Recurrence relation on the number of spanning trees of generalized book graphs and related family of graphs

Nithya Sai Narayana
N.E.S. Ratnam College of Arts, Science and Commerce Bhandup, Mumbai-400078, India. narayana_nithya@yahoo.com

Abstract

The book graph denoted by $B_{n, 2}$ is the cartesian product $S_{n+1} \times P_{2}$ where S_{n+1} is a star graph with n vertices of degree 1 and one vertex of degree n and P_{2} is the path graph of 2 vertices. Let $\tau\left(B_{n, 2}\right)$ denote the number of spanning trees of $B_{n, 2}$. Let $X_{n, p}$ denote the generalized form of book graph where a family of p-cycles which are n in number is merged at a common edge. In this paper, we discuss some recurrence relations satisfied by $X_{n, p}$ and spanning trees of these associated family of graphs.

Keywords: Book graph, spanning trees, recurrence relation.
AMS Subject Classification(2010): 05C05, 05C30, 05C85, 68R05.

1 Introduction and Preliminaries

Number of spanning trees of a graph representing a network represents the strength of the network and it is one of the important parameter associated with a graph. Cartesian product of two graphs G_{1}, G_{2} denoted by $G_{1} \times G_{2}$ is a graph with $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ of $G_{1} \times G_{2}$ are adjacent if and only if either $u_{1}=u_{2}$ and $\left(v_{1}, v_{2}\right)$ is an edge in G_{2} or $v_{1}=v_{2}$ and $\left(u_{1}, u_{2}\right)$ is an edge of G_{1}. The book graph denoted by $B_{n, 2}$ is the cartesian product $S_{n+1} \times P_{n}$ where S_{n+1} is a star graph with n vertices of degree 1 and one vertex of degree n and P_{2} is the path graph of n vertices. First observe that book graphs are planar graphs and examples of few book graphs and their planar representation are given below.

Figure 1: Book graphs $B_{4,2}$ and $B_{5,2}$ and their planar representation.

Definition 1.1. (i) Let $G=(V, E)$ be a graph. Let $e=x y \in E$ be an edge which is not a loop. The graph $G-e$ is obtained by removing the edge e from G and the graph $G . e$ is obtained by removing the edge e and merging the vertices x, y to a single vertex. Note that this new vertex is adjacent to all the vertices originally adjacent to the vertices x and y in G.
(ii) Suppose the vertices x, y are connected by the a simple path $P: x=v_{0} v_{1}, v_{2} \cdots v_{k}=y$. We assume that the vertices $v_{1}, v_{2}, \cdots v_{k-1}$ are not adjacent with any other vertices of G. We define $G-P$ is the graph obtained by removing the vertices $v_{1}, v_{2}, \cdots v_{k-1}$ from G and the graph G.P is obtained by removing $v_{1}, v_{2}, \cdots v_{k-1}$ from G and merging x, y to a single vertex. Note that this new vertex is adjacent to all the vertices originally adjacent to the vertices x and y in G except the vertices v_{1} and v_{k-1}.
(iii) Let $V_{1} \subset V$ then the graph generated by V_{1} denoted by $\left\langle V_{1}\right\rangle$ is a sub-graph of G whose vertex set is V_{1} and edge set is the set of all edges of G having both the end vertices in V_{1}.

Theorem 1.2. (Fundamental recurrence relation of spanning trees of a graph)
Let $G=(V . E)$ be a graph and $e \in E(G)$ be an edge of G which is not a loop, then $\tau(G)=$ $\tau(G-e)+\tau(G . e)$.

Theorem 1.3. If $G=(V, E)$ is a graph such that $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i} \cap V_{j}=\{x\}$ for $i \neq j$. Let $G_{i}=<V_{i}>$ for $i=1,2 \cdots n$ and suppose the graph generated by $\langle V i\rangle$ does not have any edge common with $\left\langle V_{j}\right\rangle$ for $i \neq j$ then $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right) \cdots \tau\left(G_{n}\right)$.

Theorem 1.4. If $G=(V, E)$ is a graph such that $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ such that $V_{i} \cap V_{i+1}$ has exactly one vertex common and $\left\langle V_{i}\right\rangle$ and $\left.<V_{j}\right\rangle$ has no edge common for $i \neq j$ then $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right) \cdots \tau\left(G_{n}\right)$.

