Lucky edge neighborhood labeling of graphs

S. Ragavi ${ }^{1}$, R. Sridevi ${ }^{2}$
${ }^{1}$ M. Phil Scholar
PG and Research Department of Mathematics Sri S.R.N.M.College, Sattur-626 203. stragavi22@gmail.com
${ }^{2} \mathrm{PG}$ and Research Department of Mathematics Sri S.R.N.M.College, Sattur-626 203. r.sridevi_2010@yahoo.com

Abstract

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively. Vertex set $V(G)$ is labeled arbitrary by positive integers and $E(e)$ denote the edge label such that it is the sum of labels of vertices incident with edge e. A lucky edge neighborhood labeling of G is an assignment of positive integers to the vertices of G so that edge neighborhood labelings are distinct for every edge e. The least integer for which a graph G has a lucky edge labeling from the set $\{1,2, \ldots, k\}$ is called the lucky neighborhood number and is denoted by $\eta_{N}(G)$. In this paper, we prove that $P_{n}, C_{n}, T_{m, n}, S\left(P_{n}^{+}\right)$and $S\left(C_{n}^{+}\right)$are lucky edge neighborhood labeled graphs.

Keywords: Lucky edge labeling, lucky edge labeled graph, lucky edge neighborhood labeling, lucky edge neighborhood labeled graph.
AMS Subject Classification(2010): 05C78.

1 Introduction

In 1967, Rosa [4] introduced the concept of labeling and Golomb[2] called the labeling as graceful. Gallian [1] maintains a dynamic survey of graph labeling. Many graphs are constructed from standard graphs by using various operations. Nellai Murugan [3] introduced the concept of lucky edge labeling and proved that the path P_{n}, cycle C_{n}, comb $S\left(P_{n}^{+}\right)$and the crown $S\left(C_{n}^{+}\right)$are lucky edge labeled graphs.

In this paper, we define lucky edge neighborhood labeling of a graph and prove that P_{n}, C_{n}, $T_{m, n}, S\left(P_{n}^{+}\right)$and $S\left(C_{n}^{+}\right)$are lucky edge neighborhood abeled graphs.

2 Preliminaries

Definition 2.1. [3] Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively. The vertex set $\mathrm{V}(\mathrm{G})$ is labeled arbitrary by positive integers and $\mathrm{E}(\mathrm{e})$ denotes the edge label such that it is the sum of labels of vertices incident with edge e. The labeling is said to be
lucky edge labeling if the edge $\mathrm{E}(\mathrm{G})$ is a proper coloring of G , that is, if we have $E\left(e_{1}\right) \neq E\left(e_{2}\right)$ whenever e_{1} and e_{1} are adjacent edges. The least integer k for which a graph G has a lucky edge labeling from the set $\{1,2, \ldots, k\}$ is the lucky number of G denoted by $\eta(G)$.

A graph which admits a lucky edge labeling is called an lucky edge labeled graph.
Definition 2.2. Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively. The vertex set $V(G)$ is labeled arbitrary by positive integers and $E(e)$ denotes the edge label such that it is the sum of labels of vertices incident with edge e. A lucky edge neighborhood labeling of G is an assignment of positive integers to the vertices of G so that each edge neighborhood labels are distinct. The least integer for which a graph G has a lucky edge neighborhood labeling from the set $\{1,2, \ldots, k\}$ is the lucky neighborhood number and is denoted by $\eta_{N}(G)$.

The graph which admits a lucky edge neighborhood labeling is called a Lucky edge neighborhood labeled graph.

Definition 2.3. A graph obtained by joining each u_{i} of a path P_{n} to a vertex v_{i} is called a comb and denoted by P_{n}^{+}.
Definition 2.4. C_{n}^{+}is a graph obtained from C_{n} by attaching a pendent vertex from each vertex of the graph C_{n} is called crown.

Definition 2.5. The tadpole graph $T_{m, n}$ also called dragon graph is the graph obtained by joining a cycle C_{m} to a path P_{n} with a bridge.

Definition 2.6. If $e=u v$ is an edge of G and w is not a vertex of G, the edge e is said to be subdivided if it is replaced by the edges $u w$ and $w v$.

