Odd-even sum labeling of some graphs

K. Monika ${ }^{1}$, K. Murugan ${ }^{2}$
${ }^{1}$ Department of Mathematics, M.S.U College
Govindaperi, Tirunelveli, Tamil Nadu, India.
kmonikalyani@gmail.com
${ }^{2}$ Department of Mathematics
The M.D.T. Hindu College, Tirunelveli,
Tamil Nadu, India.
muruganmdt@gmail.com

Abstract

A (p, q) graph $G=(V, E)$ is said to be an odd-even sum graph if there exists an injective function $f: V(G) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 p-1)\}$ such that the induced mapping $f^{*}: E(G) \rightarrow$ $\{2,4,6, \ldots, 2 q\}$ defined by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective. The function f is called an odd-even sum labeling of G. In this paper we study odd-even sum labeling of path $P_{n}(n \geq 2)$, star $K_{1, n}(n \geq 1)$, bistar $B_{m, n}, S\left(K_{1, n}\right), B(m, n, k)$ and some standard graphs.

Keywords: odd-even sum graph, odd-even sum labeling.
AMS Subject Classification(2010): 05C78.

1 Introduction

Graphs considered in this paper are finite, undirected and without loops or multiple edges. Let $G=(V, E)$ be a graph with p vertices and q edges. Terms not defined here are used in the sense of Harary[3]. For number theoretic terminology we follow [1]. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions.If the domain of the mapping is the set of vertices(edges/both) then the labeling is called a vertex(edge/total) labeling. There are several types of graph labeling and a detailed survey is found in [6].

Harary [4] introduced the notion of a sum graph. A graph $G=(V, E)$ is called a sum graph if there is an bijection f from V to a set of $+v e$ integers S such that $x y \in E$ if and only if $(f(x)+f(y)) \in S$. In 1991 Harary [5] defined a real sum graph. An injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ is an odd sum labeling [2] if the induced edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective and $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. Ramya et al. introduced skolem even-vertex-odd difference mean labeling in [10]. Ponraj et al. [9] defined pair sum labeling.

Motivated by these, we introduce a new concept called odd-even sum labeling. A (p, q) graph $G=(V, E)$ is said to be an odd-even sum graph if there exists an injective function $f: V(G) \rightarrow$ $\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 p-1)\}$ such that the induced mapping $f^{*}: E(G) \rightarrow\{2,4,6, \ldots, 2 q\}$ defined
by $f^{*}(u v)=f(u)+f(v) \forall u v \in E(G)$ is bijective. The function f is called an odd-even sum labeling of G. A graph which admits odd-even sum labeling is called an odd-even sum graph. We use the following definitions in the subsequent section.

Definition 1.1. [3] A complete bipartite graph $K_{1, n}(n \geq 1)$ is called a star and it has $n+1$ vertices and n edges.

Definition 1.2. [3] The bistar graph $B_{m, n}$ is obtained from a copy of star $K_{1, m}$ and a copy of star $K_{1, n}$ by joining the vertices of maximum degree by an edge.

Definition 1.3. For each vertex v of a graph G, take a new vertex v^{\prime}. Join v^{\prime} to all the vertices of G adjacent to v. The graph $S(G)$ thus obtained is called splitting graph of G.

Definition 1.4. [9] The graph $B(m, n, k)$ is obtained from a path of length k by attaching the star $K_{1, m}$ and $K_{1, n}$ with its pendent vertices.

Definition 1.5. [3] The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p vertices) and p copies of G_{2} and joining the $i^{t h}$ vertices of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.6. The comb $P_{n} \odot K_{1}$ is obtained from a path $P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining a vertex v_{i} to $u_{i}(1 \leq i \leq n)$.

Definition 1.7. A coconut tree $C T(m, n)$ is the graph obtained from the path P_{m} by appending n new pendent edges at an end vertex of P_{m}.

Definition 1.8. Let $X_{i} \in N$. Then the cater pillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is obtained from the path P_{n} by joining X_{i} vertices to each of $i^{t h}$ vertex of $P_{n}(1 \leq i \leq n)$.

