# Odd mean labeling of some new families of graphs 

Lekha Bijukumar, Avani Matad<br>Shanker Sinh Vaghela Bapu Institute of Technology<br>Gandhinagar, India.<br>dbijuin@yahoo.co.in, avanimattad@gmail.com


#### Abstract

A graph $G=(V(G), E(G))$ with $p$ vertices and $q$ edges is said to be an odd mean graph if there is an injection $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ and the induced function $f^{*}: E(G) \rightarrow$ $\{1,3,5, \ldots, 2 q-1\}$ defined as $f *(e=u v)=\left\{\begin{array}{l}\frac{f(u)+f(v)}{2} ; \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} ; \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ is a bijection. In this paper we investigate some new families of odd mean graphs.


Keywords: Odd mean labeling, step ladder graph, path union graph of cycle $C_{n}$.
AMS Subject Classification(2010): 05C78.

## 1 Introduction

By a graph $G=(V(G), E(G))$ we mean a simple, connected and undirected graph. The terms not defined here are used in the sense of Harary[2]. For a detailed survey on graph labeling readers can refer to Gallian[1].

The concept of mean labeling was introduced by Somasundaram and Ponraj[5]. The notion of odd mean labeling was first discussed by Manikam and Marudai[3].

Definition 1.1. A graph $G=(V(G), E(G))$ with $p$ vertices and $q$ edges is said to be an odd mean graph if there is an injection $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ and the induced function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined as $f *(e=u v)=\left\{\begin{array}{l}\frac{f(u)+f(v)}{2} ; \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} ; \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ is a bijection.

Vasuki and Nagarajan[6] discussed the odd meanness of graphs $P_{a, b}, P_{a}^{b}$ and $P_{<2 a>}^{b}$.
Definition 1.2. Let $P_{n}$ be a path on $n$ vertices denoted by $(1,1),(1,2), \ldots,(1, n)$ and with $n-1$ edges denoted by $e_{1}, e_{2}, \ldots e_{n-1}$ where $e_{i}$ is the edge joining the vertices $(1, i)$ and $(1, i+1)$. On each edge $e_{i}, i=1,2, \ldots, n-1$ we erect a ladder with $n-(i-1)$ steps including the edge $e_{i}$. The graph obtained is called a step ladder graph and is denoted by $S\left(T_{n}\right)$, where $n$ denotes the number of vertices in the base.

Definition 1.3. Let $G_{1}, G_{2}, \ldots, G_{n}$ be $n$ copies of the graph $G=(V(G), E(G))$. Then the graph obtained by adding an edge between $G_{i}$ and $G_{i+1}$, for $i=1,2, \ldots, n-1$ is called a path union of graph $G$.

Definition 1.4. The shadow graph $D_{2}(G)$ of a connected graph $G$ is obtained by taking two copies of $G$ say $G^{\prime}$ and $G^{\prime \prime}$ and joining each vertex $u^{\prime}$ in $G^{\prime}$ to the neighbours of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

## 2 Main Results

Theorem 2.1. The graph $C_{n} \odot m K_{1}$ admits an odd mean labeling except when $n \equiv 3(\bmod 4)$ and $m=1$.

Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $C_{n}$. Let $u_{i j}$ be the newly added vertices in $C_{n}$ to form $C_{n} \odot m K_{1}$, where $1 \leq i \leq n$ and $1 \leq j \leq m$. To define $f: V\left(C_{n} \odot m K_{1}\right) \rightarrow\{0,1,2, \ldots, 2 q-1\}$, four cases are to be considered.

Case 1: $n \equiv 0(\bmod 4)$.
For $1 \leq i \leq \frac{n}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i+2 m(i-1) ; i \text { is odd } \\
4 m+2(m+1)(i-2) ; i \text { is even }
\end{array}\right.
$$

For $\frac{n}{2}+1 \leq i \leq n-1$,

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i+2 m(i-1) ; i \text { is odd } \\
4(m+1)+2(m+1)(i-2) ; i \text { is even. }
\end{array}\right. \\
& f\left(v_{n}\right)=4 m+2(m+1)(n-2)+3
\end{aligned}
$$

For $1 \leq i \leq \frac{n}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even }
\end{array}\right.
$$

For $\frac{n}{2}+1 \leq i \leq n-1$ and $1 \leq j \leq m$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+(4 j) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even. }
\end{array}\right. \\
& f\left(u_{n j}\right)=2(m+1)(n-2)+(4 j+2) ; \text { for } 1 \leq j \leq m .
\end{aligned}
$$

