Edge domination in various snake graphs

S K Vaidya ${ }^{1}$, R M Pandit ${ }^{2}$
${ }^{1}$ Department of Mathematics, Saurashtra University
Rajkot - 360005, Gujarat, India.
samirkvaidya@yahoo.co.in
${ }^{2}$ Government Polytechnic
Jamnagar - 361009, Gujarat, India.
pandit.rajesh@ymail.com

Abstract

A set $F \subseteq E(G)$ is an edge dominating set if each edge in $E(G)$ is either in F or is adjacent to an edge in F. An edge dominating set F is called a minimal edge dominating set if no proper subset F^{\prime} of F is an edge dominating set. The edge domination number $\gamma^{\prime}(G)$ is the minimum cardinality among all minimal edge dominating sets. We investigate the edge domination number of some graphs called snakes which are obtained from path P_{n} by replacing its edges by cycles C_{3} and C_{4}.

Keywords: Edge dominating set, minimal edge dominating set, edge domination number. AMS Subject Classification(2010): 05C38, 05C69.

1 Introduction

The concept of domination in graphs has received considerable attention due to its diversified applications ranging from design analysis of network to military surveillance and linear algebra to social sciences. The comprehensive bibliography on the concept of domination and its variants can be found in Hedetniemi and Laskar [5]. This paper is focused on edge domination in graphs.

Throughout the paper, by a graph G we mean a simple, finite, connected and undirected graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex $v \in V(G)$, the open neighborhood $N(v)$ of v is defined as $N(v)=\{u \in V(G): u v \in E(G)\}$ while $N[v]=N(v) \bigcup\{v\}$ is called the closed neighborhood of v. For a set $D \subseteq V(G)$, the open neighborhood $N(D)$ is defined to be $\bigcup_{v \in D} N(v)$, and the closed neighborhood of D is $N[D]=N(D) \cup D$. A set $D \subseteq V(G)$ in a graph G is called a dominating set if $N[D]=V(G)$. The minimum cardinality of a dominating set of G is called the domination number of G which is denoted by $\gamma(G)$.

An edge e of a graph G is said to be incident with the vertex v if v is an end vertex of e. Two edges are adjacent if they have an end vertex in common.

A set $F \subseteq E(G)$ is an edge dominating set if each edge in $E(G)$ is either in F or is adjacent to an edge in F. An edge dominating set F is called a minimal edge dominating set (MEDS)
if no proper subset F^{\prime} of F is an edge dominating set. The edge domination number $\gamma^{\prime}(G)$ is the minimum cardinality among all minimal edge dominating sets. The concept of edge domination was introduced by Mitchell and Hedetniemi [8] and further explored by Arumugam and Velammal [2].

Moreover, Yannakakis and Gavril [13], Dutton and Klostermeyer [3], Kulli and Soner [7], Jayaram [6], Mojdeh and Sadeghi [9], Arumugam and Jerry [1], Vaidya and Pandit [10, 11] and Zelinka [14] studied the concept of edge domination in various contexts.

We provide a brief summary of definitions which are useful for the present investigation.
Definition 1.1. For each $e \in E(G), N(e)$ denotes the open neighborhood of e in G. That is, the set of all edges which are adjacent to e in G.

Definition 1.2. The degree of an edge $e=u v$ of G is defined by $\operatorname{deg}(e)=\operatorname{deg}(u)+\operatorname{deg}(v)-2$, that is, the number of edges adjacent to it. The maximum degree of an edge in G is denoted by $\triangle^{\prime}(G)$.

For any real number n, $\lceil n\rceil$ denotes the smallest integer not less than n and $\lfloor n\rfloor$ denotes the greatest integer not greater than n. For the various graph theoretic notations and terminology, we follow West [12] while the terms related to the concept of domination are used in the sense of Haynes et al. [4].

The present work is to investigate some new results on edge domination in graphs.

