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Abstract

A set F ⊆ E(G) is an edge dominating set if each edge in E(G) is either in F or is
adjacent to an edge in F . An edge dominating set F is called a minimal edge dominating
set if no proper subset F ′ of F is an edge dominating set. The edge domination number
γ′(G) is the minimum cardinality among all minimal edge dominating sets. We investigate
the edge domination number of some graphs called snakes which are obtained from path Pn

by replacing its edges by cycles C3 and C4.

Keywords: Edge dominating set, minimal edge dominating set, edge domination number.
AMS Subject Classification(2010): 05C38, 05C69.

1 Introduction

The concept of domination in graphs has received considerable attention due to its diversified
applications ranging from design analysis of network to military surveillance and linear algebra
to social sciences. The comprehensive bibliography on the concept of domination and its variants
can be found in Hedetniemi and Laskar [5]. This paper is focused on edge domination in graphs.

Throughout the paper, by a graph G we mean a simple, finite, connected and undirected
graph with the vertex set V (G) and the edge set E(G). For a vertex v ∈ V (G), the open
neighborhood N(v) of v is defined as N(v) = {u ∈ V (G) : uv ∈ E(G)} while N [v] = N(v)

⋃
{v}

is called the closed neighborhood of v. For a set D ⊆ V (G), the open neighborhood N(D) is
defined to be

⋃
v∈D

N(v), and the closed neighborhood of D is N [D] = N(D)
⋃
D. A set

D ⊆ V (G) in a graph G is called a dominating set if N [D] = V (G). The minimum cardinality
of a dominating set of G is called the domination number of G which is denoted by γ(G).

An edge e of a graph G is said to be incident with the vertex v if v is an end vertex of e.
Two edges are adjacent if they have an end vertex in common.

A set F ⊆ E(G) is an edge dominating set if each edge in E(G) is either in F or is adjacent
to an edge in F . An edge dominating set F is called a minimal edge dominating set (MEDS)
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if no proper subset F ′ of F is an edge dominating set. The edge domination number γ′(G)
is the minimum cardinality among all minimal edge dominating sets. The concept of edge
domination was introduced by Mitchell and Hedetniemi [8] and further explored by Arumugam
and Velammal [2].

Moreover, Yannakakis and Gavril [13], Dutton and Klostermeyer [3], Kulli and Soner [7],
Jayaram [6], Mojdeh and Sadeghi [9], Arumugam and Jerry [1], Vaidya and Pandit [10, 11] and
Zelinka [14] studied the concept of edge domination in various contexts.

We provide a brief summary of definitions which are useful for the present investigation.

Definition 1.1. For each e ∈ E(G), N(e) denotes the open neighborhood of e in G. That is,
the set of all edges which are adjacent to e in G.

Definition 1.2. The degree of an edge e = uv of G is defined by deg(e) = deg(u) + deg(v)− 2,
that is, the number of edges adjacent to it. The maximum degree of an edge in G is denoted
by 4′(G).

For any real number n, dne denotes the smallest integer not less than n and bnc denotes the
greatest integer not greater than n. For the various graph theoretic notations and terminology,
we follow West [12] while the terms related to the concept of domination are used in the sense
of Haynes et al. [4].

The present work is to investigate some new results on edge domination in graphs.

2 Main Results

Proposition 2.1. [6] An edge dominating set S is minimal if and only if for each e ∈ S, one
of the following two conditions holds:

(a) N(e) ∩ S = ∅.
(b) there exists an edge f ∈ E(G)− S, such that N(f) ∩ S = {e}.

Definition 2.2. The triangular snake Tn is obtained from the path Pn by replacing every edge
of a path by a triangle C3.

Theorem 2.3. For the triangular snake Tn, γ′(Tn) =
⌈

n
2
⌉
.

Proof: Let e1, e2, . . . , en−1 be the edges of path Pn. Let the triangular snake Tn be obtained
by replacing every edge of Pn by a triangle C3. Then, |V (Tn)| = 2n−1 and |E(Tn)| = 3(n−1).