Case 2: $n \equiv 1(\bmod 4)$.
Subcase 1: $m$ is even.

$$
f\left(v_{1}\right)=1
$$

For $2 \leq i \leq \frac{n+1}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even } \\
2 i+2 m(i-1) ; i \text { is odd }
\end{array}\right.
$$

For $\frac{n+3}{2} \leq i \leq n-1$,

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
4(m+1)+2(m+1)(i-2) ; i \text { is even, } \\
2(i)+2 m(i-1) ; i \text { is odd. }
\end{array}\right. \\
& f\left(v_{n}\right)=4 m+2(m+1)(n-2)+3
\end{aligned}
$$

For $1 \leq i \leq \frac{n-1}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even. }
\end{array}\right.
$$

For $i=\frac{n+1}{2}$,

$$
f\left(u_{i j}\right)= \begin{cases}2(m+1)(i-1)+4(j-1) ; & \text { for } 1 \leq j \leq \frac{m}{2} \\ 2(m+1)(i-1)+(4 j) ; & \text { for } \frac{m}{2}+1 \leq j \leq m\end{cases}
$$

For $\frac{n+3}{2} \leq i \leq n-1$ and for $1 \leq j \leq m$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-2)+(4 j+2) ; i \text { is even, } \\
2(m+1)(i-1)+(4 j) ; i \text { is odd. }
\end{array}\right. \\
& f\left(u_{n j}\right)= \begin{cases}2(m+1)(n-2)+(4 j-1) ; \text { for } 1 \leq j \leq \frac{m}{2} \\
2(m+1)(n-2)+(4 j+2) ; & \text { for } \frac{m}{2}+1 \leq j \leq m\end{cases}
\end{aligned}
$$

Subcase 2: $m$ is odd.
For $1 \leq i \leq \frac{n+1}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i+2 m(i-1) ; i \text { is odd } \\
4 m+2(m+1)(i-2) ; i \text { is even }
\end{array}\right.
$$

For $\frac{n+3}{2} \leq i \leq n-2$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4(m+1)+2(m+1)(i-2) ; i \text { is even } \\
2 i+2 m(i-1) ; i \text { is odd }
\end{array}\right.
$$

For $n-1 \leq i \leq n$,

$$
f\left(v_{i}\right)=4 m+2(m+1)(i-2)+3
$$

For $1 \leq i \leq \frac{n-1}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even. }
\end{array}\right.
$$

For $i=\frac{n+1}{2}$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; \text { for } 1 \leq j \leq \frac{m+1}{2} \\
2(m+1)(i-1)+(4 j) ; \text { for } \frac{m+3}{2} \leq j \leq m
\end{array}\right.
$$

For $\frac{n+3}{2} \leq i \leq n-1$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-2)+(4 j+2) ; i \text { is even } \\
2(m+1)(i-1)+(4 j) ; i \text { is odd }
\end{array}\right.
$$

$$
f\left(u_{n j}\right)= \begin{cases}2(m+1)(n-2)+(4 j-1) ; & \text { for } 1 \leq j \leq \frac{m-1}{2} \\ 2(m+1)(n-2)+(4 j+2) ; & \text { for } \frac{m+1}{2} \leq j \leq m\end{cases}
$$

Case 3: $n \equiv 2(\bmod 4)$.

For $1 \leq i \leq \frac{n}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
2 i+2 m(i-1) ; i \text { is odd } \\
4 m+2(m+1)(i-2) ; i \text { is even }
\end{array}\right.
$$

For $\frac{n}{2}+1 \leq i \leq n-1$,

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even } \\
2(i+2)+2 m(i-1) ; i \text { is odd }
\end{array}\right. \\
& f\left(v_{n}\right)=4 m+2(m+1)(n-2)+3
\end{aligned}
$$

For $1 \leq i \leq \frac{n}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even }
\end{array}\right.
$$

For $\frac{n}{2}+1 \leq i \leq n-1$ and $1 \leq j \leq m$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-2)+(4 j+6) ; i \text { is even } \\
2(m+1)(i-1)+4(j-1) ; i \text { is odd }
\end{array}\right. \\
& f\left(u_{n j}\right)= \begin{cases}2(m+1)(n-2)+(4 j-1) ; & \text { for } j=1 \\
2(m+1)(n-2)+(4 j+2) ; & \text { for } 2 \leq j \leq m\end{cases}
\end{aligned}
$$

Case 4: $n \equiv 3(\bmod 4), n \neq 3$ and $m>1$.

