 〈x, a〉=A. Converse is trivial.
(10) It is clear.
(11) If a is maximal in A, then (a] = A and hence 〈x, a〉 = A for all x ∈ A. Converse is not
true. For, in the distributive lattice L given in the figure-1, 〈x, x〉 = L but x is not maximal.
Note: Equality may not be true in (3) and (8) of above theorem. For example in the distributive
lattice L = {0, a, b, x, 1} whose Hasse diagram is given below
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Here, 〈x, a ∨ b〉 = 〈x, x〉 = L, and 〈x, a〉 = {0, a}, 〈x, b〉 = {0, b}.
Then, 〈x, a〉 ∨ 〈x, b〉 = (a ∨ b] = (x] 6= L.
Since 〈a ∧ b, 0〉 = 〈0, 0〉 = L and 〈a, 0〉 = {0, b}, 〈b, 0〉 = {0, a}, we have 〈a, 0〉 ∨ 〈b, 0〉 =
{0, a, b, x} 6= L.

4 Relative Pseudo-complementation on ADL’s

The concept of pseudo-complementation on an ADL was first introduced by U.M. Swamy,
G.C.Rao and G.N.Rao [4]. In this section, as a natural generalization of a pseudo-complementation
on an ADL A, we introduce the concept of relative pseudo-complementations on an ADL A.

Definition 4.1. Let A be an ADL. Then a binary operation ∗ on A is called a relative pseudo-
complementation on A if

〈a, b〉 = (a ∗ b] for all a, b ∈ A.

Example 4.2. Let A be a discrete ADL and with at least two elements. Then define for any
a, b ∈ A,

a ∗ b =
{

0 if a 6= 0, b = 0
b otherwise

Then ∗ is a relative pseudo-complementation on A.

Definition 4.3. An ADL A is said to be relatively pseudo-complemented if there exists a
relative pseudo-complementation on A.

Example 4.4. Let A be a discrete ADL and with at least two elements. Fix a0 ∈ A and define
for any a, b ∈ A,

a+ b =
{

0 if a 6= 0, b = 0
a0 otherwise

Then + is a relative pseudo-complementation onA and henceA is relatively pseudo-complemented
ADL which is not lattice.

Note that in Definition 4.1, if a ∗ b is unique such that 〈a, b〉 = (a ∗ b], then A is a lattice and
hence A is relatively pseudo-complemented lattice.
Let us recall that an element m in an ADL A is maximal in (A,≤) if and only if m ∧ a = a(⇔
m = m ∨ a) for all a ∈ A, which is equivalent to saying that (m] = A.

Theorem 4.5. Let ∗ be a relative pseudo-complementation on an ADL A. Then for any
a, b ∈ A we have the following:

(1) a ∗ a is a maximal element in A.
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(2) a ∧ (a ∗ 0) = 0 = (a ∗ 0) ∧ a.

(3) (a ∧ b) ∗ b is a maximal element in A.

(4) a ≤ b⇒ a ∗ b is a maximal element in A.

(5) (a ∗ b) ∧ b = b.

(6) b ∈ (a ∗ 0]⇒ a ∧ b = 0.

Proof:
(1) Clearly (a ∗ a] = 〈a, a〉 = A and hence a ∗ a is a maximal element in A.
(2) Since (a ∗ 0] = 〈a, 0〉 = Ann{a}, we get that a ∧ (a ∗ 0) = 0 = (a ∗ 0) ∧ a.
(3) Since a∧ b ≤ b, a∧ b ∈ (b]. By Theorem 3.3(9), 〈a∧ b, b〉 = A. This implies ((a∧ b) ∗ b] = A

and hence (a ∧ b) ∗ b is maximal.
(4) It follows from (3).
(5) Since b ∈ 〈a, b〉 = (a ∗ b], we get that (a ∗ b) ∧ b = b.
(6) b ∈ (a ∗ 0]⇒ b ∈ 〈a, 0〉 = Ann{a} ⇒ a ∧ b = 0.

Note that a principal ideal in an ADL may have more than one generators. For example,
in a discrete ADL X (given in the Example 2.2) for any x, y ∈ X − {0} and x 6= y, we get
(x] = (y]. But in the case of a lattice any principal ideal has a unique generator. However, for
any a and b in an ADL, we have

(a] = (b]⇔ a ∧ b = b and b ∧ a = a

⇔ a ∨ b = a and b ∨ a = b

and we denote this situation by writing a ∼ b and calling a and b as associates to each other.
Note that ∼ is an equivalence relation on any ADL. In this context, we have the following.

