

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

Recurrence relation on the number of spanning trees of generalized book graphs and related family of graphs

Nithya Sai Narayana

N.E.S. Ratnam College of Arts, Science and Commerce Bhandup, Mumbai-400078, India. narayana_nithya@yahoo.com

Abstract

The book graph denoted by $B_{n,2}$ is the cartesian product $S_{n+1} \times P_2$ where S_{n+1} is a star graph with *n* vertices of degree 1 and one vertex of degree *n* and P_2 is the path graph of 2 vertices. Let $\tau(B_{n,2})$ denote the number of spanning trees of $B_{n,2}$. Let $X_{n,p}$ denote the generalized form of book graph where a family of *p*-cycles which are *n* in number is merged at a common edge. In this paper, we discuss some recurrence relations satisfied by $X_{n,p}$ and spanning trees of these associated family of graphs.

Keywords: Book graph, spanning trees, recurrence relation. AMS Subject Classification(2010): 05C05, 05C30, 05C85, 68R05.

1 Introduction and Preliminaries

Number of spanning trees of a graph representing a network represents the strength of the network and it is one of the important parameter associated with a graph. Cartesian product of two graphs G_1, G_2 denoted by $G_1 \times G_2$ is a graph with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and two vertices $(u_1, v_1), (u_2, v_2)$ of $G_1 \times G_2$ are adjacent if and only if either $u_1 = u_2$ and (v_1, v_2) is an edge in G_2 or $v_1 = v_2$ and (u_1, u_2) is an edge of G_1 . The book graph denoted by $B_{n,2}$ is the cartesian product $S_{n+1} \times P_n$ where S_{n+1} is a star graph with n vertices of degree 1 and one vertex of degree n and P_2 is the path graph of n vertices. First observe that book graphs are planar graphs and examples of few book graphs and their planar representation are given below.

Figure 1: Book graphs $B_{4,2}$ and $B_{5,2}$ and their planar representation.

Definition 1.1. (i) Let G = (V, E) be a graph. Let $e = xy \in E$ be an edge which is not a loop. The graph G - e is obtained by removing the edge e from G and the graph G.e is obtained by removing the edge e and merging the vertices x, y to a single vertex. Note that this new vertex is adjacent to all the vertices originally adjacent to the vertices x and y in G.

(ii) Suppose the vertices x, y are connected by the a simple path $P: x = v_0v_1, v_2 \cdots v_k = y$. We assume that the vertices $v_1, v_2, \cdots v_{k-1}$ are not adjacent with any other vertices of G. We define G - P is the graph obtained by removing the vertices $v_1, v_2, \cdots v_{k-1}$ from G and the graph G.P is obtained by removing $v_1, v_2, \cdots v_{k-1}$ from G and merging x, y to a single vertex. Note that this new vertex is adjacent to all the vertices originally adjacent to the vertices x and y in G except the vertices v_1 and v_{k-1} .

(iii) Let $V_1 \subset V$ then the graph generated by V_1 denoted by $\langle V_1 \rangle$ is a sub-graph of G whose vertex set is V_1 and edge set is the set of all edges of G having both the end vertices in V_1 .

Theorem 1.2. (Fundamental recurrence relation of spanning trees of a graph) Let G = (V.E) be a graph and $e \in E(G)$ be an edge of G which is not a loop, then $\tau(G) = \tau(G-e) + \tau(G.e)$.

Theorem 1.3. If G = (V, E) is a graph such that $V(G) = V_1 \cup V_2 \cup \cdots \cup V_n$ where $V_i \cap V_j = \{x\}$ for $i \neq j$. Let $G_i = \langle V_i \rangle$ for $i = 1, 2 \cdots n$ and suppose the graph generated by $\langle V_i \rangle$ does not have any edge common with $\langle V_j \rangle$ for $i \neq j$ then $\tau(G) = \tau(G_1)\tau(G_2)\cdots\tau(G_n)$.