2 Main Results

Theorem 2.1. Path $P_{n},(n \geq 2)$ is an odd-even sum graph.
Proof: Let $\mathrm{V}\left(P_{n}\right)=\left\{v_{i} / 1 \leq i \leq n\right\}$ and $\mathrm{E}\left(P_{n}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\}$. Then $\left|V\left(P_{n}\right)\right|=n$ and $\left|E\left(P_{n}\right)\right|=n-1$.
Let $f: V\left(P_{n}\right) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 n-1)\}$ be defined as follows.
Case(i): n is odd.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=n+2 i ; \quad 0 \leq i<\frac{n+1}{2} \\
& f\left(v_{2 i}\right)=-n+2 i ; \quad 1 \leq i<\frac{n+1}{2}
\end{aligned}
$$

Case(ii): n is even.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=-(n-1)+2 i ; \quad 0 \leq i<\frac{n}{2} \\
& f\left(v_{2 i}\right)=n-1+2 i ; \quad 1 \leq i \leq \frac{n}{2}
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then $f^{*}\left(v_{i} v_{i+1}\right)=2 i, 1 \leq i \leq n-1$. The induced edge labels are $2,4,6, \ldots, 2 n-2$ which are all distinct. Hence path P_{n} is an odd-even sum graph.

Theorem 2.2. The star $K_{1, n}(n \geq 1)$ is an odd-even sum graph.
Proof: Let $v, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $K_{1, n}$. Let $v v_{i} ; \quad 1 \leq i \leq n$ be the edges of $K_{1, n}$. Then $\left|V\left(K_{1, n}\right)\right|=n+1$ and $\left|E\left(K_{1, n}\right)\right|=n$.
Let $f: V\left(K_{1, n}\right) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 n+1)\}$ be defined as follows.

$$
\begin{aligned}
& f(v)=2 n+1 \\
& f\left(v_{i}\right)=-[2 n+1-2 i] ; \quad 1 \leq i \leq n
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then $f^{*}\left(v v_{i}\right)=2 i, 1 \leq i \leq n$. The induced edge labels are $2,4,6, \ldots, 2 n$ which are all distinct. Hence the star $K_{1, n}$ is an odd-even sum graph.

Theorem 2.3. The cycle C_{n} is not an odd-even sum graph when $n \equiv 2(\bmod 4)($ or $) n \equiv 3$ $(\bmod 4)$.

Proof: Let $\mathrm{V}\left(C_{n}\right)=\left\{v_{i} / 1 \leq i \leq n\right\}$ and $\mathrm{E}\left(C_{n}\right)=\left\{v_{i} v_{i+1}, v_{n} v_{1} / 1 \leq i \leq n-1\right\}$. Then $\left|V\left(C_{n}\right)\right|=$ n and $\left|E\left(C_{n}\right)\right|=n$.
Suppose C_{n} is an odd-even sum graph.
Let $f: V\left(C_{n}\right) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm(2 n-1)\}$ be an odd-even sum labeling of C_{n}.
Case(i): $n \equiv 2(\bmod 4)$.

$$
\begin{aligned}
& f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)+f\left(v_{1}\right)=2+4+6+\ldots+2 n \\
& 2\left(f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)\right)=n(n+1) \\
& f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)=\frac{n(n+1)}{2} \text { which is odd. }
\end{aligned}
$$

This contradicts the choice of n.
Case(ii): $n \equiv 3(\bmod 4)$.

$$
\begin{aligned}
& f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)+f\left(v_{1}\right)=2+4+6+\ldots+2 n \\
& 2\left(f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)\right)=n(n+1) \\
& f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\ldots+f\left(v_{n}\right)=\frac{n(n+1)}{2} \text { which is even. }
\end{aligned}
$$

This contradicts the choice of n and the theorem is proved.
Theorem 2.4. Bistar $B_{m, n}$ is an odd-even sum graph.
Proof: Let $v, w, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of $B_{m, n}$. Let $v v_{i} ; \quad w w_{j} ; \quad 1 \leq i \leq$ $m, 1 \leq j \leq n$ and $v w$ be the edges of $B_{m, n}$. Then $\left|V\left(B_{m, n}\right)\right|=m+n+2,\left|E\left(B_{m, n}\right)\right|=m+n+1$. Let $f: V\left(B_{m, n}\right) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm 2(m+n)+3\}$ be defined as follows.

$$
\begin{aligned}
& f(v)=2(m+n)+3, f(w)=-1 \\
& f\left(v_{i}\right)=-[2 m+2 n+3-2 i] ; \quad 1 \leq i \leq m \\
& f\left(w_{j}\right)=2 m+2 n+3-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then
$f^{*}\left(v v_{i}\right)=2 i ; \quad 1 \leq i \leq m$,
$f^{*}(v w)=2 m+2 n+2$,
$f^{*}\left(w w_{j}\right)=2 m+2 n+2-2 j, 1 \leq j \leq n$.

