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Abstract

The solution of Black-Scholes-Merton (BSM) Partial Differential Equation represents
the model for pricing an option. It is a very useful application for trading terminal. The
solution gives the theoretical value of an option (Call/Put). In the present paper we apply
Fourier Transform Method to solve the equation for plain vanilla payoff function and Log
payoff function, which are the boundary conditions for the BSM partial differential equation.
Also, we observe and show that averages of these two payoff functions will give exactly the
average of two solutions. And we also extend this result.
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1 Introduction

In Mathematical Finance, the Black-Scholes-Merton equation is a Partial Differential Equa-
tion to find the value of European Call/Put option. Suppose C(S, t) is the value of European
call option. The equation [1]

∂C

∂t
+ rS

∂C

∂S
+ σ2S2

2
∂2C

∂S2 − rC = 0

is known as a Black-Scholes-Merton Partial Differential Equation, where,
S is Spot price of asset (i.e. the price of asset at time t = 0)
X is Exercise price or strike price
T is Total period of time
r is Risk free interest rate
σ is Volatility
t ∈ [0, T ] and C(S, t) = 0 for all t
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C(S, t)→ S as S →∞.

Consider the European call option whose final payoff at the expiry time T is given by a function
f of the final spot price S (we note that in the literature it is often denoted by many as ST )
which is assumed to be a continuous function, that need not be differentiable. Also we demand,

lim
t→T−

C(S, t) = f(S)

We can convert the Black-Scholes-Merton Partial Differential Equation into heat equation using
the following substitutions:

y = T − t

x = ln
(
S
X

)
+
(
r − σ2

2

)
(T − t)

D(x, y) = er(T−t)C(S, t)

These substitutions also convert the above mentioned boundary condition,

lim
t→T−

C(S, t) = f(S)

to the initial condition,

lim
y→0+

D(x, y) = f(Xex).

Thus the Black-Scholes-Merton Partial Differential Equation gets converted into the following
Heat equation with the stated initial condition:

∂D

∂y
= σ2

2
∂2D

∂x2 with lim
y→0+

D(x, y) = f(Xex).

Several people have solved the same problem by using the Method of separation of variables
and Laplace Transform Method. Here we use Fourier Transform Method to solve the problem.
Applying Fourier Transform on Heat equation we get,

∂
∂yF (D) + σ2λ2

2 F (D) = 0

Therefore, F (D) = C1e
−σ

2λ2
2 y.

Now we get, F (D(x, 0)) = G(λ) because D(x, 0) = f(Xex).
Here G is the Fourier Transform of f , so that C1 is determined and now we have:

F (D) = G(λ)e−
σ2λ2

2 y.
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Taking inverse Fourier Transform on both the sides we get,

D(x, y) = F−1
(
G(λ)e−

σ2λ2
2 y

)
Now, using Convolution theorem and the facts, that

F−1(G(λ)) = f(Xex) andF−1
(
e−

σ2λ2
2 y

)
= 1
σ
√
y
e
−x2
2σ2y

we get,

D(x, y) = 1√
2π
∫∞
−∞ f(ν) 1

σ
√
ye
−(x−ν)2

2σ2y dν

Therefore, D(x, y) = 1
σ
√

2πy
∫∞
−∞ f(ν)e

−(x−ν)2

2σ2y dν.