Theorem 1.5. [2] Let $G=(V, E)$ be a planar graph. Let $V=V_{1} \cup V_{2}$ be such that $V_{1} \cap V_{2}=$ $\{x, y\}$. Let $e=x y \in E(G)$ and $E(G)=<V_{1}>\cup<V_{2}>$ be such that $<V_{1}>\cap<V_{2}>=\{e\}$ where e is the unique edge common to $\left\langle V_{1}\right\rangle$ and $\left.<V_{2}\right\rangle$. Let $\left.G_{1}=<V_{1}\right\rangle$ and $\left.G_{2}=<V_{2}\right\rangle$. Then $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right)-\tau\left(G_{1}-e\right) \tau\left(G_{2}-e\right)$.

Proof: Number of spanning trees of $G=$ number of spanning trees of G not containing e number of spanning trees of G containing e. Clearly number of spanning tree of $G_{1}=\tau\left(G_{1}\right)=$ $\tau\left(G_{1}-e\right)+\tau\left(G_{1} \cdot e\right)$ and number of spanning tree of $G_{2}=\tau\left(G_{2}\right)=\tau\left(G_{2}-e\right)+\tau\left(G_{2} . e\right)$.

$$
\begin{aligned}
\tau\left(G_{1}\right) \tau\left(G_{2}\right) & =\left[\tau\left(G_{1}-e\right)+\tau\left(G_{1} \cdot e\right)\right]\left[\tau\left(G_{2}-e\right)+\tau\left(G_{2} \cdot e\right)\right] \\
& =\tau\left(G_{1}-e\right) \tau\left(G_{2}-e\right)+\tau\left(G_{1} \cdot e\right) \tau\left(G_{2}-e\right)+\tau\left(G_{1}-e\right) \tau\left(G_{2} \cdot e\right)+\tau\left(G_{1} \cdot e\right) \tau\left(G_{2} . e\right) .
\end{aligned}
$$

Thus,
$\tau\left(G_{1}\right) \tau\left(G_{2}\right)-\tau\left(G_{1}-e\right) \tau\left(G_{2}-e\right)=\tau\left(G_{1} . e\right) \tau\left(G_{2}-e\right)+\tau\left(G_{1}-e\right) \tau\left(G_{2} . e\right)+\tau\left(G_{1} . e\right) \tau\left(G_{2} . e\right)$

Figure 2
Consider a spanning tree T_{1} of G_{1} containing e and a spanning tree T_{2} of G_{2} containing e. From the two spanning trees T_{1}, T_{2} we can construct a spanning of G containing e by merging the two spanning trees at e. Conversely consider a spanning tree of G containing e. By considering the induced sub-graph of T restricted to the vertices of G_{1} and G_{2} we get two spanning trees of G_{1} and G_{2} each of them containing e. Thus there is a bijective relation between the set of spanning trees of G containing e and the spanning trees of G_{1} and G_{2} each of them containing the edge e.

Note that the number of spanning trees of G_{1} containing e is the same as the number of spanning trees of $G_{1} . e$ and the number of spanning trees of G_{2} containing e is the same as the number of spanning trees of $G_{2} . e$ and the number of spanning trees of G containing e is the same as the number of spanning trees of G.e and hence we have,
$\tau(G . e)=\tau\left(G_{1} . e\right) \times \tau\left(G_{2} . e\right)$
Now consider a spanning tree T_{1} of G_{1} not containing e and a spanning tree T_{2} of G_{2} containing e. We construct a new graph G^{\prime} by merging the two spanning trees. Note that in T_{1} there is a unique path joining x and y and in T_{2} the unique path joining x and y is the edge e. Thus G^{\prime} contains a unique cycle containing e and is a spanning sub-graph of G and hence $G^{\prime}-e$ is a spanning tree of G not containing e. Similarly by considering a spanning tree of G_{2} not containing e and a spanning tree of G_{1} containing e we can construct a spanning tree of G not containing e.

Conversely consider a spanning tree T of G not containing e. By considering the induced sub-graph of T containing the vertices of V_{1} and V_{2} we get two sub-graphs of G_{1} and G_{2} say G_{1}^{\prime} and G_{2}^{\prime}. First we prove that either there is a unique path in G_{1}^{\prime} between x and y or there is a unique path in G_{2}^{\prime} between x and y but not in both. Clearly if there is a unique path both in G_{1}^{\prime} and in G_{2}^{\prime} then $T_{1}=G_{1}^{\prime} \cup G_{2}^{\prime}$ contains a cycle as there are two distinct paths in T between the vertices x and y and it is not possible as T is a spanning tree of G and it does not contain a cycle.