Theorem 4.6. Let A be an ADL and let ∗ and ⊥ be two relative pseudo-complementations
on A. Then, for any a, b ∈ A, we have the following:

(1) a ∗ b ∼ a⊥b.

(2) (a ∗ b) ∧ (a⊥b) = a⊥b and (a ∗ b) ∨ (a⊥b) = a ∗ b.

(3) a ∗ b ∼ c ∗ d⇔ a⊥b ∼ c⊥d.

(4) a ∗ b = 0⇔ a⊥b = 0⇔ 〈a, b〉 = {0}.

(5) (a ∗ b) ∧ (0⊥0) ∼ a⊥b.
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Proof:
(1) Since ∗ and ⊥ are relative pseudo-complementations on A, we have
(a ∗ b] = 〈a, b〉 = (a⊥b]. Hence, a ∗ b ∼ a⊥b.
(2),(3),(4) follow from (1).
(5) Follows from (1) and Theorem 4.5(1).

Theorem 4.7. Let ∗ be a relative pseudo-complementation on an ADL A. Then for any
a, b, c ∈ A we have the following:

(1) If m is a maximal element in A, then a ∗m is maximal in A and
a ∗m ∼ m.

(2) a ∗ (b ∧ c) ∼ (a ∗ b) ∧ (a ∗ c).

(3) (a ∨ b) ∗ c ∼ (a ∗ c) ∧ (b ∗ c).

Proof: (1) Suppose m is a maximal element in A. Then (a ∗m] = 〈a,m〉 = A and hence, a ∗m
is a maximal element in A. Further, (m] = A = (a ∗m].
Therefore a ∗m ∼ m.
(2) By the Theorem 3.3 (2), (a ∗ (b ∧ c)] = (a ∗ b] ∩ (a ∗ c] = ((a ∗ b) ∧ (a ∗ c)] and hence
a ∗ (b ∧ c) ∼ (a ∗ b) ∧ (a ∗ c).
(3) By the Theorem 3.3 (6), we have
((a ∨ b) ∗ c] = (a ∗ c] ∩ (b ∗ c] = ((a ∗ c) ∧ (b ∗ c)] and hence
(a ∨ b) ∗ c ∼ (a ∗ c) ∧ (b ∗ c).

Definition 4.8. Let A be an ADL and ∗ be a relative pseudo-complementation on A. Define,
for any a ∈ A, a+ = a ∗ 0.

Theorem 4.9. Let ∗ be a relative pseudo-complementation on an ADL A. Then the following
hold for any a and b ∈ A:

(1) 0+ is a maximal element in A.

(2) m is maximal in A⇒ m+ = 0.

(3) 0++ = 0.

(4) a+ ∧ a = 0 = a ∧ a+.

(5) a++ ∧ a = a.

(6) a ∧ b = 0⇔ a+ ∧ b = b⇔ a++ ∧ b = 0⇔ a ∧ b++ = 0⇔ a++ ∧ b++ = 0.

(7) Ann{a} = Ann{a++}.
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(8) a+ ∼ a+++.

(9) a+ = 0⇔ a++ is maximal.

(10) a = 0⇔ a++ = 0.

Proof:
(1) (0+] = Ann{0} = A and hence 0+ is maximal.
(2) m is maximal in A⇒ Ann{m} = {0}

⇒ (m+] = (m ∗ 0] = 〈m, 0〉 = Ann{m} = {0}
⇒ m+ = 0.

(3) This follows from (1) and (2).
(4) From the Theorem 4.5(2), (a ∗ 0) ∧ a = 0 and hence a+ ∧ a = 0 = a ∧ a+.

(5) Since a+∧a = 0, we have a ∈ Ann{a+} = 〈a+, 0〉 = (a+∗0] = (a++]. and hence a++∧a = a.
(6) a ∧ b = 0⇒ b ∈ Ann{a} = 〈a, 0〉 = (a ∗ 0] = (a+]

⇒ a+ ∧ b = b

⇒ a++ ∧ b = a++ ∧ (a+ ∧ b) = 0 ∧ b = 0

⇒ a ∧ b = (a++ ∧ a) ∧ b = a ∧ a++ ∧ b = a ∧ 0 = 0

⇒ b ∧ a = 0

⇒ b++ ∧ a = 0

⇒ a ∧ b++ = 0

⇒ a++ ∧ b++ = 0

⇒ a ∧ b = a++ ∧ a ∧ b++ ∧ b = a++ ∧ b++ ∧ a ∧ b = 0 ∧ a ∧ b = 0.

