International Journal of Mathematics and Soft Computing Vol.7, No.1 (2017), 89 - 94.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

Complete Star of a graph and its Balanced cordial labeling

V. J. Kaneria¹, Jaydev R. Teraiya²

¹Department of Mathematics Saurashtra University, Rajkot, India, kaneria_vinodray_j@yahoo.co.in

²Marwadi University Rajkot, India. jaydev.teraiya@marwadieducation.edu.in

Abstract

In this paper we introduce a complete star of a graph G. We prove that for a balanced cordial graph G, star of G, $P_n \times G$ and its complete star are balanced cordial graph. We also prove that the star of a vertex balanced graph is also a vertex balanced graph.

Keywords: Binary vertex labeling, balanced cordial graph, complete star of a graph. **AMS Subject Classification(2010):** 05C78.

1 Introduction

In this paper, by a graph G we mean a finite, undirected and simple graph with p = |V(G)|vertices and q = |E(G)| edges. We follow Harary [4] for the basic notation and terminology of graph theory.

Star of a graph G is denoted by G^* and it is obtained by p+1 copies $G^{(0)}, G^{(1)}, G^{(2)}, \ldots, G^{(p)}$ of the graph G, where $V(G) = \{v_1, v_2, \ldots, v_p\}$. It is obtained by joining each vertex of $G^{(0)}$ with the corresponding vertex v_i of $G^{(i)}, \forall i = 1, 2, \ldots, p$. We call $G^{(0)}$ as central copy of G^* and here the graph G may or may not be a connected graph. It is obvious that $K_1^* = K_2, K_2^* = P_6$ and $(K_1 \cup K_2)^* = P_6 \cup 2K_2 \cup 2K_1$. $P_n \times G$ is the graph obtained by joining n copies of the graph G say $G^{(1)}, G^{(2)}, G^{(3)}, \ldots, G^{(n)}$ by joining all p edges of $G^{(i)}$ with $G^{(i+1)}$ to corresponding vertex v of $G^{(i)}$ with same vertex v of $G^{(i+1)}, \forall i = 1, 2, \ldots, n-1$. That is, $V(P_n \times G) = \bigcup_{i=1}^n V(G^{(i)})$ and $E(P_n \times G) = \bigcup_{i=1}^n E(G^{(i)}) \bigcup \{(v_j^{(i)}, v_j^{(i+1)})/\forall v_j^{(i)} \in V(G^{(i)}), \forall j = 1, 2, \ldots, p, \forall$ $i = 1, 2, \ldots, n-1\}$.

Complete star of a graph G is the graph obtained from p+1 copies $G^{(0)}, G^{(1)}, G^{(2)}, \ldots, G^{(p)}$ of the graph G and it is obtained by joining each vertex of $G^{(0)}$ with all corresponding vertex of all the copies $G^{(1)}, G^{(2)}, \ldots, G^{(p)}$. We denote such graph by \overline{G}^* and we call $G^{(0)}$ as central copy of \overline{G}^* . It is obvious that $\overline{K_1}^* = K_1^* = K_2$ and $\overline{K_2}^* = P_2 \times P_3$.

Cahit [1] introduced cordial labeling of a graph G, a variation of graceful and harmonious labelings. In [2], Cahit proved that all trees are cordial. A function $f : V(G) \longrightarrow \{0, 1\}$ is

called a binary vertex labeling of a graph G. f(v) is called label of the vertex v of G under f. For any edge $e = (u, v) \in E(G)$, the edge induced function $f^* : E(G) \longrightarrow \{0, 1\}$ is defined as $f^*(e) = |f(u) - f(v)|$. Let $v_f(0)$, $v_f(1)$ be the number of vertices of G having 0 and 1 vertex label respectively under f and $e_f(0)$, $e_f(1)$ be the number of edges of G having 0 and 1 edge labels respectively under f^* . A binary vertex labeling function f of a graph G is called cordial labeling if $|e_f(0) - e_f(1)| \leq 1$ and $|v_f(0) - v_f(1)| \leq 1$. A graph G is called a cordial graph if it admits a cordial labeling.

A cordial graph G with a cordial labeling f is called a balanced cordial graph if $|e_f(0) - e_f(1)| = |v_f(0) - v_f(1)| = 0$. It is said to be edge balanced cordial graph if $|e_f(0) - e_f(1)| = 0$ and $|v_f(0) - v_f(1)| = 1$. Similarly it is said to be vertex balanced cordial graph if $|e_f(0) - e_f(1)| = 1$ and $|v_f(0) - v_f(1)| = 0$. A cordial graph G is said to be unbalanced cordial graph if $|v_f(0) - v_f(1)| = 1$.

