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Abstract

In this paper, we define minimal vertex covering sets with maximum cardinality in the
given semigraph and the upper vertex covering number of a semigraph. We prove that this
number does not increase when a vertex is removed from a semigraph. We also introduce
well-covered semigraphs, approximately well covered semigraphs and proved some related
results.
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1 Introduction

Semigraphs provide an important generalization of graphs. Several interesting theorems
on semigraphs have been proved in [3], [5] and [6]. Domination related parameters have also
been studied in [4]. In this study, we include one more parameter namely vertex covering
number of a semigraph. We consider minimal vertex set with maximum cardinality (called
αb − sets). We prove that the upper vertex covering number of a semigraph does not increase
when a vertex is removed from the semigraph.

We consider semigraphs for which either the vertex covering number is same as the upper
vertex covering number or their differences exactly one. These semigraphs are called well
covered and approximately well covered semigraphs respectively. For terminology related to
semigraphs, the reader can refer to [6].

2 Preliminaries

Definition 2.1. [6] A semigraph G is a pair (V,X) where V is a non-empty set whose elements
are called vertices of G and X is a set of n-tuples called edges of G, of distinct vertices, for
various n ≥ 2, satisfying the following conditions:
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(i) Any two edges have at most one vertex in common.
(ii) Two edges (u1, u2, ..., un) and (v1, v2, ..., vm) are considered to be equal if and only if

(a) m = n and
(b) either ui = vi for 1 ≤ i ≤ n, or ui = vn−i+1 for 1 ≤ i ≤ n.

Thus, the edge e = (u1, u2, . . . , un) is the same as (un, un−1, . . . , u1). u1 and un are called
the end vertices of an edge e and u2, u3, . . . , un−1 are called the middle vertices of e.

Definition 2.2. [6] A subset S of a semigraph G is said to be a vertex covering set of G, if
for every edge e there is a vertex v in the edge e such that v ∈ S. A vertex covering set with
minimum cardinality is called α0 − set of G. The cardinality of a minimum vertex covering
set of G is called the vertex covering number of G and it is denoted as α0(G) . It is obvious
to see that a subset S of V (G) is a minimum vertex covering set if and only if V (G) − S is a
maximum independent set.

Definition 2.3. Let G be a semigraph, S ⊆ V (G) then S is said to be a minimal vertex
covering set if

(1) S is a vertex covering set of G and
(2) S − {v} is not a vertex covering set of G for every vertex v in S.

Definition 2.4. Let G be a semigraph. A minimal vertex covering set with maximum cardi-
nality is said to be an upper vertex covering set (αb − set) of G. The number of vertices of an
αb − set is called the upper vertex covering number of G and it is denoted as αb(G).

Obviously α0(G) ≤ αb(G). The strict inequality also holds as illustrated in the following
example.

Example 2.5. Consider the semigraph G whose vertex set V (G) = {0, 1, 2, 3, 4, 5, 6} and the
edge set E(G) = {(1, 0, 4), (2, 0, 5), (3, 0, 6)}. Note that the set S = {1, 2, 3} is a minimal vertex
covering set of G with maximum cardinality and thus αb(G) = 3 and α0(G) = 1.

Figure 1
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3 Main Results

Theorem 3.1. Let G be a semigraph and S ⊆ V (G) be a vertex covering set of G then S is a
minimal vertex covering set if and only if for every vertex v in S there is an edge f such that
S ∩ f = {v}.

Proof: Suppose S is minimal. Let v ∈ S then there is an edge f such that f ∩ (S − {v}) = φ.
However, f ∩ S 6= φ. Thus, it follows that f ∩ S = {v}.
Conversely suppose the condition holds. Let v ∈ S and f be an edge such that f ∩ S = {v}
then f ∩ (S − {v}) = φ. Hence S − {v} is not a vertex covering set of G.

Subsemigraph of Type I: LetG be a semigraph and v ∈ V (G). We consider the subsemigraph
G−{v} whose vertex set is V (G)−{v} and the edge set is subedges obtained by removing the
vertex v from every edge of G. We call this as subsemigraph of type I.

Now we consider minimal vertex covering sets of G − {v} and G and prove that the upper
vertex covering number does not increase when a vertex is removed from a semigraph.