Subcase 1: $m$ is even

$$
f\left(v_{1}\right)=1
$$

For $2 \leq i \leq \frac{n-1}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even } \\
2 i+2 m(i-1) ; i \text { is odd }
\end{array}\right.
$$

For $\frac{n+1}{2} \leq i \leq n-1$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even } \\
2(i+2)+2 m(i-1) ; i \text { is odd }
\end{array}\right. \\
& f\left(v_{n}\right)=4 m+2(m+1)(n-2)+3
\end{aligned}
$$

For $1 \leq i \leq \frac{n-1}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even. }
\end{array}\right.
$$

For $i=\frac{n+1}{2}$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-2)+(4 j+2) ; \text { for } 1 \leq j \leq \frac{m}{2} \\
2(m+1)(i-2)+(4 j+6) ; \text { for } \frac{m}{2}+1 \leq j \leq m
\end{array}\right.
$$

For $\frac{n+3}{2} \leq i \leq n-1$ and $1 \leq j \leq m$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd, } \\
2(m+1)(i-2)+(4 j+6) ; i \text { is even. }
\end{array}\right. \\
& f\left(u_{n j}\right)=\left\{\begin{array}{l}
2(m+1)(n-2)+(4 j-1) ; \text { for } 1 \leq j \leq \frac{m}{2}-1, \\
2(m+1)(n-2)+(4 j+2) ; \text { for } \frac{m}{2} \leq j \leq m .
\end{array}\right.
\end{aligned}
$$

Subcase 2: $m$ is odd.
For $1 \leq i \leq \frac{n-1}{2}$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even }, \\
2 i+2 m(i-1) ; i \text { is odd. }
\end{array}\right.
$$

For $\frac{n+1}{2} \leq i \leq n-2$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2) ; i \text { is even }, \\
2(i+2)+2 m(i-1) ; i \text { is odd. }
\end{array}\right.
$$

For $n-1 \leq i \leq n$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
4 m+2(m+1)(i-2)-1 ; i \text { is even } \\
4 m+2(m+1)(i-2)+3 ; i \text { is odd }
\end{array}\right.
$$

For $1 \leq i \leq \frac{n-1}{2}$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd, } \\
2(m+1)(i-2)+(4 j+2) ; i \text { is even. }
\end{array}\right.
$$

For $i=\frac{n+1}{2}$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-2)+(4 j+2) ; \text { for } 1 \leq j \leq \frac{m+1}{2} \\
2(m+1)(i-2)+(4 j+6) ; \text { for } \frac{m+3}{2} \leq j \leq m
\end{array}\right.
$$

For $\frac{n+3}{2} \leq i \leq n-1$ and $1 \leq j \leq m$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(m+1)(i-1)+4(j-1) ; i \text { is odd, } \\
2(m+1)(i-2)+(4 j+6) ; i \text { is even. }
\end{array}\right.
$$

For $m=3$,

$$
f\left(u_{n j}\right)=\left\{\begin{array}{l}
2(m+1)(n-2)+(4 j+3) ; \text { for } 1 \leq j \leq 2 \\
2(m+1)(n-2)+14 ; \text { for } j=3
\end{array}\right.
$$

For $m \geq 5$,

$$
f\left(u_{n j}\right)= \begin{cases}2(m+1)(n-2)+(4 j-1) ; & \text { for } 1 \leq j \leq \frac{m-3}{2} \\ 2(m+1)(n-2)+(4 j+3) ; & \text { for } \frac{m-1}{2} \leq j \leq m-1 \\ 2(m+1)(n-2)+(4 j+2) ; & \text { for } j=m\end{cases}
$$

Case 5: $n=3 ; m>1$.
Subcase 1: $m$ is even.

$$
\begin{aligned}
& f\left(v_{1}\right)=1, f\left(v_{2}\right)=4 m, f\left(v_{3}\right)=4 m+2(m+1)+3 \\
& f\left(u_{1 j}\right)=4(j-1) ; \quad \text { for } 1 \leq j \leq m \\
& f\left(u_{2 j}\right)= \begin{cases}4 j+2 ; & \text { for } 1 \leq j \leq \frac{m}{2} \\
4 j+6 ; & \text { for } \frac{m}{2}+1 \leq j \leq m\end{cases}
\end{aligned}
$$