Definition 2.7. Let G be a graph. A subdivision graph $S(G)$ of G is obtained by subdividing each edge of G only once.

3 Main Results

Theorem 3.1. Path P_{n} has $\{a, b\}$ lucky edge neighborhood labeling for any $a, b \in N$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}. Assign label 2 to the vertices v_{i} for $i \equiv 0(\bmod$ 4) and 1 to 0 the remaining vertices.

Then the induced edge neighborhood labeling are distinct. Hence, lucky edge neighborhood labeling of P_{n} is $\{2,3\}$ and the lucky neighborhood number of P_{n} is $\eta_{N}\left(P_{n}\right)=3$.

Illustration 3.2. A lucky edge neighborhood labeling of P_{7} is shown in Figure 1.

Figure 1: A lucky edge neighborhood labeling of P_{7}.

Theorem 3.3. Cycle C_{n} has

1. $\{a, b\}$ lucky edge neighborhood labeling if $n \equiv 0(\bmod 4)$.
2. $\{a, b, c\}$ lucky edge neighborhood otherwise.

Proof: Let $V\left[C_{n}\right]=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left[C_{n}\right]=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$.
Case(i): $n \equiv 0(\bmod 4)$.
Let $f: V\left[C_{n}\right] \rightarrow\{1,2\}$ be defined by
$f\left(v_{i}\right)=\left\{\begin{array}{ll}1 & i \equiv 1,2,3(\bmod 4) \\ 2 & i \equiv 0(\bmod 4)\end{array} \quad\right.$ for $1 \leq i \leq n$.
Then the induced edge labeling is given by

$$
f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 1,2(\bmod 4) \\
3 & i \equiv 0,3(\bmod 4)
\end{array} \quad \text { for } 1 \leq i \leq n-1\right.
$$

It is clear that the lucky edge neighborhood labeling of C_{n} is $\{2,3\}$ and the lucky neighborhood number of C_{n} is $\eta_{N}\left(C_{n}\right)=3$.
Case(ii): $n \equiv 1,3(\bmod 4)$.
A lucky edge neighborhood labeling of C_{3} is shown in Figure 2.

Figure 2: A lucky edge neighborhood labeling of C_{3}.
From Figure 2, the lucky neighborhood number of C_{3} is $\eta_{N}\left(C_{n}\right)=5$.
For $n \geq 5$, let $f: V\left[C_{n}\right] \rightarrow\{1,2,3\}$ be given by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1,2(\bmod 4) \\
2 & i \equiv 3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n-1\right. \text { and } \\
& f\left(v_{n}\right)=3
\end{aligned}
$$

Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 0,1(\bmod 4) \\
3 & i \equiv 2,3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n-2\right. \text { and } \\
& f^{*}\left(v_{n-1} v_{n}\right)=f^{*}\left(v_{n} v_{1}\right)=4
\end{aligned}
$$

It is clear that lucky edge neighborhood labeling of C_{n} is $\{2,3,4\}$ and the lucky neighborhood number of C_{n} is $\eta_{N}\left(C_{n}\right)=4$.
Case(iii): $n \equiv 2(\bmod 4)$.
Let $f: V\left[C_{n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
f\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 1,2,3(\bmod 4) \\
2 & i \equiv 0(\bmod 4)
\end{array} \quad \text { for } 1 \leq i \leq n-2\right. \text { and }
$$

$$
f\left(v_{n-1}\right)=f\left(v_{n}\right)=2
$$

Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 1,2(\bmod 4) \\
3 & i \equiv 0,4(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n-3\right. \text { and } \\
& f^{*}\left(v_{n-2} v_{n-1}\right)=f^{*}\left(v_{n-1} v_{n}\right)=4, f^{*}\left(v_{n} v_{1}\right)=3
\end{aligned}
$$

It is clear that lucky edge neighborhood labeling of C_{n} is $\{2,3,4\}$ and the lucky neighborhood number of C_{n} is $\eta_{N}\left(C_{n}\right)=4$.

Illustration 3.4. Lucky edge neighborhood labelings of cycles C_{8}, C_{10} and C_{11} are given in Figure 3.