(7) This follows from (6).
(8) By (7), we have Ann{a} = Ann{a++} and we get (a ∗ 0] = 〈a, 0〉 = 〈a++, 0〉 = (a++ ∗ 0].
Therefore (a+] = (a+++] implies that a+ ∼ a+++.
(9) This follows from (1),(2) and (8) (Note that x ∼ 0⇒ x = 0).
(10) This follows from (3) and (5).

Theorem 4.10. Let ∗ be a relative pseudo-complementation on an ADL A. Then the following
hold for any a and b ∈ A,

(1) (a ∨ b)+ ∼ a+ ∧ b+

(2) a ∼ b⇒ a+ ∼ b+

(3) (a ∧ b)+ ∼ (b ∧ a)+

(4) (a ∨ b)+ ∼ (b ∨ a)+
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(5) (a ∧ b)+ ∧ a+ = a+

(6) (a ∧ b)+ ∧ b+ = b+

(7) (a ∧ b)++ ∼ a++ ∧ b++.

Proof:
(1) We have (a+ ∧ b+] = (a+] ∩ (b+]

= (a ∗ 0] ∩ (b ∗ 0]
= 〈a, 0〉 ∩ 〈b, 0〉
= 〈(a ∨ b), 0〉 (by the Theorem 3.3(6))
= ((a ∨ b) ∗ 0] = ((a ∨ b)+].

Therefore, (a ∨ b)+ ∼ a+ ∧ b+.

(2) a ∼ b⇒ (a] = (b]⇒ Ann(a] = Ann(b]
⇒ 〈a, 0〉 = 〈b, 0〉
⇒ (a ∗ 0] = (b ∗ 0]
⇒ (a+] = (b+]
⇒ a+ ∼ b+.

(3)((a∧ b)+] = ((a∧ b) ∗ 0] = 〈a∧ b, 0〉 = 〈b∧ a, 0〉 = ((b∧ a) ∗ 0] = ((b∧ a)+]. This implies that
(a ∧ b)+ ∼ (b ∧ a)+.

(4) This is similar to (3), since 〈a ∨ b, c〉 = 〈b ∨ a, c〉

(5) Since (a∧b)∧a+ = b∧a∧a+ = b∧0 = 0, by Theorem 4.9(6), we get that (a∧b)+∧a+ = a+.

(6) Since (a ∧ b) ∧ b+ = 0, by Theorem 4.9(6), we get that (a ∧ b)+ ∧ b+ = b+.

(7) We have a ∧ b ∧ (a ∧ b)+ = 0 = b ∧ a ∧ (a ∧ b)+. By repeated use of Theorem 4.9(6), we get
that a++ ∧ b++ ∧ (a ∧ b)+ = 0.

Therefore, (a ∧ b)+ ∧ a++ ∧ b++ = 0 and hence (a ∧ b)++ ∧ a++ ∧ b++ = a++ ∧ b++.
On the other hand, we have (a∧ b)∧ b+ = 0 and hence by Theorem 4.9(6), (a∧ b)++ ∧ b+ = 0.
Therefore, b+ ∧ (a ∧ b)++ = 0 and b++ ∧ (a ∧ b)++ = (a ∧ b)++.
Similarly, a++ ∧ (a ∧ b)++ = (a ∧ b)++ and therefore a++ ∧ b++ ∧ (a ∧ b)++ = (a ∧ b)++.
Thus (a ∧ b)++ ∼ a++ ∧ b++.

From [4] recall that an unary operation a 7→ a⊥ on A is called a pseudo-complementation
on A if, for any a, b ∈ A, the following independent axioms are satisfied

(1) a ∧ b = 0 ⇒ a⊥ ∧ b = b.

(2) a ∧ a⊥ = 0.

(3) (a ∨ b)⊥ = a⊥ ∧ b⊥.
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Theorem 4.11. Every relatively pseudo-complemented ADL is a pseudo-complemented ADL.