For any cordial graph G, if f is a cordial labeling of G and it is of one of above four categories, then 1 - f is also a cordial labeling for G and it is of the same category.

2 Main Results

Theorem 2.1. If G is a balanced cordial graph, then so is G^* .

Proof: Let $V(G) = \{v_1, v_2, \ldots, v_p\}$ and q = |E(G)|. Let $f : V(G) \longrightarrow \{0, 1\}$ be a balanced cordial labeling for G. It is obvious that p and q are both even and $v_f(0) = v_f(1) = \frac{p}{2}$, $e_f(0) = e_f(1) = \frac{q}{2}$.

Let H be the star of the graph G and $V(H) = \bigcup_{i=0}^{p} (V(G_{(i)})) = \{v_1^{(i)}, v_2^{(i)}, \dots, v_p^{(i)}) \mid i = 0, 1, \dots, p\}$. Here |V(H)| = p(p+1) and |E(H)| = (p+1)q + p.

Define $g:V(H)\to \{0,1\}$ as follows:

For any $v_j^{(i)} \in V(H)$,

$$g(v_j^{(i)}) = f(v_j) \quad \text{when } i \text{ is even}$$

= $1 - f(v_j) \quad \text{when } i \text{ is odd}; \quad \forall i = 0, 1, 2, \dots, p, \forall j = 1, 2, \dots, p.$

It is observed that,

$$\begin{split} v_g(0) &= v_f(0) + \frac{p}{2}v_f(1) + \frac{p}{2}v_f(0) = \frac{p}{2} + 2(\frac{p}{2}, \frac{p}{2}) = \frac{p}{2}(1+p), \\ v_g(1) &= v_f(1) + \frac{p}{2}v_f(0) + \frac{p}{2}v_f(1) = \frac{p}{2}(1+p), \\ e_g(0) &= (p+1)e_f(0) + \frac{p}{2} = \frac{1}{2}(pq+p+q) \text{ and} \\ e_g(1) &= (pq+p+q). \\ \text{Because for each } (v_j^{(0)}, v_j^{(j)}) \in E(H), \end{split}$$

$$\begin{array}{lll} g^*((v_j^{(0)},v_j^{(j)})) &=& |g(v_j^{(0)}) - g(v_j^{(j)})| \\ &=& \left\{ \begin{array}{ll} |f(v_j) - f(v_j)|, & \text{when } j \text{ is even} \\ |f(v_j) - 1 + f(v_j)|, & \text{when } j \text{ is odd} \end{array} \right. \\ &=& \left\{ \begin{array}{ll} 0, & \text{when } j \text{ is even} \\ 1, & \text{when } j \text{ is odd}; & \forall \ j = 1, 2, \dots, p. \end{array} \right. \end{array}$$

Thus, $H = G^*$ is a graph which satisfies $v_g(0) = v_g(1) = \frac{1}{2}p(p+1)$ and $e_g(0) = e_g(1) = \frac{1}{2}(pq+p+q)$. So, it is a balanced cordial graph.

Illustration 2.2. A balanced cordial graph G with its balanced cordial labeling and its star G^* with balanced cordial labeling are shown in Figures 1 and 2 respectively.

Figure 1: Graph G with its balanced cordial labeling f, which satisfies $v_f(1) = v_f(0) = 3$ and $e_f(0) = e_f(1) = 3$.

Figure 2: G^* and its balanced cordial labeling g with $v_q(0) = v_q(1) = 21$ and $e_q(0) = e_q(1) = 24$.

Theorem 2.3. Let *n* be an odd integer. If G is a balanced cordial graph, then so is $P_n \times G$.