Theorem 3.2. Let G be a semigraph and v ∈ V (G) then

(1) Every minimal vertex covering set of (G− {v}) is a minimal vertex covering set of G and

(2) αb(G− {v}) ≤ αb(G).

Proof:
(1) Let S be a minimal vertex covering set of G − {v}, e be an edge of G and e′ = e − {v}.
Since e′ ∩ S 6= φ, e ∩ s 6= φ . Thus, S is a vertex covering set of G.
Let w ∈ S. Since S is minimal in G−{v}, there is an edge f ′ such that s∩ f ′ = {w}. Let f be
the edge of G such that f − {v} = f ′ than s ∩ f ′ = {w}. Hence S is a minimal vertex covering
set of G.
(2) Let S be an αb − set of G − {v}. Since S is a minimal vertex covering set of G, αb(G) ≥
|S| = αb(G− {v}). Thus, αb(G− {v}) ≤ αb(G).

In [7] we proved that for any semigraph G, α0(G) ≤ α0(G−{v}). Thus, we have the following
chain connecting α0 − set and αb − set of G and (G− {v}):

α0(G) ≤ α0(G− {v}) ≤ αb(G− {v}) ≤ αb(G)
Now we give a condition under which the upper vertex covering number remains same when

a vertex is removed.

Theorem 3.3. Let G be a semigraph and v ∈ V (G). Then αb(G − {v}) = αb(G) if and only
if the set of all αb-sets of G not containing v is equal to the set of all αb-sets of (G− {v}).
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Proof: Suppose αb(G− {v}) = αb(G).
Let S be an αb − set of (G − {v}). Then S is a minimal vertex covering set of G. Since
αb(G − {v}) = αb(G), S is an αb-set of G not containing v. Let T be an αb-set of G not
containing v, then as proved earlier T is a minimal vertex covering set of G − {v}. Since
αb(G − {v}) = αb(G), T is an αb − set in G − {v} . Hence both, set of all αb-sets of G − {v}
and set of all αb-sets of G not containing v are equal.

Conversely, Let T be an αb-set in G− {v}, then T is also an αb − set in G. Hence, αb(G) =
|T | = αb(G− {v}).

Theorem 3.4. Let G be a semigraph and v ∈ V (G). If αb(G − {v}) < αb(G) then there is a
αb − set of G say T such that v ∈ T .

Proof: Suppose αb(G− {v}) < αb(G). Let S be an αb − set in G− {v}. Then S is a minimal
vertex covering set of G but it cannot be an αb− set of G. Since S is a minimal vertex covering
set of G, there is an αb − set T of G such that |S| < |T |. If v /∈ T then T is a minimal vertex
covering set of G−{v}. Hence αb(G−{v}) ≥ |T | > |S| = αb(G−{v}), which is absurd. Thus,
v ∈ T .

Example 3.5. In Example 2.5, αb(G−{0}) = αb(G) = 3. Note that every αb− set of G−{0}
is an αb − set of G and conversely also.

Subsemigraph of Type II: Let G be a semigraph and v ∈ V (G). We consider a semigraph
G−{v} in which the vertex set is V (G)−{v} and the edge set is equal to the set of those edges
of G which do not contain the vertex v. This is called the subsemigraph of type II.

Theorem 3.6. Let G be a semigraph and v ∈ V (G). Let S be a minimal vertex covering set
of G− {v}. Then either S is a minimal vertex covering set of G or S ∪ {v} is a minimal vertex
covering set of G.

Proof: If S is a minimal vertex covering set of G then the theorem is proved. If not, then it
implies that S is not a vertex covering set of G. Therefore there is an edge e of G such that
e ∩ S = φ. Then it must be true that v ∈ e. Now consider the set S ∪ {v}. It follows that
S ∪ {v} is a vertex covering set of G which is also minimal.

Theorem 3.7. Let G be a semigraph and v ∈ V (G) then αb(G− {v}) ≤ αb(G).

Proof: Let S be an αb-set of G−{v}. Then either S or S ∪{v} is minimal vertex covering set
of G. Therefore αb(G) ≥ |S| = αb(G− {v}). Hence, αb(G− {v}) ≤ αb(G).