Suppose there is no path in G_{1}^{\prime} between x and y then there must be a path between x and y in G_{2}^{\prime} otherwise there is no path between x and y in T. If G_{1}^{\prime} does not contain a path between
x and y then we add the edge e to G_{1}^{\prime} to get a spanning tree of G_{1} and in that case G_{2}^{\prime} is a spanning tree of G_{2}. If G_{2}^{\prime} does not contain a path between x and y, we add e to G_{2}^{\prime} to get a spanning tree of G_{2} and in that case G_{1}^{\prime} is a spanning tree of G_{1}.

Note that there are exactly two possibilities for a spanning tree of G not containing e. The induced sub-graph containing the vertices of V_{1} either contains a path between x and y or does not contain a path between x and y. In the first case we construct a spanning tree of G_{1} not containing e and a spanning tree of G_{2} containing e. In the second case we get a spanning tree of G_{1} containing e and a spanning tree of G_{2} not containing e. Thus we have,
$\tau(G-e)=\tau\left(G_{1} . e\right) \tau\left(G_{2}-e\right)+\tau\left(G_{1}-e\right) \tau\left(G_{2} . e\right)$.
Using Theorem 1.2 we get,

$$
\begin{aligned}
\tau(G) & =\tau(G-e)+\tau(G . e) \\
& =\tau\left(G_{1} . e\right) \tau\left(G_{2}-e\right)+\tau\left(G_{1}-e\right) \tau\left(G_{2} . e\right)+\tau\left(G_{1} . e\right) \tau\left(G_{2} . e\right) \text { (from II and III) } \\
& =\tau\left(G_{1}\right) \tau\left(G_{2}\right)-\tau\left(G_{1}-e\right) \tau\left(G_{2}-e\right)(\text { from I). }
\end{aligned}
$$

Thus the theorem is proved.

Theorem 1.6. [2] Let $G=(V, E)$ be a planar graph. Let $V(G)=V_{1} \cup V_{2}$ be such that $V_{1} \cap V_{2}=\{x, y\}$. Let x and y be two vertices of G such that every path in G from $u_{i} \in V_{1}$ to $u_{j} \in V_{2}$ passes either through x or y and u and v are part of the same face of G. Let $\left\langle V_{1}\right\rangle=G_{1}$ and $\left\langle V_{2}\right\rangle=G_{2}$, then $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2} . x y\right)+\tau\left(G_{2}\right) \tau\left(G_{1} . x y\right)$ where $G_{1} . x y, G_{2} . x y$ are obtained by merging the two vertices x, y into a single vertex so that the vertices adjacent to x, y would be adjacent to the new vertex.

Proof: Note that x, y may or may not be adjacent. Suppose x, y are adjacent vertices, then the edge $e=x y$ is included in exactly one of G_{1} or G_{2}.

Figure 3

Consider a spanning tree T of G. We consider the sub-graph of T restricted to the vertices of V_{1} and V_{2}. Let the sub-graph of T generated by V_{1} be denoted by T_{1}^{\prime} and the sub-graph of T generated by V_{2} be denoted by T_{2}^{\prime}. Note that there cannot be a path between x and y both in G_{1}^{\prime} and G_{2}^{\prime} as otherwise the union of two paths will give a cycle in T which is not possible. There are two possibilities. If there is a path in T_{1}^{\prime} between x and y then there cannot be a path between x and y in T_{2}^{\prime} and further if there is no path between x and y in T_{1}^{\prime} then there must be a path between x and y in T_{2}^{\prime} as T is connected.

Consider the first case(Type I) where T_{1}^{\prime} does not have a path between x and y. Note that T_{2}^{\prime} has a path between x and y. We prove that T_{2}^{\prime} is a spanning tree of G_{2} and $T_{1}^{\prime} \cdot x y$ is a spanning tree of $G_{1} . x y$.

Suppose T_{2}^{\prime} is not a spanning tree of G_{2}. Let u, v be two vertices of G_{2} which are not connected in G_{2}. Clearly in T, there exists a path consisting of vertices of G_{2} between u and x or between u and y through which u is connected to a vertex of G_{1}. Similarly in T there exists a path consisting of vertices of G_{2} between v and x or between v and y through which v is connected to a vertex of G_{1}. As per the assumption in T_{2}^{\prime} there exists a path between x and y consisting of vertices of G_{2} which implies that there exists a path between u and v consisting of vertices of G_{2}. It is a contradiction to our assumption and hence T_{2}^{\prime} is a spanning tree of G_{1}.