The induced edge labels are $2,4,6, \ldots, 2 m+2 n+2$ which are all distinct. Hence bistar $B_{m, n}$ is an odd-even sum graph.

Theorem 2.5. $S\left(K_{1, n}\right)$ is an odd-even sum graph.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the pendant vertices, v be the apex vertex of $K_{1, n}$ and $u, u_{1}, u_{2}, \ldots, u_{n}$ be the added vertices corresponding to $v, v_{1}, v_{2}, \ldots, v_{n}$ to obtain $S\left(K_{1, n}\right)$. Then $\left|V\left(S\left(K_{1, n}\right)\right)\right|=$ $2 n+2$ and $\left|E\left(S\left(K_{1, n}\right)\right)\right|=3 n$.
Let $f: V\left(S\left(K_{1, n}\right)\right) \rightarrow\{ \pm 1, \pm 3 \pm 5, \ldots, \pm 4 n+3\}$ be defined as follows.

$$
\begin{aligned}
& f(u)=4 n+3 \\
& f(v)=2 n+3 \\
& f\left(u_{i}\right)=-(2 i+1) ; \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=2 i-1 ; \quad 0 \leq i<n
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& f^{*}\left(v u_{i}\right)=2 n+2-2 i ; \quad 1 \leq i \leq n \\
& f^{*}\left(v v_{i}\right)=2 n+2 i ; 1 \leq i \leq n \\
& f^{*}\left(u v_{i}\right)=4 n+2 i ; 1 \leq i \leq n
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 6 n$ which are all distinct. Hence $S\left(K_{1, n}\right)$ is an odd-even sum graph.

Theorem 2.6. The graph $B(m, n, k)$ is an odd-even sum graph.
Proof: Let $V(B(m, n, k))=\left\{v_{i}, v_{j}^{\prime}, u_{l}: 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq l \leq k\right\}$ and $E(B(m, n, k))=\left\{u_{1} v_{i}, u_{k} v_{j}^{\prime}, u_{l} u_{l+1}: 1 \leq i \leq m, 1 \leq j \leq n, 1 \leq l \leq k-1\right\}$. Then $|V(B(m, n, k))|=m+n+k$ and $|E(B(m, n, k))|=(m+n+k)-1$.
Let $f: V(B(m, n, k)) \rightarrow\{ \pm 1, \pm 3, \ldots, \pm(2 m+2 n+2 k-1)\}$ be defined as follows.
Case(i): k is odd.

$$
\begin{aligned}
& f\left(v_{i+1}\right)=-1-2 i ; \quad 0 \leq i \leq m-1 \\
& f\left(u_{2 i+1}\right)=2 m+2 n+2 k-1-2 i ; \quad 0 \leq i<\frac{k+1}{2} \\
& f\left(u_{2 i}\right)=f\left(v_{m}\right)-2 i ; \quad 1 \leq i \leq \frac{k-1}{2} \\
& f\left(v_{j}^{\prime}\right)=f\left(u_{k-1}\right)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

Case(ii): k is even.

$$
\begin{aligned}
& f\left(v_{i+1}\right)=-1-2 i ; \quad 0 \leq i \leq m-1 \\
& f\left(u_{2 i+1}\right)=2 m+2 n+2 k-1-2 i ; \quad 0 \leq i<\frac{k}{2} \\
& f\left(u_{2 i}\right)=f\left(v_{m}\right)-2 i ; \quad 1 \leq i \leq \frac{k}{2} \\
& f\left(v_{j}^{\prime}\right)=f\left(u_{k-1}\right)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

In both cases, let f^{*} be the induced edge labeling of f. Then
$f^{*}\left(u_{1} v_{i}\right)=2 m+2 n+2 k-2 i ; \quad 1 \leq i \leq m$,
$f^{*}\left(u_{i} u_{i+1}\right)=2 n+2 k-2 i ; \quad 1 \leq i<k$,
$f^{*}\left(u_{k} v_{j}^{\prime}\right)=2 n+2-2 j ; \quad 1 \leq j \leq n$.
$f^{*}\left(u_{k} v_{j}^{\prime}\right)=2 n+2-2 j ; \quad 1 \leq j \leq n$.
The induced edge labels are $2,4,6, \ldots,(2 m+2 n+2 k-2)$ which are all distinct. Hence $B(m, n, k)$ is an odd-even sum graph.