Theorem 1.4. If G = (V, E) is a graph such that $V(G) = V_1 \cup V_2 \cup \cdots \cup V_n$ such that $V_i \cap V_{i+1}$ has exactly one vertex common and $\langle V_i \rangle$ and $\langle V_j \rangle$ has no edge common for $i \neq j$ then $\tau(G) = \tau(G_1)\tau(G_2)\cdots\tau(G_n)$.

Theorem 1.5. [2] Let G = (V, E) be a planar graph. Let $V = V_1 \cup V_2$ be such that $V_1 \cap V_2 = \{x, y\}$. Let $e = xy \in E(G)$ and $E(G) = \langle V_1 \rangle \cup \langle V_2 \rangle$ be such that $\langle V_1 \rangle \cap \langle V_2 \rangle = \{e\}$ where e is the unique edge common to $\langle V_1 \rangle$ and $\langle V_2 \rangle$. Let $G_1 = \langle V_1 \rangle$ and $G_2 = \langle V_2 \rangle$. Then $\tau(G) = \tau(G_1)\tau(G_2) - \tau(G_1 - e)\tau(G_2 - e)$.

Proof: Number of spanning trees of G= number of spanning trees of G not containing e number of spanning trees of G containing e. Clearly number of spanning tree of $G_1 = \tau(G_1) = \tau(G_1 - e) + \tau(G_1.e)$ and number of spanning tree of $G_2 = \tau(G_2) = \tau(G_2 - e) + \tau(G_2.e)$. $\tau(G_1)\tau(G_2) = [\tau(G_1 - e) + \tau(G_1.e)][\tau(G_2 - e) + \tau(G_2.e)]$

$$= \tau(G_1 - e)\tau(G_2 - e) + \tau(G_1 \cdot e)\tau(G_2 - e) + \tau(G_1 - e)\tau(G_2 \cdot e) + \tau(G_1 \cdot e)\tau(G_2 \cdot e).$$

Thus,

$$\tau(G_1)\tau(G_2) - \tau(G_1 - e)\tau(G_2 - e) = \tau(G_1 \cdot e)\tau(G_2 - e) + \tau(G_1 - e)\tau(G_2 \cdot e) + \tau(G_1 \cdot e)\tau(G_2 \cdot e)$$

$$\cdots \cdots \quad (I)$$

Figure 2

Consider a spanning tree T_1 of G_1 containing e and a spanning tree T_2 of G_2 containing e. From the two spanning trees T_1, T_2 we can construct a spanning of G containing e by merging the two spanning trees at e. Conversely consider a spanning tree of G containing e. By considering the induced sub-graph of T restricted to the vertices of G_1 and G_2 we get two spanning trees of G_1 and G_2 each of them containing e. Thus there is a bijective relation between the set of spanning trees of G containing e and the spanning trees of G_1 and G_2 each of them containing the edge e.

Note that the number of spanning trees of G_1 containing e is the same as the number of spanning trees of $G_1.e$ and the number of spanning trees of G_2 containing e is the same as the number of spanning trees of $G_2.e$ and the number of spanning trees of G containing e is the same as the number of spanning trees of G.e and hence we have,

$$\tau(G.e) = \tau(G_1.e) \times \tau(G_2.e) \qquad \qquad \cdots \cdots \qquad (\text{II})$$

Now consider a spanning tree T_1 of G_1 not containing e and a spanning tree T_2 of G_2 containing e. We construct a new graph G' by merging the two spanning trees. Note that in T_1 there is a unique path joining x and y and in T_2 the unique path joining x and y is the edge e. Thus G' contains a unique cycle containing e and is a spanning sub-graph of G and hence G' - e is a spanning tree of G not containing e. Similarly by considering a spanning tree of G_2 not containing e and a spanning tree of G_1 containing e we can construct a spanning tree of G not containing e.