Now we prove that $T_{1}^{\prime} \cdot x y$ is a spanning tree of $G_{1} \cdot x y$. Let u, v be any two vertices in G_{1}. In T there exists a path from u and x or u and y, consisting of vertices of G_{1} through which the vertex u is connected to a vertex of G_{2} and similarly in T such path exists from v and x or v and y. In other words vertices of G_{1} in T_{1}^{\prime} are either connected to x or connected to y and hence in $T_{1}^{\prime} . x y$ every pair of vertices of $G_{2} . x y$ are connected and is a spanning tree of $G_{1} \cdot x y$.

Using similar argument it is clear that for the case(Type II) where T_{1}^{\prime} have a path between x and y and there is no path between x and y in T_{2}^{\prime}, it can be proved that T_{1}^{\prime} is a spanning tree of G_{1} and in that case $T_{2}^{\prime} \cdot x y$ is a spanning tree of $G_{2} \cdot x y$.

Thus every spanning tree T of G gives rise to either a spanning tree of G_{1} and a spanning tree of $G_{2} \cdot x y$ or a spanning tree of G_{2} and a spanning tree of $G_{1} \cdot x y$. Conversely with every spanning tree of G_{1} and a spanning tree of $G_{2} . x y$ we get a spanning tree of G in which a path exists between x and y in G_{1} and with every spanning tree of G_{2} and a spanning tree of G_{1}.xy we get a spanning tree of G in which a path exists between x and y in G_{2}.

Note that a spanning tree of G is either of Type I or of Type II and hence we get $\tau(G)=$ $\tau\left(G_{1}\right) \tau\left(G_{2} . x y\right)+\tau\left(G_{2}\right) \tau\left(G_{1} \cdot x y\right)$.

2 Results on spanning trees of generalized book graph

Definition 2.1. Let $X_{n, p}$ denote a graph with n number of p-cycles with a common edge $e=x y$. We call this graph as generalized book graph as the graph becomes a book graph for $p=4$

In this section we derive the recurrence relations satisfied by generalized book graphs and few more graphs obtained from the generalized books graphs.

Theorem 2.2. Let $X_{n, p}$ denote a graph with n number of p-cycles with a common edge $e=x y$ and let $Y_{n, p}=X_{n, p}-e$ then $X_{n, p}$ and $Y_{n, p}$ satisfy the following recurrence relations
(i) $\tau\left(X_{n, p}\right)=2(p-1) \tau\left(X_{n-1, p}\right)-(p-1)^{2} \tau\left(X_{n-2, p}\right)$
(ii) $\tau\left(Y_{n, p}\right)=(3 p-4) \tau\left(Y_{n-1, p}\right)-\left(3 p^{2}-8 p+5\right) \tau\left(Y_{n-2, p}\right)+\left(p^{3}-4 p^{2}+5 p-2\right) \tau\left(Y_{n-3, p}\right)$

Proof: Note that in $Y_{n, p}$ there exists p distinct paths between x and y of length $p-1$. Choosing any one such path and by removing each of $p-1$ edges between x and y and applying successively Theorem 1.2 we get $\tau\left(Y_{n, p}\right)=(p-2) \tau\left(Y_{n-1, p}\right)+\tau\left(X_{n-1, p}\right)$

$$
\begin{equation*}
\Rightarrow \tau\left(Y_{n-1, p}\right)=(p-2) \tau\left(Y_{n-2, p}\right)+\tau\left(X_{n-2, p}\right) \tag{*}
\end{equation*}
$$

Further, $\tau\left(X_{n, p}\right)=\tau\left(G_{1}\right) \tau\left(G_{2}\right)-\tau\left(G_{1}-e\right) \tau\left(G_{2}-e\right)$ using Theorem 1.5, where G_{1} is any p-cycle in $X_{n, p}$ containing e and G_{2} is obtained from $X_{n, p}$ by removing the edges of G_{1} other than the common edge e.
Thus, $\tau\left(X_{n, p}\right)=p \tau\left(X_{n-1, p}\right)-\tau\left(Y_{n-1, p}\right)$

$$
\begin{align*}
\Rightarrow \tau\left(Y_{n-1, p}\right) & =p \tau\left(X_{n-1, p}\right)-\tau\left(X_{n, p}\right) \text { and } \\
\tau\left(Y_{n-2, p}\right) & =p \tau\left(X_{n-2, p}\right)-\tau\left(X_{n-1, p}\right) \tag{**}
\end{align*}
$$