Now, in order to dominate the cycles C3 obtained by replacing the pendant edges of Pn in
Tn, an edge dominating set of Tn must have an edge from each C3. Moreover, deg(ei) = 4′(Tn)
for 1 < i < n− 1. Hence, to attain the minimum cardinality of an edge set of Tn, we construct
an edge set F ⊂ E(Tn) as follows:

F =


{e1, e3, . . . , en−1} for even n

{e1, e3, . . . , en−2, en−1} for odd n.
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Then |F | =
⌈

n
2
⌉
.

Since each edge in E(Tn) is either in F or is adjacent to an edge in F , it follows that the set
F is an edge dominating set of Tn.

Moreover, for each edge e ∈ F , there exists an edge f ∈ E(Tn)−F for which N(f)∩F = {e}.
Therefore, by Proposition 2.1, the set F is a minimal edge dominating set of Tn. Now, we claim
that F is an edge dominating set with minimum cardinality. If possible, let F1 be an edge
dominating set such that |F1| < |F |. F1 cannot contain all the edges ei ∈ F1 such that
deg(ei) = 6 = 4′(Tn). Furthermore, (

⌈
n
2
⌉
−1)(4′(Tn)−1) +

⌈
n
2
⌉
−1 < |E(Tn)| for even n while

(
⌈

n
2
⌉
− 1)(4′(Tn)− 1) +

⌈
n
2
⌉
− 1 = |E(Tn)| for odd n. But for odd n, it is not possible as there

are at most
⌈

n
2
⌉
−2 edges having degree 4′(Tn)−1 for attaining the minimum cardinality of F1.

Therefore, |F1| >
⌈

n
2
⌉
− 1 which is a contradiction. Hence, the set F is of minimum cardinality.

Thus, the set F is an MEDS of Tn with minimum cardinality implying that γ′(Tn) =
⌈

n
2
⌉
.

Definition 2.4. The double triangular snake DTn consists of two triangular snakes that have
a common path.

The following Theorem 2.5 can be proved by the arguments analogous to the proof of The-
orem 2.3.

Theorem 2.5. For the double triangular snake DTn, γ′(DTn) =
⌈

n
2
⌉
.

Definition 2.6. The alternate triangular snake ATn is obtained from a path Pn by replacing
every alternate edge of a path Pn by a cycle C3.

Theorem 2.7. For the alternate triangular snake ATn, γ′(ATn) =
⌊

n
2
⌋
.

Proof: Let e1, e2, . . . , en−1 be the edges of path Pn. Let the alternate triangular snake ATn be
obtained by replacing every alternate edges of Pn by a triangle C3.

Note that |E(ATn)| =
{

2n− 1 for even n

2n− 2 for odd n.

For n = 2, 3, the set F = {e1} is obviously an MEDS with minimum cardinality. Hence,
γ′(ATn) = 1 =

⌊
n
2
⌋
.

In order to dominate the pendant edges as well as the cycles C3 obtained by replacing the
pendant edges of Pn in ATn, an edge dominating set of ATn must have an edge from C3 for
even n while for odd n, it should contain the edges e1 and en−2 for attaining its minimum
cardinality. Also, deg(ei) = 4′(ATn) for 1 < i < n− 1. Hence, in order to attain the minimum
cardinality of an edge set of ATn, we can construct an edge set F of ATn as follows:

F =


{e1, e3, . . . , en−2} for odd n

{e1, e3, . . . , en−1} for even n

Then |F | =
⌊

n
2
⌋
.
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Since each edge in E(ATn) is either in F or is adjacent to an edge in F , it follows that the set
F is an edge dominating set of ATn. Moreover, for each edge e ∈ F , N(e) ∩ F = ∅. Therefore,
by Proposition 2.1, the set F is an MEDS of ATn.

For n ≥ 4, as 4′(ATn) = 4, an edge of ATn can dominate five distinct edges including itself.
For 4 ≤ n ≤ 7, (

⌊
n
2
⌋
− 1) 4′ (ATn) +

⌊
n
2
⌋
− 1 < |E(ATn)|. But, |F | =

⌊
n
2
⌋
. This implies

that γ′(ATn) =
⌊

n
2
⌋

where 4 ≤ n ≤ 7. For n ≥ 8, we claim that F is an edge dominating
set with minimum cardinality

⌊
n
2
⌋
. Suppose, if possible, an edge set F1 ⊆ E(ATn), F1 6= F is

an edge dominating set of ATn with |F1| =
⌊

n
2
⌋
− 1 < |F |. In order to attain the minimum

cardinality of F1, we cannot take all the edges ei ∈ F1 where deg(ei) = 4′(ATn). Moreover,
(
⌊

n
2
⌋
− 1)(4′(ATn)− 1) +

⌊
n
2
⌋
− 1 < |E(ATn)|. Therefore, F1 is not an edge dominating set of

ATn, which is a contradiction. Hence, the set F is of minimum cardinality.
Thus, the set F is an MEDS of ATn with minimum cardinality which implies that γ′(ATn) =⌊

n
2
⌋
.