2 Main Results

Proposition 2.1. [6] An edge dominating set S is minimal if and only if for each $e \in S$, one of the following two conditions holds:
(a) $N(e) \cap S=\emptyset$.
(b) there exists an edge $f \in E(G)-S$, such that $N(f) \cap S=\{e\}$.

Definition 2.2. The triangular snake T_{n} is obtained from the path P_{n} by replacing every edge of a path by a triangle C_{3}.

Theorem 2.3. For the triangular snake $T_{n}, \gamma^{\prime}\left(T_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proof: Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. Let the triangular snake T_{n} be obtained by replacing every edge of P_{n} by a triangle C_{3}. Then, $\left|V\left(T_{n}\right)\right|=2 n-1$ and $\left|E\left(T_{n}\right)\right|=3(n-1)$.

Now, in order to dominate the cycles C_{3} obtained by replacing the pendant edges of P_{n} in T_{n}, an edge dominating set of T_{n} must have an edge from each C_{3}. Moreover, $\operatorname{deg}\left(e_{i}\right)=\triangle^{\prime}\left(T_{n}\right)$ for $1<i<n-1$. Hence, to attain the minimum cardinality of an edge set of T_{n}, we construct an edge set $F \subset E\left(T_{n}\right)$ as follows:

$$
F= \begin{cases}\left\{e_{1}, e_{3}, \ldots, e_{n-1}\right\} & \text { for even } n \\ \left\{e_{1}, e_{3}, \ldots, e_{n-2}, e_{n-1}\right\} & \text { for odd } n\end{cases}
$$

Then $|F|=\left\lceil\frac{n}{2}\right\rceil$.
Since each edge in $E\left(T_{n}\right)$ is either in F or is adjacent to an edge in F, it follows that the set F is an edge dominating set of T_{n}.

Moreover, for each edge $e \in F$, there exists an edge $f \in E\left(T_{n}\right)-F$ for which $N(f) \cap F=\{e\}$. Therefore, by Proposition 2.1, the set F is a minimal edge dominating set of T_{n}. Now, we claim that F is an edge dominating set with minimum cardinality. If possible, let F_{1} be an edge dominating set such that $\left|F_{1}\right|<|F|$. $\quad F_{1}$ cannot contain all the edges $e_{i} \in F_{1}$ such that $\operatorname{deg}\left(e_{i}\right)=6=\triangle^{\prime}\left(T_{n}\right)$. Furthermore, $\left(\left\lceil\frac{n}{2}\right\rceil-1\right)\left(\triangle^{\prime}\left(T_{n}\right)-1\right)+\left\lceil\frac{n}{2}\right\rceil-1<\left|E\left(T_{n}\right)\right|$ for even n while $\left(\left\lceil\frac{n}{2}\right\rceil-1\right)\left(\Delta^{\prime}\left(T_{n}\right)-1\right)+\left\lceil\frac{n}{2}\right\rceil-1=\left|E\left(T_{n}\right)\right|$ for odd n. But for odd n, it is not possible as there are at most $\left\lceil\frac{n}{2}\right\rceil-2$ edges having degree $\triangle^{\prime}\left(T_{n}\right)-1$ for attaining the minimum cardinality of F_{1}. Therefore, $\left|F_{1}\right|>\left\lceil\frac{n}{2}\right\rceil-1$ which is a contradiction. Hence, the set F is of minimum cardinality.

Thus, the set F is an MEDS of T_{n} with minimum cardinality implying that $\gamma^{\prime}\left(T_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Definition 2.4. The double triangular snake $D T_{n}$ consists of two triangular snakes that have a common path.

The following Theorem 2.5 can be proved by the arguments analogous to the proof of Theorem 2.3.

Theorem 2.5. For the double triangular snake $D T_{n}, \gamma^{\prime}\left(D T_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Definition 2.6. The alternate triangular snake $A T_{n}$ is obtained from a path P_{n} by replacing every alternate edge of a path P_{n} by a cycle C_{3}.

