Complete Star of a graph and its Balanced cordial labeling

V. J. Kaneria ${ }^{1}$, Jaydev R. Teraiya ${ }^{2}$
${ }^{1}$ Department of Mathematics
Saurashtra University, Rajkot, India, kaneria_vinodray_j@yahoo.co.in
${ }^{2}$ Marwadi University
Rajkot, India.
jaydev.teraiya@marwadieducation.edu.in

Abstract

In this paper we introduce a complete star of a graph G. We prove that for a balanced cordial graph G, star of G, $P_{n} \times G$ and its complete star are balanced cordial graph. We also prove that the star of a vertex balanced graph is also a vertex balanced graph.

Keywords: Binary vertex labeling, balanced cordial graph, complete star of a graph.
AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper, by a graph G we mean a finite, undirected and simple graph with $p=|V(G)|$ vertices and $q=|E(G)|$ edges. We follow Harary [4] for the basic notation and terminology of graph theory.

Star of a graph G is denoted by G^{*} and it is obtained by $p+1$ copies $G^{(0)}, G^{(1)}, G^{(2)}, \ldots, G^{(p)}$ of the graph G , where $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. It is obtained by joining each vertex of $G^{(0)}$ with the corresponding vertex v_{i} of $G^{(i)}, \forall i=1,2, \ldots, p$. We call $G^{(0)}$ as central copy of G^{*} and here the graph G may or may not be a connected graph. It is obvious that $K_{1}^{*}=K_{2}, K_{2}^{*}=P_{6}$ and $\left(K_{1} \cup K_{2}\right)^{*}=P_{6} \cup 2 K_{2} \cup 2 K_{1} . P_{n} \times G$ is the graph obtained by joining n copies of the graph G say $G^{(1)}, G^{(2)}, G^{(3)}, \ldots, G^{(n)}$ by joining all p edges of $G^{(i)}$ with $G^{(i+1)}$ to corresponding vertex v of $G^{(i)}$ with same vertex v of $G^{(i+1)}, \forall i=1,2, \ldots, n-1$. That is, $V\left(P_{n} \times G\right)=\bigcup_{i=1}^{n}$ $V\left(G^{(i)}\right)$ and $E\left(P_{n} \times G\right)=\bigcup_{i=1}^{n} E\left(G^{(i)}\right) \bigcup\left\{\left(v_{j}^{(i)}, v_{j}^{(i+1)}\right) / \forall v_{j}^{(i)} \in V\left(G^{(i)}\right), \forall j=1,2, \ldots, p, \forall\right.$ $i=1,2, \ldots, n-1\}$.

Complete star of a graph G is the graph obtained from $p+1$ copies $G^{(0)}, G^{(1)}, G^{(2)}, \ldots, G^{(p)}$ of the graph G and it is obtained by joining each vertex of $G^{(0)}$ with all corresponding vertex of all the copies $G^{(1)}, G^{(2)}, \ldots, G^{(p)}$. We denote such graph by \bar{G}^{*} and we call $G^{(0)}$ as central copy of \bar{G}^{*}. It is obvious that ${\overline{K_{1}}}^{*}=K_{1}^{*}=K_{2}$ and ${\overline{K_{2}}}^{*}=P_{2} \times P_{3}$.

Cahit [1] introduced cordial labeling of a graph G, a variation of graceful and harmonious labelings. In [2], Cahit proved that all trees are cordial. A function $f: V(G) \longrightarrow\{0,1\}$ is
called a binary vertex labeling of a graph G. $f(v)$ is called label of the vertex v of G under f. For any edge $e=(u, v) \in E(G)$, the edge induced function $f^{*}: E(G) \longrightarrow\{0,1\}$ is defined as $f^{*}(e)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be the number of vertices of G having 0 and 1 vertex label respectively under f and $e_{f}(0), e_{f}(1)$ be the number of edges of G having 0 and 1 edge labels respectively under f^{*}. A binary vertex labeling function f of a graph G is called cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. A graph G is called a cordial graph if it admits a cordial labeling.

A cordial graph G with a cordial labeling f is called a balanced cordial graph if $\mid e_{f}(0)-$ $e_{f}(1)\left|=\left|v_{f}(0)-v_{f}(1)\right|=0\right.$. It is said to be edge balanced cordial graph if $| e_{f}(0)-e_{f}(1) \mid=0$ and $\left|v_{f}(0)-v_{f}(1)\right|=1$. Similarly it is said to be vertex balanced cordial graph if $\mid e_{f}(0)-$ $e_{f}(1) \mid=1$ and $\left|v_{f}(0)-v_{f}(1)\right|=0$. A cordial graph G is said to be unbalanced cordial graph if $\left|v_{f}(0)-v_{f}(1)\right|=\left|e_{f}(0)-e_{f}(1)\right|=1$.