For $m=2$,

$$
f\left(u_{3 j}\right)=\left\{\begin{array}{l}
13 ; \text { for } j=1 \\
16 ; \text { for } j=2
\end{array}\right.
$$

For $m \geq 4$,

$$
f\left(u_{3 j}\right)=\left\{\begin{array}{l}
2(m+1)+(4 j-1) ; \text { for } 1 \leq j \leq \frac{m}{2}-1 \\
2(m+1)+(4 j+2) ; \text { for } \frac{m}{2} \leq j \leq m
\end{array}\right.
$$

Subcase 2: $m$ is odd.

$$
\begin{aligned}
& f\left(v_{1}\right)=2, f\left(v_{2}\right)=4 m-1, f\left(v_{3}\right)=4 m+2(m+1)+3 \\
& f\left(u_{1 j}\right)=4(j-1) ; \quad \text { for } 1 \leq j \leq m \\
& f\left(u_{2 j}\right)= \begin{cases}4 j+2 ; & \text { for } 1 \leq j \leq \frac{m+1}{2} \\
4 j+6 ; & \text { for } \frac{m+3}{2}+1 \leq j \leq m\end{cases}
\end{aligned}
$$

For $m=3$,

$$
f\left(u_{3 j}\right)=\left\{\begin{array}{l}
2(m+1)+(4 j+3) ; \text { for } 1 \leq j \leq 2 \\
22 ; \text { for } j=3
\end{array}\right.
$$

For $m \geq 5$,

$$
f\left(u_{3 j}\right)= \begin{cases}2(m+1)+(4 j-1) ; & \text { for } 1 \leq j \leq \frac{m-3}{2} \\ 2(m+1)+(4 j+3) ; & \text { for } \frac{m-1}{2} \leq j \leq m-1, \\ 2(m+1)+(4 j+2) ; & \text { for } j=m\end{cases}
$$

It can be verified that $f$ is an odd mean labeling in all the cases. Hence $C_{n} \odot m K_{1}$ is an odd mean graph except for $n \equiv 3(\bmod 4)$ and $m=1$.

Illustration 2.2. An odd mean labeling of $C_{10} \odot 3 K_{1}$ is shown in Figure 1.


Figure 1: An odd mean labeling of $C_{10} \odot 3 K_{1}$.

Theorem 2.3. The shadow graph $D_{2}\left(B_{n, n}\right)$ is an odd mean graph.
Proof: Consider two copies of the bistar $B_{n, n}$.
Let $\left\{v_{1}, v_{2}, v_{i j}, 1 \leq i \leq 2,1 \leq j \leq n\right\}$ and $\left\{u_{1}, u_{2}, u_{i j}, 1 \leq i \leq 2,1 \leq j \leq n\right\}$ be the vertex sets of the two copies of $B_{n, n}$.

Define $f: V\left(D_{2}\left(B_{n, n}\right)\right) \rightarrow\{0,1,2,3, \ldots, 2 q-1\}$ as follows:

$$
\begin{aligned}
& f\left(v_{1}\right)=0, f\left(v_{2}\right)=16 n+2, \\
& f\left(u_{1}\right)=8 n, f\left(u_{2}\right)=16 n+6, \\
& f\left(v_{1 j}\right)=4(j-1)+2 ; \text { for } 1 \leq j \leq n, \\
& f\left(v_{2 j}\right)=8 j ; \text { for } 1 \leq j \leq n-1, \\
& f\left(v_{2 j}\right)=16 n ; \text { for } j=n, \\
& f\left(u_{1 j}\right)=4 j+4 n-2 ; \text { for } 1 \leq j \leq n, \\
& f\left(u_{2 j}\right)=8 n+8 j ; \text { for } 1 \leq j \leq n-1, \\
& f\left(u_{2 j}\right)=16 n+7 ; \text { for } j=n .
\end{aligned}
$$

In view of the above defined labeling, $D_{2}\left(B_{n, n}\right)$ is an odd mean graph.
Illustration 2.4. Figure 2 shows an odd mean labeling of of $D_{2}\left(B_{3,3}\right)$.


