International Journal of Mathematics and Soft Computing Vol.7, No.1 (2017), 1 - 11.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

Odd mean labeling of some new families of graphs

Lekha Bijukumar, Avani Matad

Shanker Sinh Vaghela Bapu Institute of Technology Gandhinagar, India. dbijuin@yahoo.co.in, avanimattad@gmail.com

Abstract

A graph G = (V(G), E(G)) with p vertices and q edges is said to be an *odd mean graph* if there is an injection $f: V(G) \to \{0, 1, 2, \dots, 2q-1\}$ and the induced function $f^*: E(G) \to \{1, 3, 5, \dots, 2q-1\}$ defined as $f * (e = uv) = \begin{cases} \frac{f(u)+f(v)}{2}; & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2}; & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$ is a bijection. In this paper we investigate some new families of odd mean graphs.

Keywords: Odd mean labeling, step ladder graph, path union graph of cycle C_n . AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph G = (V(G), E(G)) we mean a simple, connected and undirected graph. The terms not defined here are used in the sense of Harary[2]. For a detailed survey on graph labeling readers can refer to Gallian[1].

The concept of mean labeling was introduced by Somasundaram and Ponraj[5]. The notion of odd mean labeling was first discussed by Manikam and Marudai[3].

Definition 1.1. A graph G = (V(G), E(G)) with p vertices and q edges is said to be an *odd* mean graph if there is an injection $f: V(G) \to \{0, 1, 2, \dots, 2q - 1\}$ and the induced function $f^*: E(G) \to \{1, 3, 5, \dots, 2q - 1\}$ defined as $f * (e = uv) = \begin{cases} \frac{f(u) + f(v)}{2}; & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2}; & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$ is a bijection.

Vasuki and Nagarajan[6] discussed the odd meanness of graphs $P_{a,b}$, P_a^b and $P_{<2a>}^b$.

Definition 1.2. Let P_n be a path on n vertices denoted by $(1, 1), (1, 2), \ldots, (1, n)$ and with n-1 edges denoted by $e_1, e_2, \ldots, e_{n-1}$ where e_i is the edge joining the vertices (1, i) and (1, i+1). On each edge e_i , $i = 1, 2, \ldots, n-1$ we erect a ladder with n - (i-1) steps including the edge e_i . The graph obtained is called a *step ladder graph* and is denoted by $S(T_n)$, where n denotes the number of vertices in the base.

Definition 1.3. Let $G_1, G_2, ..., G_n$ be *n* copies of the graph G = (V(G), E(G)). Then the graph obtained by adding an edge between G_i and G_{i+1} , for i = 1, 2, ..., n-1 is called a *path union of graph G*.

Definition 1.4. The shadow graph $D_2(G)$ of a connected graph G is obtained by taking two copies of G say G' and G'' and joining each vertex u' in G' to the neighbours of the corresponding vertex u'' in G''.

2 Main Results

Theorem 2.1. The graph $C_n \odot mK_1$ admits an odd mean labeling except when $n \equiv 3 \pmod{4}$ and m = 1.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of C_n . Let u_{ij} be the newly added vertices in C_n to form $C_n \odot mK_1$, where $1 \le i \le n$ and $1 \le j \le m$. To define $f: V(C_n \odot mK_1) \to \{0, 1, 2, \ldots, 2q-1\}$, four cases are to be considered.

Case 1: $n \equiv 0 \pmod{4}$. For $1 \le i \le \frac{n}{2}$, $f(v_i) = \begin{cases} 2i + 2m(i-1); \ i \ \text{ is odd}, \\ 4m + 2(m+1)(i-2); \ i \ \text{ is even.} \end{cases}$ For $\frac{n}{2} + 1 \le i \le n-1$, $f(v_i) = \begin{cases} 2i + 2m(i-1); \ i \ \text{ is odd}, \\ 4(m+1) + 2(m+1)(i-2); \ i \ \text{ is even.} \end{cases}$ $f(v_n) = 4m + 2(m+1)(n-2) + 3$. For $1 \le i \le \frac{n}{2}$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); \ i \text{ is even} \end{cases}$$

For $\frac{n}{2} + 1 \le i \le n-1$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + (4j); & i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); & i \text{ is even.} \end{cases}$$

$$f(u_{nj}) = 2(m+1)(n-2) + (4j+2); & \text{ for } 1 \le j \le m. \end{cases}$$

Case 2: $n \equiv 1 \pmod{4}$.