For any cordial graph G, if f is a cordial labeling of G and it is of one of above four categories, then $1-f$ is also a cordial labeling for G and it is of the same category.

2 Main Results

Theorem 2.1. If G is a balanced cordial graph, then so is G^{*}.

Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and $q=|E(G)|$. Let $f: V(G) \longrightarrow\{0,1\}$ be a balanced cordial labeling for G . It is obvious that p and q are both even and $v_{f}(0)=v_{f}(1)=\frac{p}{2}$, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.

Let H be the star of the graph G and $V(H)=\bigcup_{i=0}^{p}\left(V\left(G_{(i)}\right)=\left\{v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{p}^{(i)} / \forall i=\right.\right.$ $0,1, \ldots, p\}$. Here $|V(H)|=p(p+1)$ and $|E(H)|=(p+1) q+p$.
Define $g: V(H) \rightarrow\{0,1\}$ as follows:
For any $v_{j}^{(i)} \in V(H)$,

$$
\begin{array}{rlrl}
g\left(v_{j}^{(i)}\right) & =f\left(v_{j}\right) \quad & \text { when } i \text { is even } \\
& =1-f\left(v_{j}\right) \quad \text { when } i \text { is odd; } \forall i=0,1,2, \ldots, p, \forall j=1,2, \ldots, p .
\end{array}
$$

It is observed that,

$$
\begin{aligned}
v_{g}(0) & =v_{f}(0)+\frac{p}{2} v_{f}(1)+\frac{p}{2} v_{f}(0)=\frac{p}{2}+2\left(\frac{p}{2} \cdot \frac{p}{2}\right)=\frac{p}{2}(1+p), \\
v_{g}(1) & =v_{f}(1)+\frac{p}{2} v_{f}(0)+\frac{p}{2} v_{f}(1)=\frac{p}{2}(1+p), \\
e_{g}(0) & =(p+1) e_{f}(0)+\frac{p}{2}=\frac{1}{2}(p q+p+q) \text { and } \\
e_{g}(1) & =(p q+p+q) .
\end{aligned}
$$

Because for each $\left(v_{j}^{(0)}, v_{j}^{(j)}\right) \in E(H)$,

$$
\begin{aligned}
g^{*}\left(\left(v_{j}^{(0)}, v_{j}^{(j)}\right)\right) & =\left|g\left(v_{j}^{(0)}\right)-g\left(v_{j}^{(j)}\right)\right| \\
& = \begin{cases}\left|f\left(v_{j}\right)-f\left(v_{j}\right)\right|, & \text { when } j \text { is even } \\
\left|f\left(v_{j}\right)-1+f\left(v_{j}\right)\right|, & \text { when } j \text { is odd }\end{cases} \\
& =\left\{\begin{array}{ll}
0, & \text { when } j \text { is even } \\
1, & \text { when } j \text { is odd; }
\end{array} \quad \forall j=1,2, \ldots, p .\right.
\end{aligned}
$$

Thus, $H=G^{*}$ is a graph which satisfies $v_{g}(0)=v_{g}(1)=\frac{1}{2} p(p+1)$ and $e_{g}(0)=e_{g}(1)=$ $\frac{1}{2}(p q+p+q)$. So, it is a balanced cordial graph.

Illustration 2.2. A balanced cordial graph G with its balanced cordial labeling and its star G^{*} with balanced cordial labeling are shown in Figures 1 and 2 respectively.

Figure 1: Graph G with its balanced cordial labeling f, which satisfies $v_{f}(1)=v_{f}(0)=3$ and $e_{f}(0)=e_{f}(1)=3$.

Figure 2: G^{*} and its balanced cordial labeling g with $v_{g}(0)=v_{g}(1)=21$ and $e_{g}(0)=e_{g}(1)=24$.

Theorem 2.3. Let n be an odd integer. If G is a balanced cordial graph, then so is $P_{n} \times G$.
Proof: Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and $q=|E(G)|$. Let $f: V(G) \longrightarrow\{0,1\}$ be a balanced cordial labeling for G. It is obvious that p and q are both even and $v_{f}(0)=v_{f}(1)=\frac{p}{2}$, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$ hold in G. Let $G^{(1)}, G^{(2)}, G^{(3)}, \ldots, G^{(n)}$ be n copies of the graph G. Join vertex $v_{j}^{(i)}$ of $G^{(i)}$ and vertex $v_{j}^{(i+1)}$ of $G^{(i+1)}$ by an edge, $\forall i=1,2, \ldots, n-1, \forall j=1,2, \ldots, p$,
to form the graph $P_{n} \times \mathrm{G}$. Thus, $\quad\left|V\left(P_{n} \times G\right)\right|=\left|\bigcup_{i=1}^{n} V\left(G^{i}\right)\right|=\sum_{i=1}^{n}|V(G)|=n p$ and $\mid E\left(P_{n} \times G \mid=n q+(n-1) p\right.$.
Define $g: V\left(P_{n} \times G\right) \longrightarrow\{0,1\}$ as follows:
For any $v_{j}^{(i)} \in V\left(P_{n} \times G\right)$,

