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Abstract

In this paper, we extend certain results of finite q-alpha multi-series to infinite q-alpha
multi-series and obtain the sum of infinite q-alpha multi-series of polynomials, polynomial
factorials and logarithmic functions.
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1 Introduction

The theory of q-derivative equations of q-calculus or quantum calculus is based on the
definition of the q-derivative operator, which was introduced by Jackson [3, 4]. Several groups
have intensified their research on the amazing mathematics world featuring q-calculus. However,
between 1930 and 1980 the theory of linear q-difference equations has lagged noticeably behind
the sister theories of linear difference and differential equations. Since 1980s, an extensive and
somewhat surprising interest in the subject reappeared in many areas of mathematics, physics
and applications including new difference calculus and orthogonal polynomials, q-combinatories,
q-arithmetics, integrable systems and variational q-calculus.

In 1984, Jerzy Popenda [5] introduced a particular type of difference operator ∆α defined on
u(k) as ∆αu(k) = u(k+1)−αu(k). In 1989, Miller and Ross [7] introduced the discrete analogue
of the Riemann-Liouville fractional derivative and proved some properties of the fractional
derivative operator. Recently, Britto Antony Xavier et al. [1] introduced a q-difference operator
∆q defined as ∆qu(k) = u(qk) − u(k) and obtained a summation solution of the generalized
q-difference equation ∆t

qv(k) = u(k), k ∈ (−∞,∞) and q 6= 1, in the form

∆−tq u(k)
∣∣∣∣∣∣k

k
qm

=
m∑

(r)1→t

u
(
k

t∏
i=1

q−ri

)
.
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Then we extended this q-difference equation to generalized higher oredr q-alpha difference
equation

∆
(q1)α1

(
∆

(q2)α2

(
· · · ∆

(qt)αt

(
v(k)

)
· · ·
))

= u(k), k ∈ (−∞,∞), (1)

and obtained many results. Also we derived finite q-alpha multi-series formula and finite higher
order q-alpha series formula [2]. In this paper, we derive infinite q-alpha multi-series for polyno-
mials, polynomial factorials and logarithmic functions by equating summation and closed form
solutions of the equation (1).

2 Preliminaries

We begin with some notations, basic definitions and preliminary results which are used in
the subsequent sections. Let u(k) be a real valued function on (−∞,∞), α and q be non-zero
reals and m be a positive integer. Throughout this paper, we use following notations:

(i)
m∑

(r)1→i

=
m∑

r1=0

m∑
r2=0
· · ·

m∑
ri=0

; (ii) ∆−1
q1→t

= ∆−1
q1 ∆−1

q2 ∆−1
q3 · · ·∆

−1
qt

and

(iii) ∆−1
(q,α)1→t

= ∆−1
(q1)α1

∆−1
(q2)α2

· · · ∆−1
(qt)αt

.

Definition 2.1. [2] Let u(k) be a real valued function on (−∞,∞) and q be a fixed real . Then
the q-alpha difference operator, denoted by ∆

(q)α
, on u(k) is defined as

∆
(q)α

u(k) = u(qk)− αu(k), (2)

and the inverse of the q-alpha difference operator, denoted by ∆−1
(q)α

, is defined as below:

if ∆
(q)α

v(k) = u(k), then we write v(k) = ∆−1
(q)α

u(k). (3)

Lemma 2.2. [1, 2] Let k ∈ (0,∞) and α 6= 1. Then we have

∆−1
(q)α

(1) = 1
1− α, ∆−1

(q)1
(1) = log(k)

log(q) , q 6= 1 (4)

and

∆−1
(q)α

log(k) = log(k)
1− α −

log(q)
(1− α)2 . (5)

Lemma 2.3. [6] Let snr be the Stirling numbers of first kind, n ∈ N(1). If
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k
(n)
q =

n−1∏
i=0

(k − iq) and
(1
k

)(n)

q
=

n−1∏
i=0

(1
k
− iq

)
for k, q 6= 0, then

k(n)
q =

n∑
r=1

snr q
n−rkr and

(1
k

)(n)

q
=

n∑
r=1

snr q
n−r

(1
k

)r
. (6)

3 Main Results

The purpose of this section is to obtain the sum of infinite q-alpha multi-series by equating
summation and closed form solutions of the generalized higher order q-alpha difference equation
(1).