Subcase 1: m is even.

$$f(v_1) = 1$$

For $2 \le i \le \frac{n+1}{2}$,
$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \text{ is even,} \\ 2i + 2m(i-1); \ i \text{ is odd.} \end{cases}$$

$$\begin{aligned} &\text{For } \frac{n+3}{2} \leq i \leq n-1, \\ &f(v_i) = \begin{cases} 4(m+1)+2(m+1)(i-2); \ i \text{ is even}, \\ 2(i)+2m(i-1); \ i \text{ is odd}. \end{cases} \\ &f(v_n) = 4m+2(m+1)(n-2)+3 \end{aligned}$$

$$\begin{aligned} &\text{For } 1 \leq i \leq \frac{n-1}{2} \text{ and } 1 \leq j \leq m, \\ &f(u_{ij}) = \begin{cases} 2(m+1)(i-1)+4(j-1); \ i \text{ is odd}, \\ 2(m+1)(i-2)+(4j+2); \ i \text{ is even}. \end{cases} \end{aligned}$$

$$\begin{aligned} &\text{For } i = \frac{n+1}{2}, \\ &f(u_{ij}) = \begin{cases} 2(m+1)(i-1)+4(j-1); \ \text{ for } 1 \leq j \leq \frac{m}{2}. \\ 2(m+1)(i-1)+(4j); \ \text{ for } \frac{m}{2}+1 \leq j \leq m, \end{cases} \end{aligned}$$

$$\begin{aligned} &\text{For } \frac{n+3}{2} \leq i \leq n-1 \text{ and for } 1 \leq j \leq m, \\ &f(u_{ij}) = \begin{cases} 2(m+1)(i-2)+(4j+2); \ i \text{ is even}, \\ 2(m+1)(i-1)+(4j); \ i \text{ is odd}. \end{cases} \end{aligned}$$

$$\begin{aligned} &f(u_{ij}) = \begin{cases} 2(m+1)(i-2)+(4j+2); \ i \text{ is odd}. \\ 2(m+1)(i-1)+(4j); \ i \text{ is odd}. \end{cases} \end{aligned}$$

Subcase 2: m is odd. For $1 \le i \le n+1$

For
$$1 \le i \le \frac{n+1}{2}$$
,

$$f(v_i) = \begin{cases} 2i + 2m(i-1); \ i \text{ is odd.} \\ 4m + 2(m+1)(i-2); \ i \text{ is even,} \end{cases}$$
For $\frac{n+3}{2} \le i \le n-2$,

$$f(v_i) = \begin{cases} 4(m+1) + 2(m+1)(i-2); \ i \text{ is even,} \\ 2i + 2m(i-1); \ i \text{ is odd.} \end{cases}$$
For $n-1 \le i \le n$,

$$f(v_i) = 4m + 2(m+1)(i-2) + 3$$

For $1 \le i \le \frac{n-1}{2}$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); \ i \text{ is even.} \end{cases}$$

For
$$i = \frac{n+1}{2}$$
,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \text{ for } 1 \le j \le \frac{m+1}{2}, \\ 2(m+1)(i-1) + (4j); \text{ for } \frac{m+3}{2} \le j \le m. \end{cases}$$

For $\frac{n+3}{2} \le i \le n-1$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-2) + (4j+2); \ i \text{ is even,} \\ 2(m+1)(i-1) + (4j); \ i \text{ is odd.} \end{cases}$$

$$f(u_{nj}) = \begin{cases} 2(m+1)(n-2) + (4j-1); & \text{for } 1 \le j \le \frac{m-1}{2}, \\ 2(m+1)(n-2) + (4j+2); & \text{for } \frac{m+1}{2} \le j \le m. \end{cases}$$

Case 3: $n \equiv 2 \pmod{4}$.