$$
\begin{aligned}
g\left(v_{j}^{(i)}\right) & =f\left(v_{j}\right) ; \\
& =1-f\left(v_{j}\right) ; \quad \text { if } i \equiv 0,1(\bmod 4), \\
& \equiv 2,3(\bmod 4) ; \forall i=1,2, \ldots, n, \forall j=1,2, \ldots, p
\end{aligned}
$$

It is obvious that $v_{g}(0)=\frac{n p}{2}=v_{g}(1)$ and $e_{g}(0)=\frac{n q}{2}+\frac{(n-1) p}{2}=e_{g}(1)$. Because for each $\left(v_{j}^{(i)}, v_{j}^{(i+1)}\right) \in E\left(P_{n} \times G\right)$,

$$
\begin{aligned}
g^{*}\left(\left(v_{j}^{(i)}, v_{j}^{(i+1)}\right)\right) & =\left|g\left(v_{j}^{(i)}\right)-g\left(v_{j}^{(i+1)}\right)\right| \\
& = \begin{cases}\left|2 f\left(v_{j}\right)-1\right|, & \text { when } i \text { is odd } \\
\left|f\left(v_{j}\right)-f\left(v_{j}\right)\right|, & \text { when } i \text { is even }\end{cases} \\
& = \begin{cases}0, & \text { when } i \text { is even } \\
1, & \text { when } i \text { is odd; } \quad \forall i=1,2, \ldots, n-1, \forall j=1,2, \ldots, p\end{cases}
\end{aligned}
$$

Thus, $P_{n} \times G\left(\mathrm{n}\right.$ is odd) is a graph which satisfies $v_{g}(0)=v_{g}(1)=\frac{n p}{2}$ and $e_{g}(0)=e_{g}(1)=$ $\frac{1}{2}(n(p+q)-p)$. So, it is a balanced cordial graph.

Theorem 2.4. If G is a balanced cordial graph, then so is \bar{G}^{*}.
Proof: Let $G^{(0)}$ be the central copy of G in $\bar{G}^{*}, V\left(G^{(0)}\right)=\left\{v_{1}^{(0)}, v_{2}^{(0)}, \ldots, v_{p}^{(0)}\right\}$ and $\mid E\left(G^{(0)} \mid=q\right.$. Let $f: V\left(G^{(0)}\right) \longrightarrow\{0,1\}$ be a balanced cordial labeling for $G=G^{(0)}$.

Let H be the complete star of the graph G. That is, $H=\bar{G}^{*}$. It is obvious that $P=|V(H)|=$ $p(p+1), Q=|E(H)|=(p+1) q+p^{2}$. Here $V(H)=\bigcup_{i=0}^{p} V\left(G^{(i)}\right)=\left\{v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{p}^{(i)} / \forall\right.$ $i=0,1, \ldots, p\}$. Since G is a balanced cordial graph, p, q both are even and $v_{f}(0)=v_{f}(1)=\frac{p}{2}$, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$ hold in G.

Define $g: V(H) \longrightarrow\{0,1\}$ as follows:
For any $v_{j}^{(i)} \in V(H)$,

$$
\begin{array}{rlrl}
g\left(v_{j}^{(i)}\right) & =f\left(v_{j}^{(0)}\right) \quad & \text { when } i \text { is even } \\
& =1-f\left(v_{j}^{(0)}\right) \quad \text { when } i \text { is odd, } \quad \forall i=0,1,2, \ldots, p, \quad \forall j=1,2, \ldots, p .
\end{array}
$$

It observed that,
$v_{g}(0)=(p+1) v_{f}(0)=\frac{p(p+1)}{2}=\frac{P}{2}$ and $v_{g}(1)=(p+1) v_{f}(1)=\frac{p(p+1)}{2}=\frac{P}{2}$.
That is, $v_{g}(0)=v_{g}(1)=\frac{P}{2}$. Moreover $e_{g}(1)=(p+1) e_{f}(1)+p\left(\frac{p}{2}\right)=(p+1) \frac{q}{2}+\frac{p^{2}}{2}$ and $e_{g}(0)=(p+1) e_{f}(0)+p\left(\frac{p}{2}\right)$. Hence $e_{f}(0)=e_{f}(1)=\frac{Q}{2}$. Therefore, H is a balanced cordial graph.