Theorem 3.1. (Infinite q-alpha Series Formula) Let q, α 6= 0, u(k) be a real valued function
defined on (−∞,∞) and if lim

h→∞

1
αh

∆−1
(q)α

u(qhk) = 0, then

∆−1
(q)α

u(k) = −1
α

∞∑
h=0

1
αh
u
(
qhk

)
(7)

is an infinite series solution of the q-alpha difference equation (1) for t = 1.

Proof: Taking ∆−1
(q)α

u(k) = v(k) and by Definition 2.1, we have

v(k) = −1
α
u(k) + 1

α
v(qk). (8)

Replacing k by qk in (8), we get v(qk) = −1
α
u
(
qk
)

+ 1
α
v(q2k). Therefore (8) becomes

v(k) = −1
α

{
u(k) + 1

α
u(qk)

}
+ 1
α2 v(q2k). (9)

Again replacing k by q2k, q3k,· · · in (8) repeatedly and putting the resultant expressions in (9),
we get v(k) = −1

α

∞∑
h=0

1
αh
u(qhk), which completes the proof.

Theorem 3.2. (Infinite q-alpha Multi-Series Formula) Let k ∈ (−∞,∞) and αi, qi 6= 0. If
lim
hi→∞

1
αhi
i

∆−1
(q,α)1→i

u(qhi
i k) = 0 for i = 1, 2, · · · , t, then we have

∞∑
(h)1→t

t∏
p=1

α−hp
p u

(
t∏

p=1
qhp
p k

)
= (−1)t

t∏
p=1

αp ∆−1
(q,α)1→t

u(k), (10)

which is a solution of the equation (1).
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Proof: Replacing q, α, h by q2, α2, h2 in (7), we get

u(k) + 1
α2
u(q2k) + 1

α2
2
u(q2

2k) + · · ·+∞ = −α2 ∆−1
(q2)α2

u(k). (11)

Replacing k by qh1
1 k and dividing by αh1

1 for h1 = 1, 2, 3, · · · ,∞ in (11), we obtain

1
αh1

1

{
u(qh1

1 k) + 1
α2
u(qh1

1 q2k) + 1
α2

2
u(qh1

1 q2
2k) + · · ·+∞

}
= −α2

αh1
1

∆−1
(q2)α2

u(qh1
1 k)

for h1 = 1, 2, 3, · · · ,∞.
Summing the above equations with (11), we have

∞∑
h1=0

∞∑
h2=0

u(qh1
1 qh2

2 k)
αh1

1 αh2
2

= (−α2)
∞∑

h1=0
∆−1
(q2)α2

u(qh1
1 k)
αh1

1
. (12)

Applying (7) in (12), we obtain

∞∑
h1=0

∞∑
h2=0

u(qh1
1 qh2

2 k)
αh1

1 αh2
2

= (−α1)(−α2) ∆−1
(q1)α1

∆−1
(q2)α2

u(k). (13)

Replacing q1, q2, α1, α2.h1, h2 by q2, q3, α2, α3, h2, h3 in (13), we get

∞∑
h2=0

∞∑
h3=0

u(qh2
2 qh3

3 k)
αh2

2 αh3
3

= (−α2)(−α3) ∆−1
(q2)α2

∆−1
(q3)α3

u(k). (14)

Replacing k by qh1
1 k and dividing by αh1

1 for h1 = 1, 2, 3, · · · ,∞ in (14) and then summing all
the corresponding expressions with (14) yields

∞∑
h1=0

∞∑
h2=0

∞∑
h3=0

u(qh1
1 qh2

2 qh3
3 k)

αh1
1 αh2

2 αh3
3

= (−α2)(−α3)
∞∑

h1=0
∆−1

(q2)α2
∆−1

(q3)α3

u(qh1
1 k)
αh1

1
. (15)

Applying (7) in (15) gives

∞∑
h1=0

∞∑
h2=0

∞∑
h3=0

u(qh1
1 qh2

2 qh3
3 k)

αh1
1 αh2

2 αh3
3

= (−α1)(−α2)(−α3) ∆−1
(q1)α1

∆−1
(q2)α2

∆−1
(q3)α3

u(k).

Proceeding like this, we derive

∞∑
h1=0

∞∑
h2=0
· · ·

∞∑
ht=0

t∏
p=1

α−hp
p u

(
t∏

p=1
qhp
p k

)
= (−1)t

t∏
p=1

αp ∆−1
(q1)α1

∆−1
(q2)α2

· · · ∆−1
(qt)αt

u(k),

which yields (10).
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Corollary 3.3 gives a formula for infinite series involving logarithmic function.