Conversely consider a spanning tree T of G not containing e. By considering the induced sub-graph of T containing the vertices of V_1 and V_2 we get two sub-graphs of G_1 and G_2 say G'_1 and G'_2 . First we prove that either there is a unique path in G'_1 between x and y or there is a unique path in G'_2 between x and y but not in both. Clearly if there is a unique path both in G'_1 and in G'_2 then $T_1 = G'_1 \cup G'_2$ contains a cycle as there are two distinct paths in T between the vertices x and y and it is not possible as T is a spanning tree of G and it does not contain a cycle.

Suppose there is no path in G'_1 between x and y then there must be a path between x and y in G'_2 otherwise there is no path between x and y in T. If G'_1 does not contain a path between

Nithya Sai Narayana

x and y then we add the edge e to G'_1 to get a spanning tree of G_1 and in that case G'_2 is a spanning tree of G_2 . If G'_2 does not contain a path between x and y, we add e to G'_2 to get a spanning tree of G_2 and in that case G'_1 is a spanning tree of G_1 .

Note that there are exactly two possibilities for a spanning tree of G not containing e. The induced sub-graph containing the vertices of V_1 either contains a path between x and y or does not contain a path between x and y. In the first case we construct a spanning tree of G_1 not containing e and a spanning tree of G_2 containing e. In the second case we get a spanning tree of G_1 containing e and a spanning tree of G_2 not containing e. Thus we have,

 $\tau(G-e) = \tau(G_1.e)\tau(G_2-e) + \tau(G_1-e)\tau(G_2.e).$ (III) Using Theorem 1.2 we get,

$$\tau(G) = \tau(G - e) + \tau(G.e)$$

= $\tau(G_1.e)\tau(G_2 - e) + \tau(G_1 - e)\tau(G_2.e) + \tau(G_1.e)\tau(G_2.e)$ (from II and III)
= $\tau(G_1)\tau(G_2) - \tau(G_1 - e)\tau(G_2 - e)$ (from I).

Thus the theorem is proved.

Theorem 1.6. [2] Let G = (V, E) be a planar graph. Let $V(G) = V_1 \cup V_2$ be such that $V_1 \cap V_2 = \{x, y\}$. Let x and y be two vertices of G such that every path in G from $u_i \in V_1$ to $u_j \in V_2$ passes either through x or y and u and v are part of the same face of G. Let $\langle V_1 \rangle = G_1$ and $\langle V_2 \rangle = G_2$, then $\tau(G) = \tau(G_1)\tau(G_2 \cdot xy) + \tau(G_2)\tau(G_1 \cdot xy)$ where $G_1 \cdot xy, G_2 \cdot xy$ are obtained by merging the two vertices x, y into a single vertex so that the vertices adjacent to x, y would be adjacent to the new vertex.

Proof: Note that x, y may or may not be adjacent. Suppose x, y are adjacent vertices, then the edge e = xy is included in exactly one of G_1 or G_2 .

Consider a spanning tree T of G. We consider the sub-graph of T restricted to the vertices of V_1 and V_2 . Let the sub-graph of T generated by V_1 be denoted by T'_1 and the sub-graph of T generated by V_2 be denoted by T'_2 . Note that there cannot be a path between x and y both in G'_1 and G'_2 as otherwise the union of two paths will give a cycle in T which is not possible. There are two possibilities. If there is a path in T'_1 between x and y then there cannot be a path between x and y in T'_2 and further if there is no path between x and y in T'_1 then there must be a path between x and y in T'_2 as T is connected.

Consider the first case(Type I) where T'_1 does not have a path between x and y. Note that T'_2 has a path between x and y. We prove that T'_2 is a spanning tree of G_2 and $T'_1.xy$ is a spanning tree of $G_1.xy$.

Suppose T'_2 is not a spanning tree of G_2 . Let u, v be two vertices of G_2 which are not connected in G_2 . Clearly in T, there exists a path consisting of vertices of G_2 between u and x or between u and y through which u is connected to a vertex of G_1 . Similarly in T there exists a path consisting of vertices of G_2 between v and x or between v and y through which vis connected to a vertex of G_1 . As per the assumption in T'_2 there exists a path between x and y consisting of vertices of G_2 which implies that there exists a path between u and v consisting of vertices of G_2 . It is a contradiction to our assumption and hence T'_2 is a spanning tree of G_1 .