Theorem 2.7. For the alternate triangular snake $A T_{n}, \gamma^{\prime}\left(A T_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
Proof: Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. Let the alternate triangular snake $A T_{n}$ be obtained by replacing every alternate edges of P_{n} by a triangle C_{3}.
Note that $\left|E\left(A T_{n}\right)\right|= \begin{cases}2 n-1 & \text { for even } n \\ 2 n-2 & \text { for odd } n .\end{cases}$
For $n=2,3$, the set $F=\left\{e_{1}\right\}$ is obviously an MEDS with minimum cardinality. Hence, $\gamma^{\prime}\left(A T_{n}\right)=1=\left\lfloor\frac{n}{2}\right\rfloor$.

In order to dominate the pendant edges as well as the cycles C_{3} obtained by replacing the pendant edges of P_{n} in $A T_{n}$, an edge dominating set of $A T_{n}$ must have an edge from C_{3} for even n while for odd n, it should contain the edges e_{1} and e_{n-2} for attaining its minimum cardinality. Also, $\operatorname{deg}\left(e_{i}\right)=\triangle^{\prime}\left(A T_{n}\right)$ for $1<i<n-1$. Hence, in order to attain the minimum cardinality of an edge set of $A T_{n}$, we can construct an edge set F of $A T_{n}$ as follows:

$$
F= \begin{cases}\left\{e_{1}, e_{3}, \ldots, e_{n-2}\right\} & \text { for odd } n \\ \left\{e_{1}, e_{3}, \ldots, e_{n-1}\right\} & \text { for even } n\end{cases}
$$

Then $|F|=\left\lfloor\frac{n}{2}\right\rfloor$.

Since each edge in $E\left(A T_{n}\right)$ is either in F or is adjacent to an edge in F, it follows that the set F is an edge dominating set of $A T_{n}$. Moreover, for each edge $e \in F, N(e) \cap F=\emptyset$. Therefore, by Proposition 2.1, the set F is an MEDS of $A T_{n}$.

For $n \geq 4$, as $\triangle^{\prime}\left(A T_{n}\right)=4$, an edge of $A T_{n}$ can dominate five distinct edges including itself. For $4 \leq n \leq 7,\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right) \triangle^{\prime}\left(A T_{n}\right)+\left\lfloor\frac{n}{2}\right\rfloor-1<\left|E\left(A T_{n}\right)\right|$. But, $|F|=\left\lfloor\frac{n}{2}\right\rfloor$. This implies that $\gamma^{\prime}\left(A T_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ where $4 \leq n \leq 7$. For $n \geq 8$, we claim that F is an edge dominating set with minimum cardinality $\left\lfloor\frac{n}{2}\right\rfloor$. Suppose, if possible, an edge set $F_{1} \subseteq E\left(A T_{n}\right), F_{1} \neq F$ is an edge dominating set of $A T_{n}$ with $\left|F_{1}\right|=\left\lfloor\frac{n}{2}\right\rfloor-1<|F|$. In order to attain the minimum cardinality of F_{1}, we cannot take all the edges $e_{i} \in F_{1}$ where $\operatorname{deg}\left(e_{i}\right)=\triangle^{\prime}\left(A T_{n}\right)$. Moreover, $\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)\left(\triangle^{\prime}\left(A T_{n}\right)-1\right)+\left\lfloor\frac{n}{2}\right\rfloor-1<\left|E\left(A T_{n}\right)\right|$. Therefore, F_{1} is not an edge dominating set of $A T_{n}$, which is a contradiction. Hence, the set F is of minimum cardinality.

Thus, the set F is an MEDS of $A T_{n}$ with minimum cardinality which implies that $\gamma^{\prime}\left(A T_{n}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor$.

Remark 2.8. The double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes which have a common path. By the arguments analogous to the proof of Theorem 2.7, we can prove that $\gamma^{\prime}\left(D A\left(T_{n}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

In Figure 1, the double alternate triangular snake $D A\left(T_{7}\right)$ is shown in which the set of dotted edges is its edge dominating set with minimum cardinality.