Substituting in $\left(^{*}\right)$
$p \tau\left(X_{n-1, p}\right)-\tau\left(X_{n, p}\right)=(p-2)\left[p \tau\left(X_{n-2, p}\right)-\tau\left(X_{n-1, p}\right)\right]+\tau\left(X_{n-2, p}\right)$
$\Rightarrow \tau\left(X_{n, p}\right)=p \tau\left(X_{n-1, p}\right)+(p-2) \tau\left(X_{n-1, p}\right)-\tau\left(X_{n-2-, p}\right)-p(p-2) \tau\left(X_{n-2, p}\right)$,
Thus, $\tau\left(X_{n, p}\right)=2(p-1) \tau\left(X_{n-1, p}\right)-(p-1)^{2} \tau\left(X_{n-2, p}\right)$ which proves (i).
From $\left(^{*}\right), \tau\left(X_{n-1, p}\right)=\tau\left(Y_{n, p}\right)-(p-2) \tau\left(Y_{n-1, p}\right), \tau\left(X_{n-2, p}\right)=\tau\left(Y_{n-1, p}\right)-(p-2) \tau\left(Y_{n-2, p}\right)$ and $\tau\left(X_{n-3, p}\right)=\tau\left(Y_{n-2, p}\right)-(p-2) \tau\left(Y_{n-3, p}\right)$.
Hence, $\tau\left(Y_{n, p}\right)-(p-2) \tau\left(Y_{n-1, p}\right)=2(p-1)\left[\tau\left(Y_{n-1, p}\right)-(p-2) \tau\left(Y_{n-2, p}\right)\right]-(p-1)^{2}\left[\tau\left(Y_{n-2, p}\right)-\right.$ $\left.(p-2) \tau\left(Y_{n-3, p}\right)\right]$.
Simplifying we get,

$$
\begin{aligned}
\tau\left(Y_{n, p}\right)= & {[2(p-1)+(p-2)] \tau\left(Y_{n-1, p}\right)-\left[2(p-1)(p-2)+(p-1)^{2}\right] \tau\left(Y_{n-2, p}\right) } \\
& +(p-1)^{2}(p-2) \tau\left(Y_{n-3, p}\right) \\
= & (3 p-4) \tau\left(Y_{n-1, p}\right)-\left(3 p^{2}-8 p+5\right) \tau\left(Y_{n-2, p}\right)+\left(p^{3}-4 p^{2}+5 p-2\right) \tau\left(Y_{n-3, p}\right)
\end{aligned}
$$

Hence (ii) is proved.
The following well known result(which is actually a simple application of fundamental recurrence relation) is presented here. It is observed that it can also be arrived at by solving the recurrence relation mentioned above.

Corollary 2.3. (i) $\tau\left(X_{n, p}\right)=(p-1)^{n}+n(p-1)^{n-1}$ and (ii) $\tau\left(Y_{n, p}\right)=n(p-1)^{n-1}$.

Proof: From Theorem 2.2 (i), the characteristic equation of $\tau\left(X_{n, p}\right)$ is $x^{2}-2(p-1) x+(p-1)^{2}=$ 0 and the solution to the recurrence relation is $\tau\left(X_{n, p}\right)=c_{1}(p-1)^{n}+c_{2} n(p-1)^{n}$ with $\tau\left(X_{1, p}\right)=p$ and $\tau\left(X_{2, p}\right)=p^{2}-1$ and is given by $\tau\left(X_{n, p}\right)=(p-1)^{n}+n(p-1)^{n-1}$.

From Theorem 2.2 (ii), the characteristic equation of $\tau\left(Y_{n, p}\right)$ is $x^{3}-(3 p-4) x^{2}+\left(3 p^{2}-\right.$ $8 p+5) x-\left(p^{3}-4 p^{2}+5 p-2\right)=0$ which implies $(x-(p-2))(x-(p-1))^{2}=0$ and the solution to the recurrence relation is $\tau\left(Y_{n, p}\right)=c_{1}(p-2)^{n}+c_{2}(p-1)^{n}+c_{3} n(p-1)^{n}$ with $\tau\left(Y_{1, p}\right)=1, \tau\left(Y_{2, p}\right)=2(p-1)$ and $\tau\left(Y_{3, p}\right)=3(p-1)^{2}$ is given by $\tau\left(Y_{n, p}\right)=n(p-1)^{n-1}$.