Now we prove that $T'_1.xy$ is a spanning tree of $G_1.xy$. Let u, v be any two vertices in G_1 . In T there exists a path from u and x or u and y, consisting of vertices of G_1 through which the vertex u is connected to a vertex of G_2 and similarly in T such path exists from v and x or v and y. In other words vertices of G_1 in T'_1 are either connected to x or connected to y and hence in $T'_1.xy$ every pair of vertices of $G_2.xy$ are connected and is a spanning tree of $G_1.xy$.

Using similar argument it is clear that for the case(Type II) where T'_1 have a path between x and y and there is no path between x and y in T'_2 , it can be proved that T'_1 is a spanning tree of G_1 and in that case $T'_2.xy$ is a spanning tree of $G_2.xy$.

Thus every spanning tree T of G gives rise to either a spanning tree of G_1 and a spanning tree of $G_2.xy$ or a spanning tree of G_2 and a spanning tree of $G_1.xy$. Conversely with every spanning tree of G_1 and a spanning tree of $G_2.xy$ we get a spanning tree of G in which a path exists between x and y in G_1 and with every spanning tree of G_2 and a spanning tree of $G_1.xy$ we get a spanning tree of G in which a path exists between x and y in G_2 .

Note that a spanning tree of G is either of Type I or of Type II and hence we get $\tau(G) = \tau(G_1)\tau(G_2 \cdot xy) + \tau(G_2)\tau(G_1 \cdot xy)$.

2 Results on spanning trees of generalized book graph

Definition 2.1. Let $X_{n,p}$ denote a graph with *n* number of *p*-cycles with a common edge e = xy. We call this graph as generalized book graph as the graph becomes a book graph for p = 4

Nithya Sai Narayana

In this section we derive the recurrence relations satisfied by generalized book graphs and few more graphs obtained from the generalized books graphs.

Theorem 2.2. Let $X_{n,p}$ denote a graph with n number of p-cycles with a common edge e = xyand let $Y_{n,p} = X_{n,p} - e$ then $X_{n,p}$ and $Y_{n,p}$ satisfy the following recurrence relations (i) $\tau(X_{n,p}) = 2(p-1)\tau(X_{n-1,p}) - (p-1)^2\tau(X_{n-2,p})$ (ii) $\tau(Y_{n,p}) = (3p-4)\tau(Y_{n-1,p}) - (3p^2 - 8p + 5)\tau(Y_{n-2,p}) + (p^3 - 4p^2 + 5p - 2)\tau(Y_{n-3,p})$

Proof: Note that in $Y_{n,p}$ there exists p distinct paths between x and y of length p-1. Choosing any one such path and by removing each of p-1 edges between x and y and applying successively Theorem 1.2 we get $\tau(Y_{n,p}) = (p-2)\tau(Y_{n-1,p}) + \tau(X_{n-1,p})$

$$\Rightarrow \tau(Y_{n-1,p}) = (p-2)\tau(Y_{n-2,p}) + \tau(X_{n-2,p}) \qquad \dots \dots (*)$$

Further, $\tau(X_{n,p}) = \tau(G_1)\tau(G_2) - \tau(G_1 - e)\tau(G_2 - e)$ using Theorem 1.5, where G_1 is any *p*-cycle in $X_{n,p}$ containing *e* and G_2 is obtained from $X_{n,p}$ by removing the edges of G_1 other than the common edge *e*.