3(a)

3(b)

$3(c)$

Figure 3: Lucky edge neighborhood labelings of C_{8}, C_{11} and C_{10}.

Theorem 3.5. The tadpole graph $T_{m, n}$ has $\{a, b, c\}$ lucky edge neighborhood labeling for any $a, b, c \in N$.

Proof: Let $v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, \ldots, v_{m+n}$ be the vertices of $T_{m, n}$.
Case(i): $m \equiv 0(\bmod 4)$.
Let $f: V\left[T_{m+n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1,2(\bmod 4) \\
2 & i \equiv 3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq m\right. \\
& f\left(v_{m+1}\right)=3, \\
& f\left(v_{m+i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,2,3(\bmod 4) \\
2 & i \equiv 1(\bmod 4)
\end{array} \quad \text { for } 2 \leq i \leq n\right.
\end{aligned}
$$

Then the induced edge labeling is given by
$f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}2 & i \equiv 0,1(\bmod 4) \\ 3 & i \equiv 2,3(\bmod 4)\end{array} \quad\right.$ for $1 \leq i \leq m-1$,
$f^{*}\left(v_{m} v_{1}\right)=2, f^{*}\left(v_{m} v_{m+1}\right)=f^{*}\left(v_{m+1} v_{m+2}\right)=4$,
$f^{*}\left(v_{m+i} v_{m+i+1}\right)=\left\{\begin{array}{ll}2 & i \equiv 2,3(\bmod 4) \\ 3 & i \equiv 0,1(\bmod 4)\end{array}\right.$ for $2 \leq i \leq n-1$.
Case(ii): $m \equiv 2(\bmod 4)$.

Let $f: V\left[T_{m+n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 1,2,3(\bmod 4) \\
2 & i \equiv 0(\bmod 4)
\end{array} \text { for } 1 \leq i \leq m-2,\right. \\
& f\left(v_{m-1}\right)=f\left(v_{m}\right)=2 \operatorname{and} f\left(v_{m+1}\right)=3 \\
& f\left(v_{m+i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1,3(\bmod 4) \\
2 & i \equiv 2(\bmod 4)
\end{array} \quad \text { for } 2 \leq i \leq n\right.
\end{aligned}
$$

Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 1,2(\bmod 4) \\
3 & i \equiv 0,3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq m-3,\right. \\
& f^{*}\left(v_{m} v_{1}\right)=3, f^{*}\left(v_{m-2} v_{m-1}\right)=f^{*}\left(v_{m-1} v_{m}\right)=4, f^{*}\left(v_{m} v_{m+1}\right)=f^{*}\left(v_{m+1} v_{m+2}\right)=5, \\
& f^{*}\left(v_{m+i} v_{m+i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 0,3(\bmod 4) \\
3 & i \equiv 1,2(\bmod 4)
\end{array} \text { for } 2 \leq i \leq n-1\right.
\end{aligned}
$$

Case(iii): $m \equiv 1,3(\bmod 4)$.
Let $f: V\left[T_{m+n}\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1,2(\bmod 4) \\
2 & i \equiv 3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq m-2,\right. \\
& f\left(v_{m-1}\right)=3, f\left(v_{m}\right)=1 \\
& f\left(v_{m+i}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,2,3(\bmod 4) \\
2 & i \equiv 1(\bmod 4)
\end{array} \text { for } 1 \leq i \leq n\right.
\end{aligned}
$$

Then the induced edge labeling is given by

$$
\begin{aligned}
& \quad f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 0,1(\bmod 4) \\
3 & i \equiv 2,3(\bmod 4)
\end{array} \text { for } 1 \leq i \leq m-3,\right. \\
& \quad f^{*}\left(v_{m} v_{1}\right)=2, \\
& f^{*}\left(v_{m-2} v_{m-1}\right)=5 \\
& \quad f^{*}\left(v_{m-1} v_{m}\right)=4, \\
& \quad f^{*}\left(v_{m+i} v_{m+i+1}\right)=\left\{\begin{array}{ll}
2 & i \equiv 0,1(\bmod 4) \\
3 & i \equiv 2,3(\bmod 4)
\end{array}, \quad 0 \leq i \leq n-1 .\right.
\end{aligned}
$$

It is clear that the lucky edge neighborhood labeling of $T_{m, n}$ is $\{2,3,4,5\}$ and the lucky neighborhood number of $T_{m, n}$ is $\eta_{N}\left(T_{m, n}\right)=5$.