Proof: Let A be an ADL and ∗ be a relative pseudo-complementation on A. Choose a maximal
element m in A (A has one such; for example, 0 ∗ 0 is maximal in A). For any a ∈ A, define
a⊥ = a+∧m where a+ = a∗0. Then, by Theorem 4.9(4) and (6) we have a∧a⊥ = 0 and for any
b ∈ A, a ∧ b = 0 implies that a⊥ ∧ b = b. Also for any a and b ∈ A, we have (a ∨ b)+ ∼ a+ ∧ b+

(by Theorem 4.10(1)). Now,

a⊥ ∧ b⊥ = a+ ∧m ∧ b+ ∧m

= a+ ∧ b+ ∧m

= (a ∨ b)+ ∧ a+ ∧ b+ ∧m

= (a ∨ b)+ ∧m ∧ a+ ∧m ∧ b+ ∧m

= (a ∨ b)⊥ ∧ (a⊥ ∧ b⊥).

Similarly, (a⊥ ∧ b⊥) ∧ (a ∨ b)⊥ = (a ∨ b)⊥ and hence (a ∨ b)⊥ ∼ a⊥ ∧ b⊥. Since x⊥ ≤ m for
all x ∈ A, we have that m is an upper bound of (a ∨ b)⊥ and a⊥ ∧ b⊥ and hence these two are
commute to each other. This implies that

(a ∨ b)⊥ = (a⊥ ∧ b⊥) ∧ (a ∨ b)⊥ = (a ∨ b)⊥ ∧ (a⊥ ∧ b⊥) = a⊥ ∧ b⊥.

Thus a 7→ a⊥ is a pseudo-complementation on A and hence A is a pseudo-complemented
ADL.

Theorem 4.12. Let A be an ADL with a maximal element. Then the following are equivalent
to each other.

(1) A is relatively pseudo-complemented

(2) [0, a] is relatively pseudo-complemented for all a ∈ A

(3) [a, b] is relatively pseudo-complemented for all a ≤ b in A

(4) [a, b] is pseudo-complemented for all a ≤ b in A.

Proof:
(1) ⇒ (2) : Let ∗ be a relative pseudo-complementation on A and a ∈ A. Let x, y ∈ [0, a], we
have

〈x, y〉 = {z ∈ A : x ∧ z ∈ (y]} = (x ∗ y].

Now, put x ⊥ y = (x ∗ y) ∧ a. Then x ⊥ y ∈ [0, a] and

x ∧ (x ⊥ y) = x ∧ (x ∗ y) ∧ a ∈ (y] ∩ (a]
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which is the ideal generated by y in [0, a]. On the other hand, suppose z ∈ [0, a] such that
x ∧ z ∈ (y]. Then z ∈ (x ∗ y] and hence (x ∗ y) ∧ z = z.

Now, (x⊥y) ∧ z = (x ∗ y) ∧ a ∧ z

= a ∧ (x ∗ y) ∧ z = a ∧ z = z

so that z ∈ (x ⊥ y]. Therefore

{z ∈ [0, a] : x ∧ z ∈ (y]} = (x ⊥ y].

Thus, ⊥ is a relative pseudo-complementation on [0, a].
(2) ⇒ (3) : Let a, b ∈ A with a ≤ b and ∗ be a relative pseudo-complementation on [0, b]. Let
x, y ∈ [a, b]. Put x+ y = (x ∗ y) ∨ a. Since x ∗ y and a ∈ [0, b], which is a lattice, we have

x+ y = (x ∗ y) ∨ a = a ∨ (x ∗ y).

Consider x ∧ (x+ y) = x ∧ ((x ∗ y) ∨ a)
= (x ∧ (x ∗ y)) ∨ (x ∧ a) ∈ (y]

since x∧(x∗y) ∈ (y] and a ≤ y. On the other hand, suppose that z ∈ [a, b] such that x∧z ∈ (y].
Then z ∈ [0, b] and z ∈ (x ∗ y] and hence (x ∗ y) ∧ z = z.

Now, (x+ y) ∧ z = ((x ∗ y) ∨ a) ∧ z

= ((x ∗ y) ∧ z) ∨ (a ∧ z)

= z ∨ a = z.

Therefore {z ∈ [a, b] : x ∧ z ∈ (y]} = (x+ y]. Thus + is a relative pseudo-complementation on
[a, b].
(3)⇒ (4) follows from the Theorem 4.11.
(4) ⇒ (1) : Assume the condition (4). Let a, b ∈ A and x be the pseudo-complement of a in
[b ∧ a, a ∨m]. Define

a ∗ b = x. Now, we prove that 〈a, b〉 = (x].