2 Solution of the problem using different payoff functions

2.1 Plain Vanilla Payoff

This is a very basic and commonly used payoff function. Many financial organizations use
this as a payoff. The very first BSM formula was derived using [4].
Now we consider Plain Vanilla payoff function which is as follows:

f(S) = max{S −X, 0} =

S −X if S ≥ X

0 if S ≤ X

Therefore,

f(Xex) = max {X(ex − 1), 0} =

X(ex − 1) if x ≥ 0

0 if x ≤ 0

D(x, y) = 1
σ
√

2πy

∫ ∞
−∞

X(eν − 1)e−
(x−ν)2

2σ2y dν

= X

σ
√

2πy

[∫ ∞
0

eνe
− (x−ν)2

2σ2y dν −
∫ ∞

0
e
− (x−ν)2

2σ2y dν
]

Substituting, Z = ν−x
σ
√
y we get,

D(x, y) = X√
2π
ex+σ2y

2

∫ ∞
− x
σ
√
y

e−
(Z2−2σ√yZ+σ2y)

2 dZ − X√
2π

∫ ∞
− x
σ
√
y

e−
Z2
2 dZ
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= X√
2π
ex+σ2y

2

∫ ∞
−x+σ2y

σ
√
y

e−
t2
2 dt− X√

2π

∫ ∞
− x
σ
√
y

e−
Z2
2 dZ

= X√
2π
ex+σ2y

2

∫ x+σ2y
σ
√
y

−∞
e−

t2
2 dt− X√

2π

∫ x
σ
√
y

−∞
e−

t2
2 dt

Therefore, D(x, y) = Xex+σ2y
2 N (d1)−XN (d2)

where, d1 = x+σ2y
σ
√
y , d2 = x

σ
√
y and N(x) = 1√

2π
∫ x
−∞ e

− t
2
2 dt.

Hence, C(S, t) = SN (d1)−Xe−r(T−t)N (d2)

where d1 = x+ σ2y

σ
√
y

=
ln
(
S
X

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

and

d2 = d1 − σ
√
T − t =

ln
(
S
X

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

2.2 Log Payoff

Paul Wilmott discussed BSM formula for Log payoff function in [5]. Other than this several
types of option pricing formulas have been derived with different payoff functions [3].
Now we consider the payoff function which is known as Log payoff, which is as:

f(S) = max
{

ln
(
S

X

)
, 0
}

=

ln
(
S
X

)
if S ≥ X

0 if S ≤ X

Therefore,

f(Xex) = max{x, 0} =

x if x ≥ 0

0 if x ≤ 0

D(x, y) = 1
σ
√

2πy

∫ ∞
0

νe
− (x−ν)2

2σ2y dν.

Taking Z = ν−x
σ
√
y , we get,

D(x, y) = 1√
2π

∫ ∞
− x
σ
√
y

(x+ σ
√
yZ)e−

Z2
2 dZ

= x√
2π

∫ ∞
− x
σ
√
y

e−
Z2
2 dZ + σ

√
y

2π

∫ ∞
− x
σ
√
y

Ze−
Z2
2 dZ

= x√
2π

∫ x
σ
√
y

−∞
e−

t2
2 dt+ σ

√
y

2πe
− x2

2σ2y
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Hence, D(x, y) = xN(d) + σ
√

y
2πe
− x2

2σ2y where, d = x
σ
√
y .

Therefore, C(S, t) = e−r(T−t)
[
ln
(
S
X

)
+
(
r − σ2

2

)
(T − t)

]
N(d) + 1√

2πe
−r(T−t)σ

√
T − te−

d2
2

where, d =
ln( SX )+

(
r−σ

2
2

)
(T−t)

σ
√
T−t .

Now, we consider average of two payoff functions Plain Vanilla and Log,

f(S) =


ln( SX )+S−X

2 if S ≥ X

0 if S ≤ X

Therefore,

f(Xex) =


X(ex−1)+x

2 if x ≥ 0

0 if x ≤ 0 and

D(x, y) = 1
2σ
√

2πy

∫ ∞
0

(X(eν − 1) + ν)e−
(x−ν)2

2σ2y dν

= X

2σ
√

2πy

[∫ ∞
0

eνe
− (x−ν)2

2σ2y dν −
∫ ∞

0
e
− (x−ν)2

2σ2y dν
]