Theorem 2.4. Suppose $G_{m, p: n, q}$ is a graph with m number of p-cycles and n number of q-cycles with a common edge $e=x y$, then
$\tau\left(G_{m, p: n, q}\right)=(p-1)^{m-1}(q-1)^{n-1}[(p-1+m)(q-1+n)-m n]$.
Proof: Let $A_{m, p}$ denote m number of p cycles with common edge e and $B_{n, q}$ denote n number of q-cycles with the common edge e. Let $C_{m, p}=A_{m, p}-e$ and $D_{n, q}=B_{n, q}-e$. Then by Corollary 2.3, we have $\tau\left(A_{m, p}\right)=(p-1)^{m}+m(p-1)^{m-1}, \tau\left(B_{n, q}\right)=(q-1)^{n}+n(q-1)^{n-1}$, $\tau\left(C_{m, p}\right)=m(p-1)^{m-1}$ and $\tau\left(D_{n, q}\right)=n(q-1)^{n-1}$.
Using Theorem 1.5,

$$
\begin{aligned}
\tau\left(G_{m, p: n, q}\right) & =\tau\left(A_{m, p}\right) \tau\left(B_{n, q}\right)-\tau\left(C_{m, p}\right) \tau\left(D_{n, q}\right) \\
& =(p-1)^{m}+m(p-1)^{m-1}(q-1)^{n}+n(q-1)^{n-1}-m(p-1)^{m-1} n(q-1)^{n-1} \\
& =(p-1)^{m-1}(q-1)^{n-1}[(p-1+m)(q-1+n)-m n] .
\end{aligned}
$$

Theorem 2.5. Let $E_{1}=X_{m, p}$ with a common base as e and $F_{1}=Y_{m, p}=X_{m, p}-e$. Let E_{n} and F_{n} be defined by joining n copies of E_{1} and F_{1} successively at an edge other than the base as given below. Then, $\tau\left(E_{n}\right), \tau\left(F_{n}\right)$ satisfy the following recurrence relations.

Figure 4: .Graph E_{n} and F_{n}.
(i) $\tau\left(E_{n}\right)=\alpha \tau\left(E_{n-1}\right)-\alpha^{\prime 2} \tau\left(E_{n-2}\right)$ where $\alpha=(p-1)^{m}+m(p-1)^{m-1}$ and $\alpha^{\prime}=(p-1)^{m-1}+$ $m(p-1)^{m-2}$.
(ii) $\tau\left(F_{n}\right)=\beta \tau\left(F_{n-1}\right)-\beta^{\prime 2} \tau\left(F_{n-2}\right)$ where $\beta=m(p-1)^{m-1}$ and $\beta^{\prime}=(m-1)(p-1)^{m-2}$.

Proof: From Corollary 2.3, $\tau\left(E_{1}\right)=(p-1)^{n}+n(p-1)^{n-1}=\alpha($ say $)$ and $\tau\left(F_{1}\right)=n(p-$ 1) ${ }^{n-1}=\beta($ say $)$ and by Theorem 1.5, $\tau\left(E_{2}\right)=\tau\left(E_{1}\right) \tau\left(E_{1}\right)-\tau\left(E_{1}-e\right) \tau\left(E_{1}-e\right)=\tau\left(X_{m, p}\right)^{2}-$ $\tau\left(X_{m-1, p}\right)^{2}=\alpha^{2}-\beta^{2}$.
Using Theorem 1.5 we get,
$\tau\left(E_{n}\right)=\tau\left(E_{1}\right) \tau\left(E_{n-1}\right)-\tau\left(E_{n-2}\right) \cdot \tau\left(X_{m-1, p}\right) \tau\left(X_{m-1, p}\right)=\alpha \tau\left(E_{n-1}\right)-\left(\alpha^{\prime}\right)^{2} \tau\left(E_{n-2}\right)$.
(ii) Using similar argument we get,
$\tau\left(F_{1}\right)=\tau\left(Y_{m, p}\right)=m(p-1)^{m-1}=\beta($ say $)$ and $\tau\left(F_{2}\right)=Y_{m, p}^{2}-Y_{m-1, p}^{2}=\beta^{2}-\beta^{\prime 2}$ where $\beta^{\prime}=(m-1)(p-1)^{m-2}$.

Using Theorem 1.5, we have $\tau\left(F_{n}\right)=\tau\left(F_{n-1}\right) \tau\left(Y_{m, p}\right)-\tau\left(F_{n-2}\right) \tau\left(Y_{m-1, p}\right)^{2}=\beta \tau\left(F_{n-1}\right)-$ $\left(\beta^{\prime}\right)^{2} \tau\left(F_{n-2}\right)$.

Theorem 2.6. Let $H_{1}=G_{m, p: t, q}$ consisting of m number of p-cycles and t number of q-cycles with a common base e. Let H_{n} denote a graph containing n - copies of H_{1} merged successively at edges other than the base as below. Then, $\tau\left(H_{n}\right)$ satisfies the recurrence relation given by $\tau\left(H_{n}\right)=\lambda \tau\left(G_{n-1}\right)-\mu^{2} \tau\left(G_{n-2}\right)$ where $\lambda=(p-1)^{m-1}(q-1)^{t-1}[(p-1+m)(q-1+t)-m t]$ and $\mu=(p-1)^{m-2}(q-1)^{t-2}[(p-2+m)(q-2+t)-(m-1)(t-1)]$ where $m \geq 2$ and $t \geq 2$.