Corollary 3.3. Let α1, α2 6= 0, 1, qi 6= 0 and k > 0. If lim
hi→∞

1
αhi
i

∆−1
(q,α)1→i

log(qhi
i k) = 0 for

i = 1, 2, then we have

∞∑
h1=0

∞∑
h2=0

1
αh1

1 αh2
2

log
( 1
qh1

1 qh2
2 k

)
= α1α2

(1− α1)(1− α2)

{
log

(1
k

)
−

log
(
1/q1

)
1− α1

−
log

(
1/q2

)
1− α2

}
(16)

Proof: Consider t = 2 and u(k) = log(1/k) in (10). Then we have

∞∑
h1=0

∞∑
h2=0

1
αh1

1 αh2
2

log
( 1
qh1

1 qh2
2 k

)
= α1α2 ∆−1

(q1)α1
∆−1

(q2)α2
log

(1
k

)
. (17)

From Definition (2.1), we have ∆
(q2)α2

log
(1
k

)
= log

( 1
q2

)
+ (1 − α2) log

(1
k

)
, which gives

∆−1
(q2)α2

log
(1
k

)
= 1

1− α2

{
log

(1
k

)
− 1

1− α2
log

( 1
q2

)}
.

Operating ∆−1
(q1)α1

on both sides, we obtain

∆−1
(q1)α1

∆−1
(q2)α2

log
(1
k

)
= 1

(1− α1)(1− α2)

{
log

(1
k

)
− 1

1− α1
log

( 1
q1

)

− 1
1− α2

log
( 1
q2

)}
. (18)

We complete the proof by substituting (18) in (17).

The following example is a verification of Corollary 3.3.

Example 3.4. Putting k = 20, q1 = 3, q2 = 4, α1 = 2 and α2 = 3 in (16), we get

∞∑
h1=0

∞∑
h2=0

1
2h13h2

log
( 1

3h14h220
)

= 6
(−1)(−2)

{
log

( 1
20
)

+ log
(1

3
)

+ 1
2 log

(1
4
)}

,

which gives
∞∑

h1=0

∞∑
h2=0

1
2h13h2

log(3h14h220) = 3 log(120).

Corollary 3.5. For any real valued function u(k) on (−∞,∞), if α 6= 0 and
lim
hi→∞

1
αhi

∆−1
(q)1→iα

u(qhi
i k) = 0 for i = 1, 2, · · · , t, then we have

∞∑
(h)1→t

t∏
p=1

α−hp u

(
t∏

p=1
qhp
p k

)
= (−α)t ∆−1

(q)1→tα
u(k). (19)
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Proof: The proof is obvious by putting α1 = α2 = · · · = αt = α in (10).

Corollary 3.6. (Infinite q Multi-Series Formula) For 0 6= qi ∈ (−∞,∞) and if
lim
hi→∞

∆−1
(q)1→i

u(qhi
i k) = 0, i = 1, 2, · · · , t, then

∞∑
(h)1→t

u

(
t∏

p=1
qhp
p k

)
= (−1)t ∆−1

(q)1→t

u(k). (20)

Proof: The proof completes by taking α = 1 in Corollary 3.5.

Corollary 3.7. Let k ∈ (0,∞) and qi 6= 0, 1. If lim
hi→∞

∆−1
(q)1→i

1
qhi
i k

= 0 for i = 1, 2, then we have

∞∑
h1=0

∞∑
h2=0

1
qh1

1 qh2
2 k

= q1q2
(1− q1)(1− q2)k (21)

Proof: Consider t = 2 and u(k) = 1
k

in Corollary 3.6. Then we get

∞∑
h1=0

∞∑
h2=0

1
qh1

1 qh2
2 k

= ∆−1
(q1)

∆−1
(q2)

1
k
. (22)

From Definition 2.1, we write, ∆−1
(q1)

∆−1
(q2)

1
k

= q1q2
(1− q1)(1− q2)k . Hence the proof follows by

applying the above value in (22).

The following example illustrates Corollary 3.7.

Example 3.8. Taking q1 = 3, q2 = 4 and k = 19 in (21), we get
∞∑

h1=0

∞∑
h2=0

1
3h14h219 = 12

6× 19 .

Corollary 3.9. (Infinite q-series) Let k ∈ (−∞,∞). If lim
hi→∞

∆−t
(q)

u(qhik) = 0 for i = 1, 2, · · · , t,

then we have

∞∑
(h)1→t

u

(
t∏

p=1
qhpk

)
= (−1)t ∆−t

(q)
u(k). (23)

Proof: We can easily prove this corollary by putting qi = q in 20.