Theorem 2.5. If G is a vertex balanced graph, then so is G^{*}.
Proof: Let $G^{(0)}$ be the central copy of G in G^{*}. Take $V\left(G^{(0)}\right)=\left\{v_{1}^{(0)}, v_{2}^{(0)}, \ldots, v_{p}^{(0)}\right\}$ and $q=\mid E\left(G^{(0)} \mid\right.$. Let $f: V\left(G^{(0)}\right) \longrightarrow\{0,1\}$ be a balanced cordial labeling for $G^{(0)}=G$. It is obvious that p is even and q is odd and $v_{f}(0)=v_{f}(1)=\frac{p}{2},\left|e_{f}(0)-e_{f}(1)\right|=1$ hold in $G^{(0)}$.

Let $H=G^{*}$ and $V(H)=\bigcup_{i=0}^{p} V\left(G^{(i)}\right)=\left\{v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{p}^{(i)} / i=0,1, \cdots, p\right\}$. Here $P=$ $|V(H)|=(p+1) p$ and $Q=|E(H)|=p q+p+q$.
To define $g: V(H) \longrightarrow\{0,1\}$ we have to consider the following two cases.
Case 1: $e_{f}(0)-e_{f}(1)=1$.
Define $g / V\left(G^{(0)}\right)=f / V\left(G^{(0)}\right)$ and $g / V\left(G^{(i)}\right)=1-g / V\left(G^{(0)}\right), \forall i=1,2, \ldots, p$.
Case 2: $e_{f}(0)-e_{f}(1)=-1$.
Define $g / V\left(G^{(0)}\right)=f / V\left(G^{(0)}\right)$ and $g / V\left(G^{(i)}\right)=g / V\left(G^{(0)}\right), \forall i=1,2, \ldots, p$.
Above defined labeling pattern gives rise to a cordial labeling to the graph $H=G^{*}$ with $v_{g}(0)=v_{g}(1)=\frac{p(p+1)}{2}=\frac{P}{2}$ and $\left|e_{g}(0)-e_{g}(1)\right|=\left|e_{f}(0)-e_{f}(1)\right|=1$.
Because in Case 1, $e_{g}(0)=(p+1) e_{f}(0)=(p+1)\left(\frac{q+1}{2}\right)=\frac{1}{2}(p q+p+q+1)=\frac{Q+1}{2}$ and $e_{g}(1)=(p+1) e_{f}(1)+p=(p+1)\left(\frac{q-1}{2}\right)+p=\frac{Q-1}{2}$.
That is, $e_{g}(0)-e_{g}(1)=\frac{1}{2}(Q+1)-\frac{1}{2}(Q-1)=1$.
and in Case $2, e_{g}(0)=(p+1) e_{f}(0)+p=(p+1)\left(\frac{q-1}{2}\right)+p=\frac{Q-1}{2}$ and $e_{g}(1)=(p+1) e_{f}(1)=$ $(p+1)\left(\frac{q+1}{2}\right)=\frac{Q+1}{2}$.
That is, $e_{g}(0)-e_{g}(1)=\frac{Q-1}{2}-\frac{Q+1}{2}=-1$.
Hence, g is a vertex balanced cordial labeling for H and so, H is a vertex balanced cordial graph.

Illustration 2.6. A vertex balanced cordial graph G with its vertex balanced cordial labeling and its star G^{*} with vertex balanced cordial labeling are shown in figure- 3 and 4 respectively.

Figure 3: A graph G with its a vertex balanced cordial labeling f, which satisfies $v_{f}(1)=v_{f}(0)=3$ and $e_{f}(1)-e_{f}(0)=1$.

Figure 4: G^{*} and its a vertex balanced cordial labeling g with $v_{g}(0)=v_{g}(1)=21, e_{g}(1)=28$ and

$$
e_{g}(0)=27
$$

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201-207.
[2] I. Cahit, On Cordial and 3-equitable labelings of graphs, Until. Math., 37(1990), 189-198.
[3] J. A. Gallian, A dynamic Survey of graph labeling, The electronics J. Combin., 17, \# DS6, (2016).
[4] F. Harary, Graph Theory, Addition Wesley, Massachusetts, 1972.
[5] V.J. Kaneria, Kalpesh M. Patadiya and Jaydev R. Teraiya, Balanced Cordial Labeling and its Application to Produce new Cordial Families, International Journal of Mathematics And its Applications, 4(1-C)(2016), 65-68.
[6] V.J. Kaneria, Jaydev R. Teraiya and Kalpesh M. Patadiya, Some Result on Balanced Cordial on Balanced Cordial Graph, International Journal of Mathematics And its Applications, 4(2-A)(2016), 85-87.
[7] V.J. Kaneria and Jaydev R. Teraiya, Some V_{4}-Cordial families with its balanced V_{4} cordial labeling, International Journal of Mathematics Trends and Technology(IJMTT), 37(1)(2016), 73-75.