Illustration 3.6. Lucky edge neighborhood labelings of $T_{4,6}, T_{10,6}$ and $T_{5,7}$ is shown in Figure 4, 5 and 6 .

Figure 4: Lucky edge neighborhood labeling of $T_{4,6}$.

Figure 5: A lucky edge neighborhood labeling of $T_{10,6}$.

Figure 6: A lucky edge neighborhood labeling of $T_{5,7}$.

Theorem 3.7. $S\left(P_{n}^{+}\right)$has $\{a, b, c\}$ lucky edge neighborhood labeling for any $a, b, c \in N$.

Proof: Let $V\left[S\left(P_{n}^{+}\right)\right]=\left\{\left\{u_{i}, v_{i}, v_{i}^{\prime} ; 1 \leq i \leq n\right\} \cup\left\{u_{i}^{\prime} ; 1 \leq i \leq n-1\right\}\right\}$ and $E\left[S\left(P_{n}^{+}\right)\right]=\left\{\left\{u_{i} u_{i}^{\prime} ; 1 \leq\right.\right.$ $\left.i \leq n-1\} \cup\left\{u_{i}^{\prime} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}^{\prime}, v_{i}^{\prime} v_{i} ; 1 \leq i \leq n\right\}\right\}$.

Let $f: V\left[S\left(P_{n}^{+}\right)\right] \rightarrow\{1,2,3\}$ be defined by

$$
\begin{aligned}
& f\left(u_{i}\right)=1 \text { for } 1 \leq i \leq n \\
& f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{rr}
2 & i \equiv 1(\bmod 2) \\
3 & i \equiv 0(\bmod 2)
\end{array} \text { for } 1 \leq i \leq n-1\right. \\
& f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=1,1 \leq i \leq n
\end{aligned}
$$

Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i}^{\prime}\right)=f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=\left\{\begin{array}{rr}
3 & i \equiv 1(\bmod 2) \\
4 & i \equiv 0(\bmod 2)
\end{array} \text { for } 1 \leq i \leq n-1\right. \\
& f^{*}\left(u_{i} v_{i}^{\prime}\right)=f^{*}\left(v_{i}^{\prime} v_{i}\right)=2,1 \leq i \leq n
\end{aligned}
$$

It is clear that the lucky edge neighborhood labeling of $S\left(P_{n}^{+}\right)$is $\{2,3,4\}$ and the lucky neighborhood number of $S\left(P_{n}^{+}\right)$is $\eta_{N}\left(S\left(P_{n}^{+}\right)\right)=4$.

Illustration 3.8. A lucky edge neighborhood labeling of $S\left(P_{5}^{+}\right)$is shown in Figure 7.