For
$$1 \le i \le \frac{n}{2}$$
,

$$f(v_i) = \begin{cases} 2i + 2m(i-1); \ i \text{ is odd,} \\ 4m + 2(m+1)(i-2); \ i \text{ is even.} \end{cases}$$
For $\frac{n}{2} + 1 \le i \le n-1$,

$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \text{ is even,} \\ 2(i+2) + 2m(i-1); \ i \text{ is odd.} \end{cases}$$

$$f(v_n) = 4m + 2(m+1)(n-2) + 3.$$

For $1 \le i \le \frac{n}{2}$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); \ i \text{ is even.} \end{cases}$$

For $\frac{n}{2} + 1 \le i \le n - 1$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-2) + (4j+6); \ i \text{ is even}, \\ 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd}. \end{cases}$$
$$f(u_{nj}) = \begin{cases} 2(m+1)(n-2) + (4j-1); \ \text{ for } j = 1, \\ 2(m+1)(n-2) + (4j+2); \ \text{ for } 2 \le j \le m. \end{cases}$$

Case 4: $n \equiv 3 \pmod{4}$, $n \neq 3$ and m > 1.

Subcase 1: m is even

 $f(v_1) = 1.$

For $2 \le i \le \frac{n-1}{2}$,

$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \text{ is even}, \\ 2i + 2m(i-1); \ i \text{ is odd}. \end{cases}$$

For $\frac{n+1}{2} \le i \le n-1$

$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \ \text{is even}, \\ 2(i+2) + 2m(i-1); \ i \ \text{is odd}. \end{cases}$$
$$f(v_n) = 4m + 2(m+1)(n-2) + 3$$

For $1 \le i \le \frac{n-1}{2}$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); \ i \text{ is even} \end{cases}$$

For $i = \frac{n+1}{2}$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-2) + (4j+2); & \text{for } 1 \le j \le \frac{m}{2} \\ 2(m+1)(i-2) + (4j+6); & \text{for } \frac{m}{2} + 1 \le j \le m \end{cases}$$

For $\frac{n+3}{2} \leq i \leq n-1$ and $1 \leq j \leq m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \ \text{is odd}, \\ 2(m+1)(i-2) + (4j+6); \ i \ \text{is even}. \end{cases}$$
$$f(u_{nj}) = \begin{cases} 2(m+1)(n-2) + (4j-1); \ \text{ for } 1 \le j \le \frac{m}{2} - 1, \\ 2(m+1)(n-2) + (4j+2); \ \text{ for } \frac{m}{2} \le j \le m. \end{cases}$$

Subcase 2: m is odd.

For
$$1 \le i \le \frac{n-1}{2}$$
,

$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \text{ is even,} \\ 2i + 2m(i-1); \ i \text{ is odd.} \end{cases}$$

For $\frac{n+1}{2} \le i \le n-2$,

$$f(v_i) = \begin{cases} 4m + 2(m+1)(i-2); \ i \text{ is even} \\ 2(i+2) + 2m(i-1); \ i \text{ is odd.} \end{cases}$$

For
$$n-1 \le i \le n$$
,

$$f(v_i) = \begin{cases} 4m+2(m+1)(i-2)-1; \ i \text{ is even}, \\ 4m+2(m+1)(i-2)+3; \ i \text{ is odd}. \end{cases}$$

For
$$1 \le i \le \frac{n-1}{2}$$
 and $1 \le j \le m$,
$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+2); \ i \text{ is even.} \end{cases}$$

For $i = \frac{n+1}{2}$, $f(u_{ij}) = \begin{cases} 2(m+1)(i-2) + (4j+2); & \text{for } 1 \le j \le \frac{m+1}{2} \\ 2(m+1)(i-2) + (4j+6); & \text{for } \frac{m+3}{2} \le j \le m \end{cases}$

For $\frac{n+3}{2} \le i \le n-1$ and $1 \le j \le m$,

$$f(u_{ij}) = \begin{cases} 2(m+1)(i-1) + 4(j-1); \ i \text{ is odd,} \\ 2(m+1)(i-2) + (4j+6); \ i \text{ is even.} \end{cases}$$

For m = 3,

$$f(u_{nj}) = \begin{cases} 2(m+1)(n-2) + (4j+3); & \text{for } 1 \le j \le 2, \\ 2(m+1)(n-2) + 14; & \text{for } j = 3. \end{cases}$$

For $m \ge 5$,

$$f(u_{nj}) = \begin{cases} 2(m+1)(n-2) + (4j-1); & \text{for } 1 \le j \le \frac{m-3}{2}, \\ 2(m+1)(n-2) + (4j+3); & \text{for } \frac{m-1}{2} \le j \le m-1, \\ 2(m+1)(n-2) + (4j+2); & \text{for } j = m. \end{cases}$$

Case 5: n = 3; m > 1.