Theorem 3.8. Let G be a semigraph and v ∈ V (G). Then αb(G − {v}) = αb(G) if and only
if every αb − set of G− {v} is an αb − set of G.
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Proof: Suppose that αb(G− {v}) = αb(G). Let S be an αb-set of G− {v}. Then by Theorem
3.6, either S is minimal vertex covering set of G or S ∪ {v} is a minimal vertex covering set of
G. If S ∪{v} is a minimal vertex covering set of G then αb(G) ≥ |S ∪{v} | > |S| = αb(G−{v})
and hence αb(G−{v}) < αb(G), which is not true. Thus, S must be a minimal vertex covering
set of G. Since αb(G− {v}) = αb(G), S must be an αb − set of G.

Conversely, suppose every αb − set of G− {v} is an αb − set of G. Let S be an αb − set of
G− {v}. Then S is also an αb − set of G. Thus |S| = αb(G) = αb(G− {v}).

Corollary 3.9. If αb(G− {v}) = αb(G) then there is an αb − set of G, say S such that v /∈ S.

Corollary 3.10. Let G be a semigraph and v ∈ V (G). If v belongs to every αb− set of G then
αb(G− {v}) < αb(G).

Theorem 3.11. Let G be a semigraph and v ∈ V (G). Suppose there is an αb − set T of G
such that v ∈ T . If αb(G− {v}) < αb(G) then αb(G− {v}) = αb(G)− 1.

Proof: Since T is a vertex covering set of G, T − {v} is also a vertex covering set of G− {v}.
If T − {v} is a minimal vertex covering set of G− {v} then since αb(G− {v}) < αb(G) the set
T −{v} must be an αb− set in G−{v}. Thus, αb(G−{v}) = |T −{v} | = |T | − 1 = αb(G)− 1.

Suppose T − {v} is not minimal in G − {v} then it contains a minimal vertex covering set
T1 of G− {v}. Since T1 is a proper subset of T , T1 cannot be a minimal vertex covering set of
G. Hence by Theorem 3.6, T1 ∪ {v} is a minimal vertex covering set of G. Now, T1 ∪ {v} ⊆ T
and both the sets are minimal in G. This implies that T1 ∪ {v} = T and thus T1 = T − {v}.
This contradicts our assumption that T − {v} is minimal in G − {v}. Thus, T − {v} must be
minimal in G− {v}.

4 Well covered and Approximately well covered semigraphs

In this section we introduce two new concepts namely well covered semigraphs and approx-
imately well covered semigraphs.

Definition 4.1. A semigraph G is said to be a well covered semigraph if α0(G) = αb(G).
Equivalently, all minimal vertex covering sets of G have the same cardinality.

Definition 4.2. Let G be a semigraph then G is said to be an approximately well covered
semigraph if αb(G) = α0(G) + 1.

Example 4.3. Consider the semigraph G whose vertex set V (G) = {1, 2, 3, . . . , 8, 9} and edge
set E(G) = {(1, 2, 3), (4, 1, 5), (6, 2, 7), (8, 3, 9)}. This semigraph is a well covered semigraph as
α0(G) = αb(G) = 3.
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Figure 2

In fact the set S = {1, 2, 3} is an α0 − set of G. Any vertex covering set with more than
three vertices will contain at least two vertices from the same edge of G and hence cannot be
a minimal vertex covering set of G. Therefore αb(G) = 3.

Example 4.4. Consider the semigraph G whose vertex set V (G) = {0, 1, 2, 3, 4} and edge set
E(G) = {(1, 0, 2), (3, 0, 4), }. This semigraph is an approximately well covered semigraph of G
because α0(G) = 1 and αb(G) = 2.

Figure 3

Theorem 4.5. Let G be a well covered semigraph. Then
(1) There is no vertex v such that α0(G− {v}) > α0(G) and αb(G− {v}) < αb(G).
(2) If v ∈ V (G) then G− {v} is also a well covered semigraph.
(3) If v ∈ V (G) then α0(G− {v}) = α0(G).
(4) If v ∈ V (G) then αb(G− {v}) = αb(G).
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Proof: (1) For any vertex v of G ,α0(G) ≤ α0(G−{v}) ≤ αb(G−{v}) ≤ αb(G). Since α0(G) =
αb(G) we have α0(G − {v}) = αb(G − {v}) = α0(G) = αb(G). Hence α0(G − {v}) > α0(G) is
not possible. Similarly, αb(G− {v}) < αb(G) is also not possible.
(2) If v ∈ V (G) then as proved in (1) α0(G − {v}) = αb(G − {v}). Hence (G − {v}) is well
covered semigraph.
(3) and (4) are obvious.