Figure 1
Definition 2.9. The quadrilateral snake Q_{n} is obtained from a path P_{n} by replacing every edge of a path P_{n} by a cycle C_{4}.

Theorem 2.10. For the quadrilateral snake $Q_{n}, \gamma^{\prime}\left(Q_{n}\right)=n$.
Proof: Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. In order to obtain Q_{n}, replace every edge of P_{n} by a cycle C_{4}. Let $C_{4}^{(1)}, C_{4}^{(2)}, \ldots, C_{4}^{(n-1)}$ denote the cycles C_{4} obtained by replacing the edges $e_{1}, e_{2}, \ldots, e_{n-1}$ of P_{n} in Q_{n} and let $e_{i}, x_{i}, y_{i}, z_{i}$ be the edges of the cycle $C_{4}^{(i)}$ for $1 \leq i \leq n-1$. Then, $\left|V\left(Q_{n}\right)\right|=3 n-2$ and $\left|E\left(Q_{n}\right)\right|=4(n-1)$. Now, none of the edges $y_{1}, y_{2}, \ldots, y_{n-1}$ of Q_{n} are adjacent to each other and there is no edge which is adjacent to any two of the edges $y_{1}, y_{2}, \ldots, y_{n-1}$ of Q_{n}. Therefore, at least $n-1$ edges are required to dominate the edges $y_{1}, y_{2}, \ldots, y_{n-1}$. Hence, we construct an edge set $F \subseteq E\left(Q_{n}\right)$ as follows:
$F=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, z_{n-1}\right\}$.
Then $|F|=n$.

The set F is an edge dominating set of Q_{n} because each edge in $E\left(Q_{n}\right)$ is either in F or adjacent to an edge in F.

Moreover, for each edge $e \in F$, there exists an edge $f \in E\left(Q_{n}\right)-F$ for which $N(f) \cap F=\{e\}$. Therefore, by Proposition 2.1, the set F is a minimal edge dominating set of Q_{n}. Furthermore, $\triangle^{\prime}\left(Q_{n}\right)=6$ and from the adjacency nature of the edges in Q_{n}, it can be seen that only $n-1$ edges are not enough to dominate all the edges of Q_{n}. Therefore, for every edge dominating set $F_{1},\left|F_{1}\right|>n-1$. As $|F|=n$, it follows that F is an MEDS with minimum cardinality. Thus, $\gamma^{\prime}\left(Q_{n}\right)=n$.

Illustration 2.11. In Figure 2, the quadrilateral snake Q_{5} is shown in which the set of dotted edges is its edge dominating set with minimum cardinality.

Figure 2
Definition 2.12. The double quadrilateral snake $D Q_{n}$ consists of two quadrilateral snakes that have a common path.

Theorem 2.13. For the double quadrilateral snake $D Q_{n}, \gamma^{\prime}\left(D Q_{n}\right)=2(n-1)$.
Proof: Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of the common path P_{n} of $D Q_{n}$. In order to obtain $D Q_{n}$, every edge e_{i} of P_{n} is replaced by two distinct cycles namely C_{4} and C_{4}^{\prime} having the common edge e_{i}. Let $e_{i}, x_{i}, y_{i}, z_{i}$ be the edges of C_{4} and let $e_{i}, x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}$ be the edges of C_{4}^{\prime} obtained by replacing the edge e_{i} of P_{n} in $D Q_{n}$. Then, $\left|V\left(D Q_{n}\right)\right|=5 n-4$ and $\left|E\left(D Q_{n}\right)\right|=7(n-1)$.