Since b ∧ a ≤ x ≤ a ∨m and a ∧ x = b ∧ a ∈ (b], we get that x ∈ 〈a, b〉.
On the other hand let y ∈ 〈a, b〉. Then a ∧ y ∈ (b] and hence b ∧ a ∧ y = a ∧ y.
Put z = (y ∨ (b ∧ a)) ∧ (a ∨m). Then z ∈ [b ∧ a, a ∨m].

Now, a ∧ z = a ∧ (y ∨ (b ∧ a)) ∧ (a ∨m)

= ((a ∧ y) ∨ (a ∧ b ∧ a)) ∧ (a ∨m)
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= ((a ∧ y) ∨ (b ∧ a)) ∧ (a ∨m)

= (b ∧ a) ∧ (a ∨m)

= b ∧ a.

This implies z ≤ x. Now y ∧ z = y ∧ (y ∨ (b ∧ a)) ∧ (a ∨m) = y ∧ (a ∨m).
Therefore y ∧ z ∧ y = y ∧ (a ∨m) ∧ y = y (since a ∨m is maximal).
This implies z ∧ y = y and hence y = z ∧ y = z ∧ x ∧ y = x ∧ z ∧ y = x ∧ y.
Hence y ∈ (x]. Thus 〈a, b〉 = (x] and hence A is relatively pseudo-complemented ADL.

Remark 4.13.

(1) IfA is a bounded distributive lattice, there can be at most one relative pseudo-complementation
on A and at most one pseudo-complementaion on A

(2) The converse of Theorem 4.11 is not true, even in the case of distributive lattices; for
consider the following example.

Example 4.14. Let X be an infinite set and

L = {A ⊆ X : A is finite or A = X}.

Then, L is a bounded distributive lattice under the usual set theoretic operations but not
pseudo-complemented. For otherwise suppose ∗ is the pseudo-complementation on L. Then for
each x ∈ X, we have {x}∩{y} = φ for all y 6= x. This implies {y} ⊆ {x}∗ and hence {x}∗ = X.
Thus {x} ∩ {x}∗ 6= φ, which is a contradiction.
Consider M = L ∪ {0} whose Hasse diagram is given below.

d
&%
'$

d
dX

0

φ

LM =

For any A ∈M , define A∗ =
{

0 if A 6= 0
X if A = 0

Then A∗ is the pseudo-complement of A in M and hence M is pseudo-complemented distributive
lattice, but [φ,X] = L, which is not pseudo-complemented. Therefore by the Theorem 4.12, the
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condition (4) fails in M and hence (1) fails. Thus M is pseudo-complemented but not relatively
pseudo-complemented.

Definition 4.15. Two relative pseudo-complementations ∗ and + on an ADL A are said to be
equivalent (and denote this by ∗ ≈ +) if 0∗0 = 0 + 0. Then clearly ≈ is an equivalence relation
on the set RPC(A), of all relative pseudo-complementations on A.

Theorem 4.16. Let A be an ADL and ∗ a relative pseudo-complementation on A. Let M(A)
be the set of all maximal elements in A. For any m ∈ M(A), define ∗m : A × A → A by
a ∗m b = (a ∗ b) ∧m for all a, b ∈ A. Then the correspondence m 7→ ∗m induces a bijection of
M onto RPC(A)/ ≈.

Proof: Let a, b ∈ A and m ∈M(A). Then 〈a, b〉 = (a∗b] = (m∧(a∗b)] = ((a∗b)∧m] = (a∗m b]
and hence ∗m is a relative pseudo-complementation on A. Let m,n ∈M(A) such that ∗m ≈ ∗n.
Then 0 ∗m 0 = 0 ∗n 0 which implies that (0 ∗ 0)∧m = (0 ∗ 0)∧ n and hence m = n since 0 ∗ 0 is
maximal in A. Also, for any + ∈ RPC(A), if m = 0 + 0, then m ∈M(A) and
0 + 0 = (0 ∗ 0) ∧ (0 + 0) = (0 ∗ 0) ∧m = 0 ∗m 0 and hence ∗m ≈ +.
Thus, m 7→ ∗m is a bijection of M(A) onto RPC(A)/ ≈.
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