Thus,
$$\tau(X_{n,p}) = p\tau(X_{n-1,p}) - \tau(Y_{n-1,p})$$

 $\Rightarrow \tau(Y_{n-1,p}) = p\tau(X_{n-1,p}) - \tau(X_{n,p})$ and
 $\tau(Y_{n-2,p}) = p\tau(X_{n-2,p}) - \tau(X_{n-1,p}).$ (**)
Substituting in (*)
 $p\tau(X_{n-1,p}) - \tau(X_{n,p}) = (p-2)[p\tau(X_{n-2,p}) - \tau(X_{n-1,p})] + \tau(X_{n-2,p})$
 $\Rightarrow \tau(X_{n,p}) = p\tau(X_{n-1,p}) + (p-2)\tau(X_{n-1,p}) - \tau(X_{n-2,-p}) - p(p-2)\tau(X_{n-2,p}),$
Thus, $\tau(X_{n,p}) = 2(p-1)\tau(X_{n-1,p}) - (p-1)^{2}\tau(X_{n-2,p})$ which proves (i).
From (*), $\tau(X_{n-1,p}) = \tau(Y_{n,p}) - (p-2)\tau(Y_{n-1,p}), \tau(X_{n-2,p}) = \tau(Y_{n-1,p}) - (p-2)\tau(Y_{n-2,p})$ and
 $\tau(X_{n-3,p}) = \tau(Y_{n-2,p}) - (p-2)\tau(Y_{n-3,p}).$
Hence, $\tau(Y_{n,p}) - (p-2)\tau(Y_{n-1,p}) = 2(p-1)[\tau(Y_{n-1,p}) - (p-2)\tau(Y_{n-2,p})] - (p-1)^{2}[\tau(Y_{n-2,p}) - (p-2)\tau(Y_{n-3,p})].$
Simplifying up opt

Simplifying we get,

$$\begin{aligned} \tau(Y_{n,p}) &= [2(p-1) + (p-2)]\tau(Y_{n-1,p}) - [2(p-1)(p-2) + (p-1)^2]\tau(Y_{n-2,p}) \\ &+ (p-1)^2(p-2)\tau(Y_{n-3,p}) \\ &= (3p-4)\tau(Y_{n-1,p}) - (3p^2 - 8p + 5)\tau(Y_{n-2,p}) + (p^3 - 4p^2 + 5p - 2)\tau(Y_{n-3,p}). \end{aligned}$$

Hence (ii) is proved.

The following well known result(which is actually a simple application of fundamental recurrence relation) is presented here. It is observed that it can also be arrived at by solving the recurrence relation mentioned above.

Corollary 2.3. (i)
$$\tau(X_{n,p}) = (p-1)^n + n(p-1)^{n-1}$$
 and (ii) $\tau(Y_{n,p}) = n(p-1)^{n-1}$.

80

Proof: From Theorem 2.2 (i), the characteristic equation of $\tau(X_{n,p})$ is $x^2 - 2(p-1)x + (p-1)^2 = 0$ and the solution to the recurrence relation is $\tau(X_{n,p}) = c_1(p-1)^n + c_2n(p-1)^n$ with $\tau(X_{1,p}) = p$ and $\tau(X_{2,p}) = p^2 - 1$ and is given by $\tau(X_{n,p}) = (p-1)^n + n(p-1)^{n-1}$.

From Theorem 2.2 (ii), the characteristic equation of $\tau(Y_{n,p})$ is $x^3 - (3p - 4)x^2 + (3p^2 - 8p + 5)x - (p^3 - 4p^2 + 5p - 2) = 0$ which implies $(x - (p - 2))(x - (p - 1))^2 = 0$ and the solution to the recurrence relation is $\tau(Y_{n,p}) = c_1(p - 2)^n + c_2(p - 1)^n + c_3n(p - 1)^n$ with $\tau(Y_{1,p}) = 1, \tau(Y_{2,p}) = 2(p - 1)$ and $\tau(Y_{3,p}) = 3(p - 1)^2$ is given by $\tau(Y_{n,p}) = n(p - 1)^{n-1}$.