Subcase 1: m is even.

$$f(v_1) = 1, \ f(v_2) = 4m, \ f(v_3) = 4m + 2(m+1) + 3$$

$$f(u_{1j}) = 4(j-1); \quad \text{for } 1 \le j \le m$$

$$f(u_{2j}) = \begin{cases} 4j+2; \ \text{for } 1 \le j \le \frac{m}{2}, \\ 4j+6; \ \text{for } \frac{m}{2} + 1 \le j \le m. \end{cases}$$

For m = 2,

$$f(u_{3j}) = \begin{cases} 13; \text{ for } j = 1, \\ 16; \text{ for } j = 2. \end{cases}$$

For $m \ge 4$,

$$f(u_{3j}) = \begin{cases} 2(m+1) + (4j-1); \text{ for } 1 \le j \le \frac{m}{2} - 1, \\ 2(m+1) + (4j+2); \text{ for } \frac{m}{2} \le j \le m. \end{cases}$$

Subcase 2: m is odd.

$$f(v_1) = 2, \ f(v_2) = 4m - 1, \ f(v_3) = 4m + 2(m+1) + 3$$

$$f(u_{1j}) = 4(j-1); \ \text{ for } 1 \le j \le m$$

$$f(u_{2j}) = \begin{cases} 4j+2; \ \text{ for } 1 \le j \le \frac{m+1}{2}, \\ 4j+6; \ \text{ for } \frac{m+3}{2} + 1 \le j \le m. \end{cases}$$

For m = 3,

$$f(u_{3j}) = \begin{cases} 2(m+1) + (4j+3); & \text{for } 1 \le j \le 2, \\ 22; & \text{for } j = 3. \end{cases}$$

For $m \ge 5$,

$$f(u_{3j}) = \begin{cases} 2(m+1) + (4j-1); & \text{for } 1 \le j \le \frac{m-3}{2}, \\ 2(m+1) + (4j+3); & \text{for } \frac{m-1}{2} \le j \le m-1, \\ 2(m+1) + (4j+2); & \text{for } j = m. \end{cases}$$

It can be verified that f is an odd mean labeling in all the cases. Hence $C_n \odot mK_1$ is an odd mean graph except for $n \equiv 3 \pmod{4}$ and m = 1.

Illustration 2.2. An odd mean labeling of $C_{10} \odot 3K_1$ is shown in Figure 1.

Figure 1: An odd mean labeling of $C_{10} \odot 3K_1$.

Theorem 2.3. The shadow graph $D_2(B_{n,n})$ is an odd mean graph.

Proof: Consider two copies of the bistar $B_{n,n}$.

Let $\{v_1, v_2, v_{ij}, 1 \le i \le 2, 1 \le j \le n\}$ and $\{u_1, u_2, u_{ij}, 1 \le i \le 2, 1 \le j \le n\}$ be the vertex sets of the two copies of $B_{n,n}$.

Define $f: V(D_2(B_{n,n})) \to \{0, 1, 2, 3, \dots, 2q-1\}$ as follows:

$$f(v_1) = 0, \ f(v_2) = 16n + 2,$$

$$f(u_1) = 8n, \ f(u_2) = 16n + 6,$$

$$f(v_{1j}) = 4(j - 1) + 2; \ \text{for } 1 \le j \le n,$$

$$f(v_{2j}) = 8j; \ \text{for } 1 \le j \le n - 1,$$

$$f(v_{2j}) = 16n; \ \text{for } j = n,$$

$$f(u_{1j}) = 4j + 4n - 2; \ \text{for } 1 \le j \le n - 1,$$

$$f(u_{2j}) = 8n + 8j; \ \text{for } 1 \le j \le n - 1,$$

$$f(u_{2j}) = 16n + 7; \ \text{for } j = n.$$

In view of the above defined labeling, $D_2(B_{n,n})$ is an odd mean graph.

Illustration 2.4. Figure 2 shows an odd mean labeling of $D_2(B_{3,3})$.