+ 1
2σ
√

2πy

∫ ∞
0

νe
− (x−ν)2

2σ2y dν

= X

2σ
√

2πy

∫ ∞
0

eνe
− (x−ν)2

2σ2y dν − X

2σ
√

2πy

∫ ∞
0

e
− (x−ν)2

2σ2y dν + 1
2σ
√

2πy

∫ ∞
0

νe
− (x−ν)2

2σ2y dν

Substituting Z = ν−x
σ
√
y we get,

D(x, y) = X

2
√

2π
ex+σ2y

2

∫ ∞
− x
σ
√
y

e−
Z2−2σ√yZ+σ2y

2 dZ − X

2
√

2π

∫ ∞
− x
σ
√
y

e−
Z2
2 dZ

+ 1
2
√

2π

∫ ∞
− x
σ
√
y

(x+ σ
√
yZ)e−

Z2
2 dZ

= X

2
√

2π
ex+σ2y

2

∫ ∞
− x
σ
√
y

e−
(Z−σ√y)2

2 dZ − (X − x)
2
√

2π

∫ ∞
− x
σ
√
y

e−
Z2
2 dZ

+
σ
√
y

2
√

2π

∫ ∞
− x
σ
√
y

Ze−
Z2
2 dZ

= X

2
√

2π
ex+σ2y

2

∫ ∞
−x+σ2y

σ
√
y

e−
t2
2 dt− (X − x)

2
√

2π

∫ ∞
− x
σ
√
y

e−
t2
2 dt+ σ

2

√
y

2πe
− x2

2σ2y

= X

2
√

2π
ex+σ2y

2

∫ x+σ2y
σ
√
y

−∞
e−

t2
2 dt− (X − x)

2
√

2π

∫ x
σ
√
y

−∞
e−

t2
2 dt+ σ

2

√
y

2πe
−
d2

2
2

= X

2 e
x+σ2y

2 N (d1)− (X − x)
2 N (d2) + σ

2

√
y

2πe
−
d2

2
2

where, d1 = x+σ2y
σ
√
y , d2 = x

σ
√
y and N(x) = 1√

2π
∫ x
−∞ e

− t
2
2 dt.
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Hence we get,

C(S, t) = S
2N (d1)− 1

2e
−r(T−t)

[
X − ln

(
S
X

)
−
(
r − σ2

2

)
(T − t)

]
N (d2)

+e−r(T−t) σ2
√

T−t
2π e

−
d2

2
2

where, d1 = x+σ2y
σ
√
y =

ln( SX )+
(
r+σ2

2

)
(T−t)

σ
√
T−t and d2 = d1 − σ

√
T − t =

ln( SX )+
(
r−σ

2
2

)
(T−t)

σ
√
T−t .

Theorem 2.1. Let Cf and Cg be the solutions of BSM equation with the boundary conditions
lim
t→T−

Cf (S, t) = f(S) and lim
t→T−

Cg(S, t) = g(S). Then αCf +βCg is a solution of BSM with the
boundary condition αf + βg.

Proof: Let Cαf+βg be the solution of BSM with the boundary condition αf + βg.
Define, V (S, t) = αCf + βCg − Cαf+βg. Here V (S, t) is a solution of BSM with the boundary
condition lim

t→T−
V (S, t) = 0. Hence we have,

V (S, t) = 0⇒ αCf + βCg − Cαf+βg = 0⇒ αCf + βCg = Cαf+βg.

Conclusion: Theorem 2.1 opens up a new direction of considering averages of two known
payoff functions. The theorem confirms that the averages of payoff functions behaves the way
one expect it to behave. In this paper, we consider the averages of most well-known and useful
payoff functions, namely Plain Vanilla and Log payoff functions. It is now open for researchers
to consider the Modified Log Payoff function [2] along with any of the two payoff function
considered in Theorem 2.1. While choosing appropriate payoff function for the known data,
this result provides one more choice, the averages of the two approximate payoff functions. In
other words, for curve fitting and surface fitting there is one more natural choice.
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