Theorem 2.4. Suppose $G_{m,p:n,q}$ is a graph with m number of p-cycles and n number of q-cycles with a common edge e = xy, then

 $\tau(G_{m,p:n,q}) = (p-1)^{m-1}(q-1)^{n-1}[(p-1+m)(q-1+n) - mn].$

Proof: Let $A_{m,p}$ denote *m* number of *p* cycles with common edge *e* and $B_{n,q}$ denote *n* number of *q*-cycles with the common edge *e*. Let $C_{m,p} = A_{m,p} - e$ and $D_{n,q} = B_{n,q} - e$. Then by Corollary 2.3, we have $\tau(A_{m,p}) = (p-1)^m + m(p-1)^{m-1}$, $\tau(B_{n,q}) = (q-1)^n + n(q-1)^{n-1}$, $\tau(C_{m,p}) = m(p-1)^{m-1}$ and $\tau(D_{n,q}) = n(q-1)^{n-1}$. Using Theorem 1.5,

$$\tau(G_{m,p:n,q}) = \tau(A_{m,p})\tau(B_{n,q}) - \tau(C_{m,p})\tau(D_{n,q})$$

= $(p-1)^m + m(p-1)^{m-1}(q-1)^n + n(q-1)^{n-1} - m(p-1)^{m-1}n(q-1)^{n-1}$
= $(p-1)^{m-1}(q-1)^{n-1}[(p-1+m)(q-1+n) - mn].$

Theorem 2.5. Let $E_1 = X_{m,p}$ with a common base as e and $F_1 = Y_{m,p} = X_{m,p} - e$. Let E_n and F_n be defined by joining n copies of E_1 and F_1 successively at an edge other than the base as given below. Then, $\tau(E_n), \tau(F_n)$ satisfy the following recurrence relations.

Figure 4: .Graph E_n and F_n .

(i) $\tau(E_n) = \alpha \tau(E_{n-1}) - \alpha'^2 \tau(E_{n-2})$ where $\alpha = (p-1)^m + m(p-1)^{m-1}$ and $\alpha' = (p-1)^{m-1} + m(p-1)^{m-2}$. (ii) $\tau(F_n) = \beta \tau(F_{n-1}) - \beta'^2 \tau(F_{n-2})$ where $\beta = m(p-1)^{m-1}$ and $\beta' = (m-1)(p-1)^{m-2}$. **Proof:** From Corollary 2.3, $\tau(E_1) = (p-1)^n + n(p-1)^{n-1} = \alpha(say)$ and $\tau(F_1) = n(p-1)^{n-1} = \beta(say)$ and by Theorem 1.5, $\tau(E_2) = \tau(E_1)\tau(E_1) - \tau(E_1 - e)\tau(E_1 - e) = \tau(X_{m,p})^2 - \tau(X_{m-1,p})^2 = \alpha^2 - \beta^2$.

Using Theorem 1.5 we get,

Nithya Sai Narayana

 $\tau(E_n) = \tau(E_1)\tau(E_{n-1}) - \tau(E_{n-2}).\tau(X_{m-1,p})\tau(X_{m-1,p}) = \alpha\tau(E_{n-1}) - (\alpha')^2\tau(E_{n-2}).$ (ii) Using similar argument we get,

 $\tau(F_1) = \tau(Y_{m,p}) = m(p-1)^{m-1} = \beta(say)$ and $\tau(F_2) = Y_{m,p}^2 - Y_{m-1,p}^2 = \beta^2 - \beta'^2$ where $\beta' = (m-1)(p-1)^{m-2}$.

Using Theorem 1.5, we have $\tau(F_n) = \tau(F_{n-1})\tau(Y_{m,p}) - \tau(F_{n-2})\tau(Y_{m-1,p})^2 = \beta\tau(F_{n-1}) - (\beta')^2\tau(F_{n-2}).$

Theorem 2.6. Let $H_1 = G_{m,p:t,q}$ consisting of m number of p-cycles and t number of q-cycles with a common base e. Let H_n denote a graph containing n- copies of H_1 merged successively at edges other than the base as below. Then, $\tau(H_n)$ satisfies the recurrence relation given by $\tau(H_n) = \lambda \tau(G_{n-1}) - \mu^2 \tau(G_{n-2})$ where $\lambda = (p-1)^{m-1}(q-1)^{t-1}[(p-1+m)(q-1+t) - mt]$ and $\mu = (p-1)^{m-2}(q-1)^{t-2}[(p-2+m)(q-2+t) - (m-1)(t-1)]$ where $m \ge 2$ and $t \ge 2$.