Theorem 2.7. Coconut tree is an odd-even sum graph.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of path P_{n}. Let G be the coconut tree $C T(m, n)$.
Let $V(G)=\left\{v_{i}, v_{j}^{\prime} / 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(G)=\left\{v_{i} v_{i+1}, v_{j}^{\prime} v_{m} / 1 \leq i<m, 1 \leq j \leq n\right\}$.
Then $|V(G)|=m+n \quad$ and $\quad|E(G)|=m+n-1$.
Let $f: V(G) \rightarrow\{ \pm 1, \pm 3, \ldots, \pm(2 m+2 n-1)\}$ be defined as follows.
Case(i): m is odd.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=-1-2 i ; \quad 0 \leq i \leq \frac{m-1}{2} \\
& f\left(v_{2 i+2}\right)=2 m+2 n-1-2 i ; \quad 0 \leq i<\frac{m-1}{2} \\
& f\left(v_{j}^{\prime}\right)=f\left(v_{m-1}\right)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

Case(ii): m is even.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=-1-2 i ; \quad 0 \leq i<\frac{m}{2} \\
& f\left(v_{2 i+2}\right)=2 m+2 n-1-2 i ; \quad 0 \leq i<\frac{m}{2} \\
& f\left(v_{j}^{\prime}\right)=f\left(v_{m-1}\right)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

In both the cases, let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=2 m+2 n-2 i ; \quad 1 \leq i<m \\
& f^{*}\left(v_{m} v_{j}\right)=f^{*}\left(v_{m-1} v_{m}\right)-2 j ; \quad 1 \leq j \leq n
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots,(2 m+2 n-2)$ which are all distinct. Hence the graph G is an odd-even sum graph.

Theorem 2.8. Caterpillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an odd-even sum graph for all $n>1$.
Proof: Let $V\left(S\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)=\left\{v_{i}: \quad 1 \leq i \leq n\right\} \cup\left\{v_{i j}: \quad 1 \leq i \leq n, 1 \leq j \leq X_{i}\right\}$ and $E\left(S\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)=\left\{v_{i} v_{i+1}: \quad 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i j}: \quad 1 \leq i \leq n, 1 \leq j \leq X_{i}\right\}$.
Then $\left|V\left(S\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right|=X_{1}+X_{2}+\ldots+X_{n}+n$ and $\left|E\left(S\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right|=X_{1}+X_{2}+$ $\ldots+X_{n}+n-1$.
Let $f: V\left(S\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right) \rightarrow\left\{ \pm 1, \pm 3, \ldots, \pm 2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-1\right\}$ be defined as follows.
Case(i): n is odd.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-1-2 i ; \quad 0 \leq i<\frac{n+1}{2} \\
& f\left(v_{2 i+2}\right)=-1-2 i ; \quad 0 \leq i<\frac{n-1}{2} \\
& f\left(v_{1(i+1)}\right)=-(2 n-1)-2 i ; \quad 0 \leq i \leq X_{1}-1 \\
& f\left(v_{2(i+1)}\right)=2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-1-2 n-2\left(X_{1}-1\right)-2 i ; \quad 0 \leq i \leq X_{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{(2 j+3)(i+1)}\right)=f\left(v_{(2 j+1)\left(X_{2 j+1}\right)}\right)-2 X_{2(j+1)}-2 i ; \quad 0 \leq i<X_{2 j+3}, 0 \leq j<\frac{n-1}{2} \\
& f\left(v_{(2 j+4)(i+1)}\right)=f\left(v_{(2 j+2)\left(X_{2 j+2}\right)}\right)-2 X_{2 j+3}-2 i ; \quad 0 \leq i<X_{2 j+4}, 0 \leq j<\frac{n-3}{2}
\end{aligned}
$$

Case(ii): n is even.