Now, from the adjacency nature of the edges of $D Q_{n}$, it can be seen that at least $2(n-1)$ distinct edges are required to dominate the edges $y_{1}, y_{2}, \ldots, y_{n-1}$ and $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n-1}^{\prime}$ of $D Q_{n}$ because
(i) none of the edges $y_{1}, y_{2}, \ldots, y_{n-1}$ are adjacent to each other.
(ii) none of the edges $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n-1}^{\prime}$ are adjacent to each other.
(iii) there is no edge which is adjacent to any two of the edges $y_{1}, y_{2}, \ldots, y_{n-1}$.
$(i v)$ there is no edge which is adjacent to any two of the edges $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n-1}^{\prime}$.
(v) there is no edge which is adjacent to any two of the edges y_{i}, y_{i}^{\prime} where $1 \leq i \leq n-1$.
Since $2(n-1)$ edges can also dominate the remaining edges of $D Q_{n}$, it follows that every edge dominating set F of $D Q_{n}$ must have at least $2(n-1)$ edges of $D Q_{n}$. Thus, $|F| \geq 2(n-1)$ which implies that $\gamma^{\prime}\left(D Q_{n}\right)=2(n-1)$ as required.

Definition 2.14. The alternate quadrilateral snake $A\left(Q S_{n}\right)$ is obtained from a path P_{n} by replacing every alternate edge of a path P_{n} by a cycle C_{4}.

Theorem 2.15. For the alternate quadrilateral snake $A\left(Q S_{n}\right)$,

$$
\gamma^{\prime}\left(A\left(Q S_{n}\right)\right)= \begin{cases}\left\lceil\frac{3 n}{4}\right\rceil & \text { if } n \equiv 0(\bmod 2) \\ \left\lfloor\frac{3 n}{4}\right\rfloor & \text { otherwise. }\end{cases}
$$

Proof: Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. By replacing the alternate edges of P_{n} by a cycle C_{4}, we obtain $A\left(Q S_{n}\right)$. Let $e_{i}, x_{i}, y_{i}, z_{i}$ be the edges of the cycle C_{4} obtained by replacing the edge e_{i} of P_{n} by C_{4} in $A\left(Q S_{n}\right)$.
Then, $\left|E\left(A\left(Q S_{n}\right)\right)\right|= \begin{cases}\frac{5 n-2}{2} & \text { if } n \equiv 0(\bmod 2) \\ \frac{5 n-5}{2} & \text { if } n \equiv 1(\bmod 2) .\end{cases}$
For $n=2,3$, since the set $F_{1}=\left\{x_{1}, z_{1}\right\}$ is clearly an MEDS with minimum cardinality, it follows that $\gamma^{\prime}\left(A\left(Q S_{n}\right)\right)=2$.

Now, none of the edges y_{i} of $A\left(Q S_{n}\right)$ are adjacent to each other and there is no edge which is adjacent to any two of the edges y_{i}. Therefore, at least either an edge adjacent to y_{i} or the edge y_{i} itself must belong to an edge dominating set of $A\left(Q S_{n}\right)$. Also, for $n \geq 4$, $\operatorname{deg}\left(e_{i}\right)=\triangle^{\prime}\left(A\left(Q S_{n}\right)\right)$ for $1<i<n-1$. Hence, for attaining the minimum cardinality of an edge set of $A\left(Q S_{n}\right)(n \geq 4)$, we can construct an edge set $F \subseteq E\left(A\left(Q S_{n}\right)\right)$ as follows:

$$
F= \begin{cases}\left\{x_{4 i+1}, e_{4 j+2}, z_{4 k+3}\right\} & \text { for } n \equiv 0,1,3(\bmod 4) \\ \left\{x_{4 i+1}, e_{4 j+2}, z_{4 k+3}\right\} \cup\left\{e_{n-1}\right\} & \text { otherwise } .\end{cases}
$$

where $0 \leq i \leq\left\lfloor\frac{n-2}{4}\right\rfloor, 0 \leq j<\left\lceil\frac{n-2}{4}\right\rceil, 0 \leq k<\left\lceil\frac{n-3}{4}\right\rceil$.
Then $|F|= \begin{cases}\left\lceil\frac{3 n}{4}\right\rceil & \text { if } n \equiv 0(\bmod 2) \\ \left\lfloor\frac{3 n}{4}\right\rfloor & \text { otherwise. }\end{cases}$
Since each edge in $E\left(A\left(Q S_{n}\right)\right)$ is either in F or is adjacent to an edge in F, it follows that the set F is an edge dominating set of $A\left(Q S_{n}\right)$.