Proof: Similar to the proof of Theorem 2.5 using Theorems 2.4 and 1.5. For m = 1, t > 1 and m > 1, t = 1 and m = 1, t = 1 similar results can be arrived.

Remark 2.7. The characteristic equation of $\tau(E_n)$ is given by $x^2 - ((p-1)^m + m(p-1)^{m-1})x + ((p-1)^{m-1} + (m-1)(p-1)^{m-2})^2 = 0$. Suppose θ_1, θ_2 are the roots of the characteristic equation then the general solution of $\tau(E_n)$ is given by $\tau(E_n) = c_1\theta_1^n + c_2\theta_2^n$ where c_1, c_2 are obtained by the solving the simultaneous equations $c_1\theta_1 + c_2\theta_2 = \tau(E_1)$ and $c_1\theta_1^2 + c_2\theta_2^2 = \tau(E_2)$. Similarly $\tau(F_n), \tau(H_n)$ can be obtained.

Example 2.8. We find the number of spanning trees of the following graph.

Figure 5: Graph E_n , F_n with m = 3, p = 4.

We find $\tau(E_n)$ with m = 3, p = 4. Applying Theorem 2.5 we get the recurrence relation satisfied by the graph is $\tau(E_n) = 54\tau(E_{n-1}) - 324\tau(E_{n-2})$ and the characteristic equation becomes $x^2 - 54x + 324 = 0$ whose roots are $\theta_1 = 27 + 9\sqrt{5}, \theta_2 = 27 - 9\sqrt{5}$ with $\tau(E_0) = 1,$ $\tau(E_1) = 54$. Solving we get $\tau(E_n) = \left(\frac{3+\sqrt{5}}{2\sqrt{5}}\right)(27 + 9\sqrt{5})^n + \left(\frac{-3+\sqrt{5}}{2\sqrt{5}}\right)(27 - 9\sqrt{5})^n$.

Example 2.9. We find the number of spanning trees of the following graphs.

Figure 6: Graphs H_1 , H_2 and H_n .

We find $\tau(H_n)$ with m = 1, p = 3, q = 4, t = 1. Applying similar methods we get the recurrence relation satisfied by the graph is $\tau(H_n) = 11\tau(H_{n-1}) - 9\tau(H_{n-2})$ and the characteristic equation becomes $x^2 - 11x + 9 = 0$ whose roots are $\alpha = \frac{11+\sqrt{85}}{2}, \beta = \frac{11-\sqrt{85}}{2}$ with $\tau(H_1) = 11, \tau(H_2) = 112$. Solving we get $\tau(H_n) = \left(\frac{11+\sqrt{85}}{2\sqrt{85}}\right) \left(\frac{11+\sqrt{85}}{2}\right)^n + \left(\frac{-11+\sqrt{85}}{2\sqrt{85}}\right) \left(\frac{11-\sqrt{85}}{2}\right)^n$.

3 Number of spanning trees of some special family of book graphs

Theorem 3.1. Let $J_1 = X_{m,p}$ with common base and $Q_1 = Y_{m,p}$ with common base. Let J_n and Q_n be obtained by joining n copies of J_1 and Q_1 at a base vertex in circular form as below. Then

(i) $\tau(J_n) = n\alpha^{n-1}(p-1)^m$ where $\alpha = (p-1)^m + m(p-1)^{m-1}$. (ii) $\tau(Q_n) = n\beta^{n-1}(p-1)^m$ where $\beta = m(p-1)^{m-1}$.