Figure 2: An odd mean labeling of $D_2(B_{3,3})$.

Theorem 2.5. The step ladder graph $S(T_n)$ admits odd mean labeling.

Proof: Let P_n be a path on n vertices denoted by $(1,1), (1,2), \ldots, (1,n)$ and with n-1 edges denoted by $e_1, e_2, \ldots, e_{n-1}$ where e_i is the edge joining the vertices (1, i) and (1, i+1). The vertices of the step ladder graph $S(T_n)$ are denoted by $(1,1), (1,2), \ldots, (1,n), (2,1), (2,2), \ldots, (2,n), (3,1), (3,2), \ldots, (3,n-1), (4,1), (4,2), \ldots, (4,n-2), \ldots, (n,1), (n,2)$. In the ordered pair (i,j), i denotes the row (counted from bottom to top) and j denotes the column (from left to right) in which the vertex occurs. Define $f: V(S(T_n)) \to \{0,1,2,\ldots, 2q-1\}$ as follows:

$$f(1,1) = 2(n^2 - 1),$$

$$f(i,j) = 2(n^2 - 2 + i) - 2\sum_{k=1}^{j-1} (n - k - 1) - 2\sum_{k=2}^{j} [(n + k) - (j - 1)],$$

for $1 \le i \le n - 1, 1 \le j \le n$,

 $f(i,j) = (2n^2 + 2i - 5);$ for j = 1, i = n.

Hence the step ladder graph $S(T_n)$ admits odd mean labeling for every n.

Illustration 2.6. An odd mean labeling of $S(T_6)$ is shown in Figure 3.

Figure 3: An odd mean labeling of $S(T_6)$.

Theorem 2.7. The graph obtained by the path union of finite number of copies of cycle C_n admits odd mean labeling except for n = 3, 6 and 7.

Proof: Let G be the path union graph of k copies of cycle C_n . Let the successive vertices of the cycle C_i be $u_{i1}, u_{i2}, \ldots, u_{in}$ where $1 \le i \le k$. Let $e_i = u_{i1}u_{(i+1)1}$ be the edge joining C_i and C_{i+1} for $i = 1, 2, \ldots, k-1$. To define an odd mean labeling $f : V(G) \to \{0, 1, 2, \ldots, 2q-1\}$, the following cases are considered.

Case 1: $n \equiv 0 \pmod{4}$.

Subcase 1: i is odd.

For $1 \leq j \leq \frac{n}{2}$,

$$f(u_{ij}) = \begin{cases} 2(n+1)(i-1) + (4j-4); \ j \text{ is odd,} \\ 2(n+1)(i-1) + (4j-6); \ j \text{ is even.} \end{cases}$$

For $\frac{n}{2} + 1 \le j \le n$,

$$f(u_{ij}) = \begin{cases} 2(n+1)(i-1) + (4n-4j+3); \ j \text{ is odd,} \\ 2(n+1)(i-1) + (4n-4j+6); \ j \text{ is even.} \end{cases}$$

Subcase 2: i is even. For $1 \le j \le \frac{n}{2} + 1$,

$$f(u_{ij}) = 2(n+1)(i-2) + (4n-4j+5)$$

For $\frac{n}{2} + 2 \le j \le n$

$$f(u_{ij}) = \begin{cases} 2(n+1)(i-2) + (4j); \ j \text{ is even,} \\ 2(n+1)(i-2) + (4j-2); \ j \text{ is odd} \end{cases}$$

Case 2: $n \equiv 1 \pmod{4}$.

Subcase 1: i is odd.

For $1 \le j \le \frac{n+1}{2}$,

$$f(u_{ij}) = \begin{cases} 2(n+1)(i-1) + (4j-4); \ j \text{ is odd}, \\ 2(n+1)(i-1) + (4j-6); \ j \text{ is even} \end{cases}$$

For $\frac{n+3}{2} \le j \le n$,

$$f(u_{ij}) = 2(n+1)(i-1) + (4n-4j+5)$$

Subcase 2: i is even.