Proof: Let $V(G) = \{v_1, v_2, \ldots, v_p\}$ and q = |E(G)|. Let $f: V(G) \longrightarrow \{0, 1\}$ be a balanced cordial labeling for G. It is obvious that p and q are both even and $v_f(0) = v_f(1) = \frac{p}{2}$, $e_f(0) = e_f(1) = \frac{q}{2}$ hold in G. Let $G^{(1)}, G^{(2)}, G^{(3)}, \ldots, G^{(n)}$ be n copies of the graph G. Join vertex $v_j^{(i)}$ of $G^{(i)}$ and vertex $v_j^{(i+1)}$ of $G^{(i+1)}$ by an edge, $\forall i = 1, 2, \ldots, n-1, \forall j = 1, 2, \ldots, p$,

to form the graph $P_n \times G$. Thus, $|V(P_n \times G)| = |\bigcup_{i=1}^n V(G^i)| = \sum_{i=1}^n |V(G)| = np$ and $|E(P_n \times G)| = nq + (n-1)p.$ Define $g: V(P_n \times G) \longrightarrow \{0, 1\}$ as follows: For any $v_j^{(i)} \in V(P_n \times G)$, $g(v_i^{(i)}) = f(v_i);$ if $i \equiv 0, 1 \pmod{4}$, $= 1 - f(v_i);$ if $i \equiv 2, 3 \pmod{4}; \forall i = 1, 2, \dots, n, \forall j = 1, 2, \dots, p.$ It is obvious that $v_g(0) = \frac{np}{2} = v_g(1)$ and $e_g(0) = \frac{nq}{2} + \frac{(n-1)p}{2} = e_g(1)$. Because for each $(v_j^{(i)},v_j^{(i+1)})\in E(P_n\times G),$

$$g^*((v_j^{(i)}, v_j^{(i+1)})) = |g(v_j^{(i)}) - g(v_j^{(i+1)})|$$

=
$$\begin{cases} |2f(v_j) - 1|, & \text{when } i \text{ is odd} \\ |f(v_j) - f(v_j)|, & \text{when } i \text{ is even} \end{cases}$$

=
$$\begin{cases} 0, & \text{when } i \text{ is even} \\ 1, & \text{when } i \text{ is odd}; & \forall i = 1, 2, \dots, n-1, \forall j = 1, 2, \dots, p. \end{cases}$$

Thus, $P_n \times G$ (n is odd) is a graph which satisfies $v_g(0) = v_g(1) = \frac{np}{2}$ and $e_g(0) = e_g(1) = e_g(1)$ $\frac{1}{2}(n(p+q)-p)$. So, it is a balanced cordial graph.

Theorem 2.4. If G is a balanced cordial graph, then so is \overline{G}^* .

Proof: Let $G^{(0)}$ be the central copy of G in \overline{G}^* , $V(G^{(0)}) = \{v_1^{(0)}, v_2^{(0)}, \dots, v_p^{(0)}\}$ and $|E(G^{(0)})| = q$. Let $f: V(G^{(0)}) \longrightarrow \{0, 1\}$ be a balanced cordial labeling for $G = G^{(0)}$.

Let H be the complete star of the graph G. That is, $H = \overline{G}^*$. It is obvious that P = |V(H)| = $p(p+1), Q = |E(H)| = (p+1)q + p^2.$ Here $V(H) = \bigcup_{i=0}^{p} V(G^{(i)}) = \{v_1^{(i)}, v_2^{(i)}, \dots, v_p^{(i)} / \forall i \in \mathbb{N}\}$ $i = 0, 1, \ldots, p$. Since G is a balanced cordial graph, p, q both are even and $v_f(0) = v_f(1) = \frac{p}{2}$, $e_f(0) = e_f(1) = \frac{q}{2}$ hold in G.

Define $g: V(H) \longrightarrow \{0, 1\}$ as follows:

For any $v_j^{(i)} \in V(H)$, $g(v_j^{(i)}) = f_{(v_j^{(0)})} \quad \text{when } i \text{ is even} \\ = 1 - f(v_j^{(0)}) \quad \text{when } i \text{ is odd}, \quad \forall i = 0, 1, 2, \dots, p, \quad \forall j = 1, 2, \dots, p.$

It observed that,

$$v_g(0) = (p+1)v_f(0) = \frac{p(p+1)}{2} = \frac{P}{2} \text{ and } v_g(1) = (p+1)v_f(1) = \frac{p(p+1)}{2} = \frac{P}{2}.$$

That is, $v_g(0) = v_g(1) = \frac{P}{2}$. Moreover $e_g(1) = (p+1)e_f(1) + p(\frac{p}{2}) = (p+1)\frac{q}{2} + \frac{p^2}{2}$ and $e_g(0) = (p+1)e_f(0) + p(\frac{p}{2})$. Hence $e_f(0) = e_f(1) = \frac{Q}{2}$. Therefore, H is a balanced cordial graph.

Theorem 2.5. If G is a vertex balanced graph, then so is G^* .