Figure 2: An odd mean labeling of $D_{2}\left(B_{3,3}\right)$.
Theorem 2.5. The step ladder graph $S\left(T_{n}\right)$ admits odd mean labeling.
Proof: Let $P_{n}$ be a path on $n$ vertices denoted by $(1,1),(1,2), \ldots,(1, n)$ and with $n-1$ edges denoted by $e_{1}, e_{2}, \ldots, e_{n-1}$ where $e_{i}$ is the edge joining the vertices $(1, i)$ and $(1, i+1)$. The vertices of the step ladder graph $S\left(T_{n}\right)$ are denoted by $(1,1),(1,2), \ldots,(1, n),(2,1),(2,2), \ldots,(2, n)$, $(3,1),(3,2), \ldots,(3, n-1),(4,1),(4,2), \ldots,(4, n-2), \ldots,(n, 1),(n, 2)$. In the ordered pair $(i, j)$, $i$ denotes the row (counted from bottom to top) and $j$ denotes the column (from left to right) in which the vertex occurs. Define $f: V\left(S\left(T_{n}\right)\right) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows:

$$
\begin{aligned}
& f(1,1)=2\left(n^{2}-1\right), \\
& f(i, j)=2\left(n^{2}-2+i\right)-2 \sum_{k=1}^{j-1}(n-k-1)-2 \sum_{k=2}^{j}[(n+k)-(j-1)], \\
& \text { for } 1 \leq i \leq n-1,1 \leq j \leq n,
\end{aligned}
$$

$$
f(i, j)=\left(2 n^{2}+2 i-5\right) ; \text { for } j=1, i=n .
$$

Hence the step ladder graph $S\left(T_{n}\right)$ admits odd mean labeling for every $n$.
Illustration 2.6. An odd mean labeling of of $S\left(T_{6}\right)$ is shown in Figure 3.


Figure 3: An odd mean labeling of $S\left(T_{6}\right)$.

Theorem 2.7. The graph obtained by the path union of finite number of copies of cycle $C_{n}$ admits odd mean labeling except for $n=3,6$ and 7 .

Proof: Let $G$ be the path union graph of k copies of cycle $C_{n}$. Let the successive vertices of the cycle $C_{i}$ be $u_{i 1}, u_{i 2}, \ldots, u_{i n}$ where $1 \leq i \leq k$. Let $e_{i}=u_{i 1} u_{(i+1) 1}$ be the edge joining $C_{i}$ and $C_{i+1}$ for $i=1,2, \ldots, k-1$. To define an odd mean labeling $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$, the following cases are considered.
Case 1: $n \equiv 0(\bmod 4)$.
Subcase 1: $i$ is odd.
For $1 \leq j \leq \frac{n}{2}$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(n+1)(i-1)+(4 j-4) ; j \text { is odd, } \\
2(n+1)(i-1)+(4 j-6) ; j \text { is even. }
\end{array}\right.
$$

For $\frac{n}{2}+1 \leq j \leq n$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(n+1)(i-1)+(4 n-4 j+3) ; j \text { is odd } \\
2(n+1)(i-1)+(4 n-4 j+6) ; j \text { is even. }
\end{array}\right.
$$

Subcase 2: $i$ is even.
For $1 \leq j \leq \frac{n}{2}+1$,

$$
f\left(u_{i j}\right)=2(n+1)(i-2)+(4 n-4 j+5)
$$

For $\frac{n}{2}+2 \leq j \leq n$

$$
f\left(u_{i j}=\left\{\begin{array}{l}
2(n+1)(i-2)+(4 j) ; j \text { is even } \\
2(n+1)(i-2)+(4 j-2) ; j \text { is odd. }
\end{array}\right.\right.
$$

Case 2: $n \equiv 1(\bmod 4)$.
Subcase 1: $i$ is odd.
For $1 \leq j \leq \frac{n+1}{2}$,
$f\left(u_{i j}\right)=\left\{\begin{array}{l}2(n+1)(i-1)+(4 j-4) ; j \text { is odd, } \\ 2(n+1)(i-1)+(4 j-6) ; j \text { is even. }\end{array}\right.$
For $\frac{n+3}{2} \leq j \leq n$,
$f\left(u_{i j}\right)=2(n+1)(i-1)+(4 n-4 j+5)$
Subcase 2: $i$ is even.
For $1 \leq j \leq \frac{n-1}{2}$,
$f\left(u_{i j}\right)=2(n+1)(i-2)+(4 n-4 j+5)$
For $\frac{n+1}{2} \leq j \leq n$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(n+1)(i-2)+(4 j) ; j \text { is odd, } \\
2(n+1)(i-2)+(4 j-2) ; j \text { is even. }
\end{array}\right.
$$