Proof: Similar to the proof of Theorem 2.5 using Theorems 2.4 and 1.5. For $m=1, t>1$ and $m>1, t=1$ and $m=1, t=1$ similar results can be arrived.

Remark 2.7. The characteristic equation of $\tau\left(E_{n}\right)$ is given by $x^{2}-\left((p-1)^{m}+m(p-1)^{m-1}\right) x+$ $\left((p-1)^{m-1}+(m-1)(p-1)^{m-2}\right)^{2}=0$. Suppose θ_{1}, θ_{2} are the roots of the characteristic equation then the general solution of $\tau\left(E_{n}\right)$ is given by $\tau\left(E_{n}\right)=c_{1} \theta_{1}^{n}+c_{2} \theta_{2}^{n}$ where c_{1}, c_{2} are obtained by the solving the simultaneous equations $c_{1} \theta_{1}+c_{2} \theta_{2}=\tau\left(E_{1}\right)$ and $c_{1} \theta_{1}^{2}+c_{2} \theta_{2}^{2}=\tau\left(E_{2}\right)$. Similarly $\tau\left(F_{n}\right), \tau\left(H_{n}\right)$ can be obtained.

Example 2.8. We find the number of spanning trees of the following graph.

Figure 5: Graph $E_{n} ., F_{n}$ with $m=3, p=4$.

We find $\tau\left(E_{n}\right)$ with $m=3, p=4$. Applying Theorem 2.5 we get the recurrence relation satisfied by the graph is $\tau\left(E_{n}\right)=54 \tau\left(E_{n-1}\right)-324 \tau\left(E_{n-2}\right)$ and the characteristic equation becomes $x^{2}-54 x+324=0$ whose roots are $\theta_{1}=27+9 \sqrt{5}, \theta_{2}=27-9 \sqrt{5}$ with $\tau\left(E_{0}\right)=1$, $\tau\left(E_{1}\right)=54$. Solving we get $\tau\left(E_{n}\right)=\left(\frac{3+\sqrt{5}}{2 \sqrt{5}}\right)(27+9 \sqrt{5})^{n}+\left(\frac{-3+\sqrt{5}}{2 \sqrt{5}}\right)(27-9 \sqrt{5})^{n}$.

Example 2.9. We find the number of spanning trees of the following graphs.

Figure 6: Graphs H_{1}, H_{2} and H_{n}.

We find $\tau\left(H_{n}\right)$ with $m=1, p=3, q=4, t=1$. Applying similar methods we get the recurrence relation satisfied by the graph is $\tau\left(H_{n}\right)=11 \tau\left(H_{n-1}\right)-9 \tau\left(H_{n-2}\right)$ and the characteristic equation becomes $x^{2}-11 x+9=0$ whose roots are $\alpha=\frac{11+\sqrt{85}}{2}, \beta=\frac{11-\sqrt{85}}{2}$ with $\tau\left(H_{1}\right)=11, \tau\left(H_{2}\right)=112$. Solving we get $\tau\left(H_{n}\right)=\left(\frac{11+\sqrt{85}}{2 \sqrt{85}}\right)\left(\frac{11+\sqrt{85}}{2}\right)^{n}+\left(\frac{-11+\sqrt{85}}{2 \sqrt{85}}\right)\left(\frac{11-\sqrt{85}}{2}\right)^{n}$.

3 Number of spanning trees of some special family of book graphs

Theorem 3.1. Let $J_{1}=X_{m, p}$ with common base and $Q_{1}=Y_{m, p}$ with common base. Let J_{n} and Q_{n} be obtained by joining n copies of J_{1} and Q_{1} at a base vertex in circular form as below. Then
(i) $\tau\left(J_{n}\right)=n \alpha^{n-1}(p-1)^{m}$ where $\alpha=(p-1)^{m}+m(p-1)^{m-1}$.
(ii) $\tau\left(Q_{n}\right)=n \beta^{n-1}(p-1)^{m}$ where $\beta=m(p-1)^{m-1}$.