Theorem 4.6. Let G be an approximately well covered semigraph and v ∈ V (G). Then

(1) Either α0(G− {v}) = αb(G) or α0(G− {v}) = α0(G) + 1.

(2) If αb(G− {v}) < αb(G) then (G− {v}) is a well covered semigraph.

(3) If αb(G − {v}) = αb(G) then either (G − {v}) is a well covered or an approximately well
covered semigraph.

Proof: (1) Since G is an approximately well covered semigraph, α0(G) ≤ α0(G − {v}) ≤
αb(G− {v}) ≤ α0(G) + 1. Hence either α0(G− {v}) = α0(G) or α0(G− {v}) = α0(G) + 1.
(2) Again α0(G) ≤ αb(G − {v}) ≤ α0(G) + 1. Hence, if αb(G − {v}) < αb(G) then it must
be true that αb(G − {v}) = α0(G). Also,α0(G) < α0(G − {v}) ≤ αb(G − {v}) . Hence
α0(G− {v}) = αb(G− {v}). Thus, (G− {v}) is a well-covered semigraph.
(3) Suppose αb(G− {v}) = αb(G). Then α0(G− {v}) = α0(G) or α0(G− {v}) = α0(G) + 1 =
αb(G) = αb(G−{v}). In the first case it follows that G−{v} is an approximately well covered
and in the second case it follows that G− {v} is well covered.

Corollary 4.7. Let G be an approximately well covered semigraph and v ∈ V (G). Then either
G− {v} is well covered or it is approximately well covered.

In all the following results we assume that the subsemigraph G− {v} of G is of type II.

Theorem 4.8. Let G be a well covered semigraph and v ∈ V (G). Then

(1) If α0(G− {v}) = α0(G) then G− {v} is well covered semigraph.

(2) If α0(G− {v}) < α0(G) then either G− {v} is well covered or approximately well covered
semigraph.

Proof: (1) Suppose α0(G− {v}) = α0(G). If αb(G− {v}) > α0(G− {v}) then it implies that
αb(G− {v}) > αb(G), which is not possible. Hence, αb(G− {v}) = α0(G) and thus G− {v} is
a well covered semigraph.
(2) Suppose α0(G−{v}) < α0(G) then α0(G−{v}) = α0(G)−1. If αb(G−{v}) = αb(G) = α0(G)
then αb(G−{v}) = α0(G−{v})+1. Hence G−{v} is an approximately well covered semigraph.
If αb(G − {v}) < αb(G) then since α0(G − {v}) ≤ αb(G − {v}) < α0(G) = αb(G),0 it follows
that αb(G− {v}) = α0(G− {v}). Hence G− {v} is well covered semigraph of G.
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Corollary 4.9. Let G be a semigraph and v ∈ V (G). Then either G−{v} is an approximately
well covered or a well covered semigraph.

Theorem 4.10. Let G be an approximately well covered semigraph and v ∈ V (G) then,

(1) If α0(G− {v}) = α0(G) then either G− {v} is well covered or approximately well covered.

(2) If α0(G − {v}) < α0(G) and αb(G − {v}) < αb(G) then G − {v} is either well covered or
approximately well covered.

Proof: (1) Suppose α0(G − {v}) = α0(G). If αb(G − {v}) = αb(G) then G − {v} is an
approximately well covered semigraph. If αb(G−{v}) < αb(G) then it follows that αb(G−{v}) =
α0(G− {v}). Hence G− {v} is well covered.
(2) Suppose α0(G − {v}) < α0(G) and αb(G − {v}) < αb(G). If αb(G − {v}) = α0(G) then it
follows that αb(G− {v}) = α0(G− {v}) + 1. Hence G− {v} is an approximately well covered
semigraph. Suppose αb(G− {v}) = α0(G)− 1 then it follows that αb(G− {v}) = α0(G− {v}).
Hence, G− {v} is well covered.

Corollary 4.11. If G be an approximately well covered semigraph and v ∈ V (G) then G−{v}
is either well covered or an approximately well covered.
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