Proof: (i) Clearly, by Theorem 2.3 $\tau(J_1) = (p-1)^m + m(p-1)^{m-1} = \alpha(\text{say})$. Consider J_2 and

Figure 7: Graphs J_n and Q_n

we divide this graph into two parts with each of the two parts are J_1 with the common pair of vertices. We use Theorem 1.6 to get $\tau(J_2) = \tau(J_1)\tau(C_{p-1})^n + \tau(J_1)\tau(C_{p-1})^n = 2\tau(J_1)(p-1)^m = 2\alpha(p-1)^m$.

Considering J_n , we apply Theorem 1.6 taking $G_1 = J_1, G_2$ the graph obtained by taking deleting J_1 from G which is the graph obtained by taking n-1 copies of J_1 and joining them in succession at a common base vertex e = xy we get

$$\tau(J_n) = \tau(J_1)\tau(G_2.xy) + \tau(G_2)\tau(J_1.xy)$$

= $\tau(J_1)\tau(J_{n-1}) + \tau(J_1)^{n-1}(p-1)^m$

$$= \alpha \tau (J_{n-1}) + \alpha^{n-1} (p-1)^m$$

= $\alpha [\alpha \tau (J_{n-2}) + \alpha^{n-2} (p-1)^m] + \alpha^{n-1} (p-1)^m$
= $\alpha^2 \tau (J_{n-2}) + 2\alpha^{n-1} (p-1)^m$
= $\alpha^3 \tau (J_{n-3}) + 3\alpha^{n-1} (p-1)^m$
:
= $\alpha^{n-2} \tau (J_2) + (n-2)\alpha^{n-1} (p-1)^m$
= $\alpha^{n-2} 2\alpha (p-1)^m + (n-2)\alpha^{n-1} (p-1)^m$
= $\alpha^{n-1} (p-1)^m (2+n-2) = n\alpha^{n-1} (p-1)^m$.

(ii) Clearly, by Theorem 2.3 $\tau(Q_1) = m(p-1)^{m-1} = \beta(\text{say})$. Using Theorem 1.6 to get $\tau(Q_2) = 2\tau(Q_1)(p-1)^m = 2\beta(p-1)^m$, we have $\tau(Q_n) = \tau(Q_1)\tau(Q_{n-1}) + \tau(Q_1)^{n-1}(p-1)^m$ $= \beta(Q_{n-1}) + \beta^{n-1}(p-1)^m$ $= \beta[\beta\tau(Q_{n-2}) + \beta^{n-2}(p-1)^m] + \beta^{n-1}(p-1)^m$ $= \beta^2\tau(Q_{n-2}) + 2\beta^{n-1}(p-1)^m$ $= \beta^3\tau(Q_{n-3}) + 3\beta^{n-1}(p-1)^m$ \vdots $= \beta^{n-2}\tau(Q_2) + (n-2)\beta^{n-1}(p-1)^m$ $= \beta^{n-2}2\beta(p-1)^m + (n-2)\beta^{n-1}(p-1)^m$ $= n\beta^{n-1}(p-1)^m$.

Example 3.2. We find the number of spanning trees of the following graph.

Figure 8

Here m = 3, p = 4 and $\alpha = 54$ and $\beta = 27$. Hence $\tau(J_n) = n54^{n-1} \times 3^3 = \frac{n}{2}54^n$ and $\tau(Q_n) = n27^{n-1} \times 3^3 = n27^n$.

References

[1] F. Harary, Graph Theory, Narosa Publishing House.

- [2] A. Modabish and M.El. Marraki, The Number of Spanning Trees of Certain Families of Planar Maps, Applied Mathematical Sciences, Vol. 5, No. 18 (2011), 883 - 898.
- [3] A. Modabish and M.El. Marraki, Counting the number of Spanning Trees in the Star Flower Planar Map, Applied Mathematical Sciences, Vol. 6, no. 49 (2012), 2411 - 2418.
- [4] D.B.West, Introduction to Graph Theory, Second edition, PHI Learning Private Ltd, New Delhi.
- [5] H.Sahbani and M.El. Marraki, Formula for the Number of Spanning Trees in Light Graph, Applied Mathematical Sciences, Vol. 8, No. 18 (2014), 865 - 874.