$$
\begin{aligned}
& f\left(v_{2 i+1}\right)=2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-1-2 i ; \quad 0 \leq i<\frac{n}{2} \\
& f\left(v_{2 i+2}\right)=-1-2 i ; \quad 0 \leq i<\frac{n}{2} \\
& f\left(v_{1(i+1)}\right)=-(2 n-1)-2 i ; \quad 0 \leq i \leq X_{1}-1, \\
& f\left(v_{2(i+1)}\right)=2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-1-2 n-2\left(X_{1}-1\right)-2 i ; \quad 0 \leq i \leq X_{2}-1 \\
& f\left(v_{(2 j+3)(i+1)}\right)=f\left(v_{(2 j+1)\left(X_{2 j+1)}\right)}\right)-2 X_{2(j+1)}-2 i ; \quad 0 \leq i<X_{2 j+3}, 0 \leq j<\frac{n-2}{2} \\
& f\left(v_{(2 j+4)(i+1)}\right)=f\left(v_{(2 j+2)\left(X_{2 j+2)}\right)}\right)-2 X_{2 j+3}-2 i ; \quad 0 \leq i<X_{2 j+4}, 0 \leq j<\frac{n-2}{2}
\end{aligned}
$$

In both cases, let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=2\left(X_{1}+X_{2}+\ldots+X_{n}+n\right)-2 i ; \quad 1 \leq i \leq n-1 \\
& f^{*}\left(v_{1} v_{1 j}\right)=f^{*}\left(v_{n-1} v_{n}\right)-2 j ; \quad 1 \leq j \leq X_{1} \\
& f^{*}\left(v_{i} v_{i j}\right)=f^{*}\left(v_{i-1} v_{(i-1)\left(X_{i-1}\right)}\right)-2 j ; \quad 2 \leq i \leq n, 1 \leq j \leq X_{i}
\end{aligned}
$$

The induced edge labels are $2,4,6, \ldots, 2\left(X_{1}+X_{2}+\ldots+X_{n}+n-1\right)$ which are all distinct. Hence caterpillar is an odd-even sum graph.

Illustration 2.9. Odd-even sum labeling of $S(3,5,2,7,4)$ is given in Figure 1.

Figure 1: Odd-even sum labeling of $S(3,5,2,7,4)$.

Corollary 2.10. The graph $P_{n} \odot n K_{1}(n \geq 2)$ admits an odd-even sum labeling.

Proof: Let $X_{1}=X_{2}=\ldots=X_{n}=K$ in Theorem 2.8. Then the result follows.

Corollary 2.11. The graph $P_{n-1}(1,2,3, \ldots, n)$ admits an odd-even sum labeling.

Proof: Let $X_{i}=i$ in Theorem 2.8. Then the result follows.

Corollary 2.12. Comb is odd-even sum labeling.

Proof: Let $X_{1}=X_{2}=\ldots=X_{n}=1$ in Theorem 2.8. Then the result follows.
Corollary 2.13. The graph obtained by deleting a pendent edge $P_{n}^{+}-e_{0}$ admits an odd-even sum labeling.

Proof: Let $X_{1}=X_{2}=\ldots=X_{n-1}=1, X_{n}=0$ in Theorem 2.8. Then the result follows.
Acknowledgement: The authors are thankful to the anonymous referee for the valuable comments and suggestions.

References

[1] M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second Edition, 1991.
[2] S. Arockiaraj, P.Mahalakshmi, and P.Namasivayam, Odd Sum Labeling of Some Subdivision Graphs, Kragujevac Journal of Mathematics Volume 38(1)(2014), 203-222.
[3] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001.
[4] F. Harary, Sum Graphs and Difference graphs, Congr.Numer., 72(1990), 101-108.
[5] F. Harary, Sum Graphs over all the integers, Discrete Math., 124(1994), 99-105
[6] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18(2015), \#DS6.
[7] P. Lawrence Rozario Raj and S. Koilraj, Cordial labeling for the splitting graph of some standard graphs, International Journal of Mathematics and Soft Computing, Vol.1, No.1(2011), 105-114.
[8] M. A. Perumal, S. Navaneetha Krishnan, S. Arockiaraj and A. Nagarajan, Super Graceful Labeling For Some Special Graphs, Int. J. of Research and Reviews in Applied Sciences, 9(3), 382-404.
[9] R. Ponraj and J. V. X. Parthipan, Pair Sum Labeling of Graphs, J. Indian Acad.Math., 32(2)(2010), 587-595.
[10] D. Ramya, R. Kalaiyarasi and P. Jeyanthi, Skolem Odd-Difference Mean Graphs, Journal of Algorithms and Computation, 45(2014), 1-12.