Figure 7: A lucky edge neighborhood labeling of $S\left(P_{5}^{+}\right)$.
Theorem 3.9. $S\left(C_{n}^{+}\right)$has $\{a, b, c\}$ lucky edge neighborhood labeling for any $a, b, c \in N$.
Proof: Let $V\left[S\left(C_{n}^{+}\right)\right]=\left\{u_{i}, u_{i}^{\prime}, v_{i}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left[S\left(C_{n}^{+}\right)\right]=\left\{\left\{u_{i} u_{i}^{\prime} ; 1 \leq i \leq n\right\} \cup\right.$ $\left.\left\{u_{i}^{\prime} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{n}^{\prime} u_{1}\right\} \cup\left\{u_{i} v_{i}^{\prime}, v_{i}^{\prime} v_{i} ; 1 \leq i \leq n\right\}\right\}$.
Case(i): n is odd.
Let $f: V\left[S\left(C_{n}^{+}\right)\right] \rightarrow\{1,2,3\}$ be defined by
$f\left(u_{i}\right)=1,1 \leq i \leq n$,
$f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{ll}2 & i \equiv 1(\bmod 2) \\ 3 & i \equiv 0(\bmod 2)\end{array}\right.$ for $1 \leq i \leq n-1$,
$f\left(u_{n}^{\prime}\right)=1, f\left(v_{1}^{\prime}\right)=3, f\left(v_{n}^{\prime}\right)=2$,
$f\left(v_{i}^{\prime}\right)=1$ for $2 \leq i \leq n-1$,
$f\left(v_{i}\right)=1,1 \leq i \leq n$.
Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i}^{\prime}\right)=f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=\left\{\begin{array}{ll}
3 & i \equiv 1(\bmod 2) \\
4 & i \equiv 0(\bmod 2)
\end{array} \text { for } 1 \leq i \leq n-1,\right. \\
& f^{*}\left(u_{n} u_{n}^{\prime}\right)=f^{*}\left(u_{n}^{\prime} u_{1}\right)=2 \\
& f^{*}\left(u_{1} v_{1}^{\prime}\right)=f^{*}\left(v_{1}^{\prime} v_{1}\right)=4 \\
& f^{*}\left(u_{n} v_{n}^{\prime}\right)=f^{*}\left(v_{n}^{\prime} v_{n}\right)=3 \\
& f^{*}\left(u_{i} v_{i}^{\prime}\right)=f^{*}\left(v_{i}^{\prime} v_{i}\right)=2 \text { for } 2 \leq i \leq n-1
\end{aligned}
$$

Case(ii): n is even.
Let $f: V\left[S\left(C_{n}^{+}\right)\right] \rightarrow\{1,2,3\}$ be defined by
$f\left(u_{i}\right)=1$ for $1 \leq i \leq n$,
$f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{ll}2 & i \equiv 1(\bmod 2) \\ 3 & i \equiv 0(\bmod 2)\end{array}\right.$ for $1 \leq i \leq n$,
$f\left(v_{i}^{\prime}\right)=f\left(v_{i}\right)=1,1 \leq i \leq n$.
Then the induced edge labeling is given by

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i}^{\prime}\right)=f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=\left\{\begin{array}{ll}
3 & i \equiv 1(\bmod 2) \\
4 & i \equiv 0(\bmod 2)
\end{array} \text { for } 1 \leq i \leq n-1,\right. \\
& f^{*}\left(u_{n} u_{n}^{\prime}\right)=f^{*}\left(u_{n}^{\prime} u_{1}\right)=4 \\
& f^{*}\left(u_{i} v_{i}^{\prime}\right)=f^{*}\left(v_{i}^{\prime} v_{i}\right)=2 \text { for } 1 \leq i \leq n
\end{aligned}
$$

It is clear that the lucky edge neighborhood labeling of $S\left(C_{n}^{+}\right)$is $\{2,3,4\}$ and the lucky neighborhood number of $S\left(C_{n}^{+}\right)$is $\eta_{N}\left(S\left(C_{n}^{+}\right)\right)=4$.

Illustration 3.10. Lucky edge neighborhood labelings of $S\left(C_{5}^{+}\right)$and $S\left(C_{4}^{+}\right)$are given in Figure 8 and 9 respectively.

Figure 8: Lucky edge neighborhood labelings of $S\left(C_{5}^{+}\right)$.

Figure 9: Lucky edge neighborhood labelings of $S\left(C_{4}^{+}\right)$.

References

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18(2015), \#DS6.
[2] S.W. Golomb, How to number a graph. In: Graph Theory and Computing(R. C. Read.Ed.) Academic Press, New York (1972), 23-37.
[3] A. Nellai Murugan and R. Maria Irudhaya Aspin Chitra, Lucky Edge Labeling of P_{n}, C_{n}, Corona of P_{n}, C_{n}, International Journal of Scientific and Innovative Mathematical Research, Volume 2, Issue 8 (2014), 710-718.
[4] A. Rosa, On Certain Valuations of the vertices of a Graph, In: Theory of Graphs, (International Symposium, Rome, July 1966), Gordan and Breach, N. Y. and Dunod Paris(1967), 349-355.