Remark 2.8. The double alternate triangular snake DA(Tn) consists of two alternate trian-
gular snakes which have a common path. By the arguments analogous to the proof of Theorem
2.7, we can prove that γ′(DA(Tn)) =

⌊
n
2
⌋
.

In Figure 1, the double alternate triangular snake DA(T7) is shown in which the set of dotted
edges is its edge dominating set with minimum cardinality.

e1 e2 e3 e4 e5 e6

Figure 1

Definition 2.9. The quadrilateral snake Qn is obtained from a path Pn by replacing every
edge of a path Pn by a cycle C4.

Theorem 2.10. For the quadrilateral snake Qn, γ′(Qn) = n.

Proof: Let e1, e2, . . . , en−1 be the edges of path Pn. In order to obtain Qn, replace every edge
of Pn by a cycle C4. Let C(1)

4 , C
(2)
4 , . . . , C

(n−1)
4 denote the cycles C4 obtained by replacing

the edges e1, e2, . . . , en−1 of Pn in Qn and let ei, xi, yi, zi be the edges of the cycle C
(i)
4 for

1 ≤ i ≤ n − 1. Then, |V (Qn)| = 3n − 2 and |E(Qn)| = 4(n − 1). Now, none of the edges
y1, y2, . . . , yn−1 of Qn are adjacent to each other and there is no edge which is adjacent to any
two of the edges y1, y2, . . . , yn−1 of Qn. Therefore, at least n−1 edges are required to dominate
the edges y1, y2, . . . , yn−1. Hence, we construct an edge set F ⊆ E(Qn) as follows:
F = {x1, x2, x3, . . . , xn−1, zn−1}.
Then |F | = n.
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The set F is an edge dominating set of Qn because each edge in E(Qn) is either in F or
adjacent to an edge in F .

Moreover, for each edge e ∈ F , there exists an edge f ∈ E(Qn)−F for which N(f)∩F = {e}.
Therefore, by Proposition 2.1, the set F is a minimal edge dominating set of Qn. Furthermore,
4′(Qn) = 6 and from the adjacency nature of the edges in Qn, it can be seen that only n − 1
edges are not enough to dominate all the edges of Qn. Therefore, for every edge dominating set
F1, |F1| > n− 1. As |F | = n, it follows that F is an MEDS with minimum cardinality. Thus,
γ′(Qn) = n.

Illustration 2.11. In Figure 2, the quadrilateral snake Q5 is shown in which the set of dotted
edges is its edge dominating set with minimum cardinality.

e1
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y
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y
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z3
z4
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Figure 2

Definition 2.12. The double quadrilateral snake DQn consists of two quadrilateral snakes
that have a common path.

Theorem 2.13. For the double quadrilateral snake DQn, γ′(DQn) = 2(n− 1).

Proof: Let e1, e2, . . . , en−1 be the edges of the common path Pn of DQn. In order to obtain
DQn, every edge ei of Pn is replaced by two distinct cycles namely C4 and C ′4 having the common
edge ei. Let ei, xi, yi, zi be the edges of C4 and let ei, x

′
i, y
′
i, z
′
i be the edges of C ′4 obtained by

replacing the edge ei of Pn in DQn. Then, |V (DQn)| = 5n− 4 and |E(DQn)| = 7(n− 1).
Now, from the adjacency nature of the edges of DQn, it can be seen that at least 2(n − 1)

distinct edges are required to dominate the edges y1, y2, . . . , yn−1 and y′1, y
′
2, . . . , y

′
n−1 of DQn

because
(i) none of the edges y1, y2, . . . , yn−1 are adjacent to each other.
(ii) none of the edges y′1, y′2, . . . , y′n−1 are adjacent to each other.
(iii) there is no edge which is adjacent to any two of the edges y1, y2, . . . , yn−1.
(iv) there is no edge which is adjacent to any two of the edges y′1, y′2, . . . , y′n−1.
(v) there is no edge which is adjacent to any two of the edges yi, y

′
i where 1 ≤ i ≤ n− 1.