For $1 \le j \le \frac{n-1}{2}$,

 $f(u_{ij}) = 2(n+1)(i-2) + (4n-4j+5)$ For $\frac{n+1}{2} \le j \le n$,

$$f(u_{ij}) = \begin{cases} 2(n+1)(i-2) + (4j); \ j \text{ is odd,} \\ 2(n+1)(i-2) + (4j-2); \ j \text{ is even.} \end{cases}$$

Case 3: $n \equiv 2 \pmod{4}$; where $n \geq 10$. Subcase 1: i is odd. $f(u_{i1}) = 2(n+1)(i-1) + (4j-4),$ $f(u_{i2}) = 2(n+1)(i-1) + (4i-6).$ For $3 \leq j \leq \frac{n+2}{2}$, $f(u_{ij}) = 2(n+1)(i-1) + (4j-5).$ For $\frac{n+4}{2} < j < n-2$, $f(u_{ij}) = \begin{cases} 2(n+1)(i-1) + (4n-4j+6); \ j \text{ is odd,} \\ 2(n+1)(i-1) + (4n-4j+4); \ j \text{ is even.} \end{cases}$ For $n-1 \leq j \leq n$, $f(u_{ij}) = 2(n+1)(i-1) + (4n-4j+5).$ Subcase 2: i is even For $1 \leq j \leq \frac{n-2}{2}$, $f(u_{ij}) = 2(n+1)(i-2) + (4n-4j+5),$ $f(u_{ij}) = 2(n+1)(i-2) + (4j+4)$, for $j = \frac{n}{2}$, $f(u_{ij}) = 2(n+1)(i-2) + (4j-2)$, for $j = \frac{n+2}{2}$. For $\frac{n+4}{2} < j < n-2$, $f(u_{ii}) = 2(n+1)(i-2) + (4i-1).$ $f(u_{ij}) = 2(n+1)(i-2) + (4j-2)$, for j = n-1, $f(u_{ij}) = 2(n+1)(i-2) + (4j)$, for i = n. Case 4: $n \equiv 3 \pmod{4}$; where n > 11. Subcase 1: i is odd. $f(u_{i1}) = 2(n+1)(i-1) + (4j-4),$ $f(u_{i2}) = 2(n+1)(i-1) + (4j-6),$ $f(u_{ij}) = 2(n+1)(i-1) + (4j-5)$, for j = 3, 4. For $5 \le j \le \frac{n+1}{2}$, $f(u_{ij}) = \begin{cases} 2(n+1)(i-1) + (4j-6); \ j \text{ is odd,} \\ 2(n+1)(i-1) + (4j-4); \ j \text{ is even.} \end{cases}$ For $\frac{n+3}{2} \leq j \leq n$, $f(u_{ij}) = 2(n+1)(i-1) + (4n-4j+5).$ Subcase 2: i is even. For $1 \leq j \leq \frac{n-5}{2}$, $f(u_{ij}) = 2(n+1)(i-2) + (4n-4i+5).$

For $\frac{n-3}{2} \le j \le \frac{n-1}{2}$, $f(u_{ij}) = \begin{cases} 2(n+1)(i-2) + (4n-4j+4); \ j \text{ is even,} \\ 2(n+1)(i-2) + (4n-4j+6); \ j \text{ is odd.} \end{cases}$ For $\frac{n+1}{2} \le j \le n-2$, $f(u_{ij})=2(n+1)(i-2) + (4j-1),$ $f(u_{ij})=2(n+1)(i-2) + (4j-2), \text{ for } j = n-1$ $f(u_{ij})=2(n+1)(i-2) + (4j), \text{ for } j = n.$

In all the four cases f is odd mean and hence G is an odd mean graph.

Illustration 2.8. Figure 4 shows an odd mean labeling of the path union graph of 4 copies of cycle C_8 .

Figure 4: An odd mean labeling of path union graph of 4 copies of cycle C_8 .

References

- J A Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2015) #DS6.
- [2] F Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1972.
- [3] K Manikam and M Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E (1)(2006), 149-153.
- [4] S C Shee and Y S Ho, The cordiality of the path union of n copies of a graph, Discrete Mathematics, 151(1996), 221-229.
- [5] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematical Sciences, 58 (2003), 29-35.
- [6] R Vasuki and A Nagarajan, Odd mean labeling of the graphs $P_{a,b}$, P_a^b and $P_{\langle 2a \rangle}^b$, Kragujevac Journal of Mathematics, 36(1)(2012), 141-150.