Theorem 3.10. (Higher order Infinite q-alpha Series Formula) Let α, q 6= 0 and k ∈ (−∞,∞).

If lim
h→∞

(
h+ t− 1
t− 1

)
1
αh
u(qhk) = 0, then we have

∞∑
h=0

(
h+ t− 1
t− 1

)
1
αh
u(qhk) = (−α)t ∆−t

(q)α
u(k), (24)
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which is a solution of the equation (1) for each αi = α.

Proof: From Theorem 3.1, we have

u(k) + 1
α
u(qk) + 1

α2u(q2k) + · · ·+ u(∞) = −α∆−1
(q)α

u(k). (25)

Replacing k by qk and dividing by α, we get

1
α

{
u(qk) + 1

α
u(q2k) + 1

α2u(q3k) + · · ·+ u(∞)
}

= −∆−1
(q)α

u(qk). (26)

Again replacing k by q2k, q3k, · · · and dividing the corresponding expressions by α2, α3, · · · in
(25) and then summing up all the resultant expressions, we arrive

∞∑
h=0

(h+ 1)
αh

u(qhk) = −α
∞∑
h=0

1
αh

∆−1
(q)α

u(qhk). (27)

Applying Theorem 3.1 in (27), we find that

∞∑
h=0

(
h+ 1

1

)
1
αh
u(qhk) = (−α)2 ∆−2

(q)α
u(k).

Repeating the above procedure on (27) and using Theorem 3.1, we obtain

∞∑
h=0

(
h+ 2

2

)
1
αh
u(qhk) = (−α)3 ∆−3

(q)α
u(k).

Continuing like this, we get proof of this theorem.

Corollary 3.11. ( Higher order Infinite q-Series Formula ) Let k ∈ (−∞,∞) and t ∈ N(1).

If lim
h→∞

(
h+ t− 1
t− 1

)
u(qhk) = 0, then we have

∞∑
h=0

(
h+ t− 1
t− 1

)
u(qhk) = (−1)t ∆−t

(q)
u(k). (28)

Proof: Taking α = 1 in (24) completes the proof of this corollary.

Corollary 3.12. Let k ∈ (0,∞) and α, q, 1− αq2 6= 0. If lim
h→∞

(
h+ 2

2

)
1

αh(qhk)2 = 0, then we

have

∞∑
h=0

(
h+ 2

2

)
1

αh(qhk)2 = (−α)3
( q2

1− αq2

)3 1
k2 . (29)
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Proof: Consider t = 3 and u(k) = 1
k2 in (24). Then we get

∞∑
h=0

(
h+ 2

2

)
1

αh(qhk)2 = (−α)3 ∆−3
(q)α

( 1
k2

)
(30)

From (2), ∆
(q)α

( 1
k2

)
=
( 1
q2 − α

) 1
k2 , which gives ∆−3

(q)α

( 1
k2

)
=
( q2

1− αq2

)3 1
k2 .

Substituting this value in (30) yields (29).

Example 3.13. Taking k = 18, q = 4 and α = 3 in (29), we get

∞∑
h=0

(
h+ 2

2

)
1
3h

1
(4h18)2 = (−3)3 46

(1− 3× 16)3182 .

Corollary 3.14. Let q 6= 0, 1, k ∈ (0,∞) and 1− q2 6= 0. Then we have

∞∑
h=0

(
h+ 1

1

)( 1
(qhk)2 −

q

qhk

)
=
( q2

1− q2

)2 1
k2 − q

( q

1− q
)2 1
k
. (31)

Proof: Taking t = 2 and u(k) =
(1
k

)(2)

q
in (28), we get

∞∑
h=0

(
h+ 1

1

)( 1
qhk

)(2)

q
= ∆−2

(q)

(1
k

)(2)

q
. (32)

From Lemma 2.3, we have

∆−1
(q)

(1
k

)(2)

q
=
( q2

1− q2

) 1
k2 − q

( q

1− q
)1
k
. (33)

So the proof follows by substituting (33) in (32).

The following example illustrates Corollary 3.14.

Example 3.15. Putting q = 4 and k = 26 in (31), we get

∞∑
h=0

(
h+ 1

1

)( 1
(4h × 26)2 −

4
4h26

)
=
( 16

1− 16
)2 1

262 − 4
( 4

1− 4
)2 1

26 .

4 Conclusion

In this paper, multi-series solution and closed form solutions of the higher order infinite q-alpha
difference equation have been obtained to get the sum of infinite q-alpha multi-series.
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