Since 2(n − 1) edges can also dominate the remaining edges of DQn, it follows that every
edge dominating set F of DQn must have at least 2(n− 1) edges of DQn. Thus, |F | ≥ 2(n− 1)
which implies that γ′(DQn) = 2(n− 1) as required.

Definition 2.14. The alternate quadrilateral snake A(QSn) is obtained from a path Pn by
replacing every alternate edge of a path Pn by a cycle C4.
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Theorem 2.15. For the alternate quadrilateral snake A(QSn),

γ′(A(QSn)) =


⌈

3n
4

⌉
if n ≡ 0(mod 2)

⌊
3n
4

⌋
otherwise.

Proof: Let e1, e2, . . . , en−1 be the edges of path Pn. By replacing the alternate edges of Pn

by a cycle C4, we obtain A(QSn). Let ei, xi, yi, zi be the edges of the cycle C4 obtained by
replacing the edge ei of Pn by C4 in A(QSn).

Then, |E(A(QSn))| =


5n−2

2 if n ≡ 0(mod 2)

5n−5
2 if n ≡ 1(mod 2).

For n = 2, 3, since the set F1 = {x1, z1} is clearly an MEDS with minimum cardinality, it
follows that γ′(A(QSn)) = 2.

Now, none of the edges yi of A(QSn) are adjacent to each other and there is no edge
which is adjacent to any two of the edges yi. Therefore, at least either an edge adjacent to
yi or the edge yi itself must belong to an edge dominating set of A(QSn). Also, for n ≥ 4,
deg(ei) = 4′(A(QSn)) for 1 < i < n − 1. Hence, for attaining the minimum cardinality of an
edge set of A(QSn) (n ≥ 4), we can construct an edge set F ⊆ E(A(QSn)) as follows:

F =


{x4i+1, e4j+2, z4k+3} for n ≡ 0, 1, 3(mod 4)

{x4i+1, e4j+2, z4k+3} ∪ {en−1} otherwise.

where 0 ≤ i ≤
⌊

n−2
4

⌋
, 0 ≤ j <

⌈
n−2

4

⌉
, 0 ≤ k <

⌈
n−3

4

⌉
.

Then |F | =


⌈

3n
4

⌉
if n ≡ 0(mod 2)

⌊
3n
4

⌋
otherwise.

Since each edge in E(A(QSn)) is either in F or is adjacent to an edge in F , it follows that
the set F is an edge dominating set of A(QSn).

Moreover, for each edge e ∈ F , N(e) ∩ F = ∅. Hence, by Proposition 2.1, the set F is an
MEDS of A(QSn). Now, none of the edges yi of A(QSn) are adjacent to each other and there is
no edge which is adjacent to any two of the edges yi. Therefore, at least

⌈
n
2
⌉

edges are required
to dominate the edges yi of A(QSn). Furthermore, 4′(A(QSn)) = 4 and from the adjacency
nature of the edges in A(QSn), it follows that the set F is of minimum cardinality. That is, the
set F is an MEDS with minimum cardinality.
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Thus,

γ′(A(QSn)) =


⌈

3n
4

⌉
if n ≡ 0(mod 2)

⌊
3n
4

⌋
otherwise.

Illustration 2.16. In Figure 3, the alternate quadrilateral snake A(QS6) is shown in which
the set of dotted edges is its edge dominating set with minimum cardinality.
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Figure 3

Definition 2.17. The double alternate quadrilateral snake DA(QSn) consists of two alternate
quadrilateral snakes that have a common path.

The following Theorem 2.18 can be proved by the arguments analogous to the proof of
Theorem 2.15.

Theorem 2.18. For the double alternate quadrilateral snake DA(QSn),

γ′(DA(QSn)) =


n if n ≡ 0(mod 2)

n− 1 otherwise.

3 Concluding Remarks

To investigate the edge domination number of graphs is always interesting and challenging
as well. We have investigated the edge domination number of various snakes.
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