Proof: Let $G^{(0)}$ be the central copy of G in G^* . Take $V(G^{(0)}) = \{v_1^{(0)}, v_2^{(0)}, \dots, v_p^{(0)}\}$ and $q = |E(G^{(0)}|. \text{ Let } f : V(G^{(0)}) \longrightarrow \{0,1\} \text{ be a balanced cordial labeling for } G^{(0)} = G. \text{ It is obvious that } p \text{ is even and } q \text{ is odd and } v_f(0) = v_f(1) = \frac{p}{2}, |e_f(0) - e_f(1)| = 1 \text{ hold in } G^{(0)}.$ Let $H = G^*$ and $V(H) = \bigcup_{i=0}^p V(G^{(i)}) = \{v_1^{(i)}, v_2^{(i)}, \dots, v_p^{(i)}/i = 0, 1, \dots, p\}.$ Here P =

|V(H)| = (p+1)p and Q = |E(H)| = pq + p + q.

To define $g: V(H) \longrightarrow \{0, 1\}$ we have to consider the following two cases. **Case 1:** $e_f(0) - e_f(1) = 1$. Define $g/V(G^{(0)}) = f/V(G^{(0)})$ and $g/V(G^{(i)}) = 1 - g/V(G^{(0)}), \forall i = 1, 2, ..., p$.

Case 2: $e_f(0) - e_f(1) = -1$. Define $q/V(G^{(0)}) = f/V(G^{(0)})$ and $q/V(G^{(i)}) = q/V(G^{(0)}), \forall i = 1, 2, ..., p$.

Above defined labeling pattern gives rise to a cordial labeling to the graph $H = G^*$ with $v_g(0) = v_g(1) = \frac{p(p+1)}{2} = \frac{P}{2}$ and $|e_g(0) - e_g(1)| = |e_f(0) - e_f(1)| = 1.$

Because in Case 1, $e_g(0) = (p+1)e_f(0) = (p+1)(\frac{q+1}{2}) = \frac{1}{2}(pq+p+q+1) = \frac{Q+1}{2}$ and $e_g(1) = (p+1)e_f(1) + p = (p+1)(\frac{q-1}{2}) + p = \frac{Q-1}{2}$. That is, $e_g(0) - e_g(1) = \frac{1}{2}(Q+1) - \frac{1}{2}(Q-1) = 1$.

and in Case 2, $e_g(0) = (p+1)e_f(0) + p = (p+1)(\frac{q-1}{2}) + p = \frac{Q-1}{2}$ and $e_g(1) = (p+1)e_f(1) = (p+1)e_f$ $(p+1)(\frac{q+1}{2}) = \frac{Q+1}{2}.$ That is, $e_g(0) - e_g(1) = \frac{Q-1}{2} - \frac{Q+1}{2} = -1$. Hence, g is a vertex balanced cordial labeling for H and so, H is a vertex balanced cordial

graph.

Illustration 2.6. A vertex balanced cordial graph G with its vertex balanced cordial labeling and its star G^* with vertex balanced cordial labeling are shown in figure-3 and 4 respectively.

Figure 3: A graph G with its a vertex balanced cordial labeling f, which satisfies $v_f(1) = v_f(0) = 3$ and $e_f(1) - e_f(0) = 1$.

V. J. Kaneria and Jaydev R. Teraiya

Figure 4: G^* and its a vertex balanced cordial labeling g with $v_g(0) = v_g(1) = 21$, $e_g(1) = 28$ and $e_g(0) = 27$.

References

- I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201 - 207.
- [2] I. Cahit, On Cordial and 3-equitable labelings of graphs, Until. Math., 37(1990), 189-198.
- [4] F. Harary, Graph Theory, Addition Wesley, Massachusetts, 1972.
- [5] V.J. Kaneria, Kalpesh M. Patadiya and Jaydev R. Teraiya, Balanced Cordial Labeling and its Application to Produce new Cordial Families, International Journal of Mathematics And its Applications, 4(1-C)(2016), 65-68.
- [6] V.J. Kaneria, Jaydev R. Teraiya and Kalpesh M. Patadiya, Some Result on Balanced Cordial on Balanced Cordial Graph, International Journal of Mathematics And its Applications, 4(2-A)(2016), 85-87.
- [7] V.J. Kaneria and Jaydev R. Teraiya, Some V₄-Cordial families with its balanced V₄ cordial labeling, International Journal of Mathematics Trends and Technology(IJMTT), 37(1)(2016), 73-75.