Case 3: $n \equiv 2(\bmod 4) ; \quad$ where $n \geq 10$.
Subcase 1: $i$ is odd.

$$
\begin{aligned}
& f\left(u_{i 1}\right)=2(n+1)(i-1)+(4 j-4) \\
& f\left(u_{i 2}\right)=2(n+1)(i-1)+(4 j-6)
\end{aligned}
$$

For $3 \leq j \leq \frac{n+2}{2}$,
$f\left(u_{i j}\right)=2(n+1)(i-1)+(4 j-5)$.
For $\frac{n+4}{2} \leq j \leq n-2$,

$$
f\left(u_{i j}\right)=\left\{\begin{array}{l}
2(n+1)(i-1)+(4 n-4 j+6) ; j \text { is odd } \\
2(n+1)(i-1)+(4 n-4 j+4) ; j \text { is even }
\end{array}\right.
$$

For $n-1 \leq j \leq n$,

$$
f\left(u_{i j}\right)=2(n+1)(i-1)+(4 n-4 j+5)
$$

Subcase 2: $i$ is even
For $1 \leq j \leq \frac{n-2}{2}$,
$f\left(u_{i j}\right)=2(n+1)(i-2)+(4 n-4 j+5)$,
$f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j+4)$, for $j=\frac{n}{2}$,
$f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j-2)$, for $j=\frac{n+2}{2}$.
For $\frac{n+4}{2} \leq j \leq n-2$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j-1) \\
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j-2), \text { for } j=n-1, \\
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j), \text { for } j=n
\end{aligned}
$$

Case 4: $n \equiv 3(\bmod 4)$; where $n \geq 11$.
Subcase 1: $i$ is odd.

$$
\begin{aligned}
& f\left(u_{i 1}\right)=2(n+1)(i-1)+(4 j-4) \\
& f\left(u_{i 2}\right)=2(n+1)(i-1)+(4 j-6) \\
& f\left(u_{i j}\right)=2(n+1)(i-1)+(4 j-5), \text { for } j=3,4 .
\end{aligned}
$$

For $5 \leq j \leq \frac{n+1}{2}$,
$f\left(u_{i j}\right)=\left\{\begin{array}{l}2(n+1)(i-1)+(4 j-6) ; j \text { is odd, } \\ 2(n+1)(i-1)+(4 j-4) ; j \text { is even. }\end{array}\right.$
For $\frac{n+3}{2} \leq j \leq n$,
$f\left(u_{i j}\right)=2(n+1)(i-1)+(4 n-4 j+5)$.
Subcase 2: $i$ is even.
For $1 \leq j \leq \frac{n-5}{2}$,
$f\left(u_{i j}\right)=2(n+1)(i-2)+(4 n-4 j+5)$.

For $\frac{n-3}{2} \leq j \leq \frac{n-1}{2}$,
$f\left(u_{i j}\right)=\left\{\begin{array}{l}2(n+1)(i-2)+(4 n-4 j+4) ; j \text { is even }, \\ 2(n+1)(i-2)+(4 n-4 j+6) ; j \text { is odd. }\end{array}\right.$
For $\frac{n+1}{2} \leq j \leq n-2$,

$$
\begin{aligned}
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j-1), \\
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j-2), \text { for } j=n-1 \\
& f\left(u_{i j}\right)=2(n+1)(i-2)+(4 j), \text { for } j=n .
\end{aligned}
$$

In all the four cases $f$ is odd mean and hence $G$ is an odd mean graph.
Illustration 2.8. Figure 4 shows an odd mean labeling of the path union graph of 4 copies of cycle $C_{8}$.


Figure 4: An odd mean labeling of path union graph of 4 copies of cycle $C_{8}$.

## References

[1] J A Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2015) $\sharp D S 6$.
[2] F Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1972.
[3] K Manikam and M Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E (1)(2006), 149-153.
[4] S C Shee and Y S Ho, The cordiality of the path union of $n$ copies of a graph, Discrete Mathematics, 151(1996), 221-229.
[5] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematical Sciences, 58 (2003), 29-35.
[6] R Vasuki and A Nagarajan, Odd mean labeling of the graphs $P_{a, b}, P_{a}^{b}$ and $P_{<2 a>}^{b}$, Kragujevac Journal of Mathematics, 36(1)(2012), 141-150.