Moreover, for each edge $e \in F, N(e) \cap F=\emptyset$. Hence, by Proposition 2.1, the set F is an MEDS of $A\left(Q S_{n}\right)$. Now, none of the edges y_{i} of $A\left(Q S_{n}\right)$ are adjacent to each other and there is no edge which is adjacent to any two of the edges y_{i}. Therefore, at least $\left\lceil\frac{n}{2}\right\rceil$ edges are required to dominate the edges y_{i} of $A\left(Q S_{n}\right)$. Furthermore, $\triangle^{\prime}\left(A\left(Q S_{n}\right)\right)=4$ and from the adjacency nature of the edges in $A\left(Q S_{n}\right)$, it follows that the set F is of minimum cardinality. That is, the set F is an MEDS with minimum cardinality.

Thus,

$$
\gamma^{\prime}\left(A\left(Q S_{n}\right)\right)= \begin{cases}\left\lceil\frac{3 n}{4}\right\rceil & \text { if } n \equiv 0(\bmod 2) \\ \left\lfloor\frac{3 n}{4}\right\rfloor & \text { otherwise }\end{cases}
$$

Illustration 2.16. In Figure 3, the alternate quadrilateral snake $A\left(Q S_{6}\right)$ is shown in which the set of dotted edges is its edge dominating set with minimum cardinality.

Figure 3
Definition 2.17. The double alternate quadrilateral snake $D A\left(Q S_{n}\right)$ consists of two alternate quadrilateral snakes that have a common path.

The following Theorem 2.18 can be proved by the arguments analogous to the proof of Theorem 2.15.

Theorem 2.18. For the double alternate quadrilateral snake $D A\left(Q S_{n}\right)$,

$$
\gamma^{\prime}\left(D A\left(Q S_{n}\right)\right)= \begin{cases}n & \text { if } n \equiv 0(\bmod 2) \\ n-1 & \text { otherwise. }\end{cases}
$$

3 Concluding Remarks

To investigate the edge domination number of graphs is always interesting and challenging as well. We have investigated the edge domination number of various snakes.

Acknowledgement

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions on the first draft of this paper.

References

[1] S. Arumugam and S. Jerry, Fractional edge domination in graphs, Appl. Anal. Discrete Math., 3 (2009), 359-370. doi : 10.2298/AADM0902359A.
[2] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math., 2 (1998), 173-179.
[3] R. Dutton and W. Klostermeyer, Edge dominating sets and vertex covers, Discussiones Mathematicae, 33 (2013), 437-456. doi : 10.7151/dmgt.1681.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
[5] S. T. Hedetniemi and R. C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math., 86 (1990), 257-277.
[6] S. R. Jayaram, Line domination in graphs, Graphs Combin., 3 (1977), 489-509.
[7] V. R. Kulli and N. D. Soner, Complementary edge domination in graphs, Indian Journal of Pure and Applied Mathematics, 28 (1997), 917-920.
[8] S. Mitchell and S. T. Hedetniemi, Edge domination in trees, Congr. Numer., 19 (1977), 489-509.
[9] D. A. Mojdeh and R. Sadeghi, Independent edge dominating set of certain graphs, International Mathematical Forum, 2 (2007), 315-320.
[10] S. K. Vaidya and R. M. Pandit, Edge domination in splitting graphs, International Journal of Mathematics and Scientific Computing, 4 (2014), 39-42.
[11] S. K. Vaidya and R. M. Pandit, Edge domination in some path and cycle related graphs, ISRN Discrete Mathematics, vol. 2014, Article ID 975812, (2014), 5 pages.
[12] D. B. West, Introduction to Graph Theory, Prentice - Hall of India, New Delhi, 2003.
[13] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math., 38 (1980), 364-372.
[14] B. Zelinka, Edge domination in graphs of cubes, Czechoslovak Mathematical Journal, 52 (2002), 875-879.