Proof: (i) Clearly, by Theorem $2.3 \tau\left(J_{1}\right)=(p-1)^{m}+m(p-1)^{m-1}=\alpha($ say $)$. Consider J_{2} and

Figure 7: Graphs J_{n} and Q_{n}
we divide this graph into two parts with each of the two parts are J_{1} with the common pair of vertices. We use Theorem 1.6 to get $\tau\left(J_{2}\right)=\tau\left(J_{1}\right) \tau\left(C_{p-1}\right)^{n}+\tau\left(J_{1}\right) \tau\left(C_{p-1}\right)^{n}=2 \tau\left(J_{1}\right)(p-1)^{m}=$ $2 \alpha(p-1)^{m}$.
Considering J_{n}, we apply Theorem 1.6 taking $G_{1}=J_{1}, G_{2}=$ the graph obtained by taking deleting J_{1} from G which is the graph obtained by taking $n-1$ copies of J_{1} and joining them in succession at a common base vertex $e=x y$ we get

$$
\begin{aligned}
\tau\left(J_{n}\right) & =\tau\left(J_{1}\right) \tau\left(G_{2} \cdot x y\right)+\tau\left(G_{2}\right) \tau\left(J_{1} \cdot x y\right) \\
& =\tau\left(J_{1}\right) \tau\left(J_{n-1}\right)+\tau\left(J_{1}\right)^{n-1}(p-1)^{m}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha \tau\left(J_{n-1}\right)+\alpha^{n-1}(p-1)^{m} \\
& =\alpha\left[\alpha \tau\left(J_{n-2}\right)+\alpha^{n-2}(p-1)^{m}\right]+\alpha^{n-1}(p-1)^{m} \\
& =\alpha^{2} \tau\left(J_{n-2}\right)+2 \alpha^{n-1}(p-1)^{m} \\
& =\alpha^{3} \tau\left(J_{n-3}\right)+3 \alpha^{n-1}(p-1)^{m} \\
& \vdots \\
& =\alpha^{n-2} \tau\left(J_{2}\right)+(n-2) \alpha^{n-1}(p-1)^{m} \\
& =\alpha^{n-2} 2 \alpha(p-1)^{m}+(n-2) \alpha^{n-1}(p-1)^{m} \\
& =\alpha^{n-1}(p-1)^{m}(2+n-2)=n \alpha^{n-1}(p-1)^{m} .
\end{aligned}
$$

(ii) Clearly, by Theorem $2.3 \tau\left(Q_{1}\right)=m(p-1)^{m-1}=\beta($ say $)$. Using Theorem 1.6 to get $\tau\left(Q_{2}\right)=2 \tau\left(Q_{1}\right)(p-1)^{m}=2 \beta(p-1)^{m}$, we have

$$
\begin{aligned}
\tau\left(Q_{n}\right) & =\tau\left(Q_{1}\right) \tau\left(Q_{n-1}\right)+\tau\left(Q_{1}\right)^{n-1}(p-1)^{m} \\
& =\beta\left(Q_{n-1}\right)+\beta^{n-1}(p-1)^{m} \\
& =\beta\left[\beta \tau\left(Q_{n-2}\right)+\beta^{n-2}(p-1)^{m}\right]+\beta^{n-1}(p-1)^{m} \\
& =\beta^{2} \tau\left(Q_{n-2}\right)+2 \beta^{n-1}(p-1)^{m} \\
& =\beta^{3} \tau\left(Q_{n-3}\right)+3 \beta^{n-1}(p-1)^{m} \\
& \vdots \\
& =\beta^{n-2} \tau\left(Q_{2}\right)+(n-2) \beta^{n-1}(p-1)^{m} \\
& =\beta^{n-2} 2 \beta(p-1)^{m}+(n-2) \beta^{n-1}(p-1)^{m} \\
& =n \beta^{n-1}(p-1)^{m} .
\end{aligned}
$$

Example 3.2. We find the number of spanning trees of the following graph.

Figure 8

Here $m=3, p=4$ and $\alpha=54$ and $\beta=27$. Hence $\tau\left(J_{n}\right)=n 54^{n-1} \times 3^{3}=\frac{n}{2} 54^{n}$ and $\tau\left(Q_{n}\right)=n 27^{n-1} \times 3^{3}=n 27^{n}$.

References

[1] F. Harary, Graph Theory, Narosa Publishing House.

Recurrence relation on the number of spanning trees of generalized book graphs and related family of graphs 85
[2] A. Modabish and M.El. Marraki, The Number of Spanning Trees of Certain Families of Planar Maps, Applied Mathematical Sciences, Vol. 5, No. 18 (2011), 883-898.
[3] A. Modabish and M.El. Marraki, Counting the number of Spanning Trees in the Star Flower Planar Map, Applied Mathematical Sciences, Vol. 6, no. 49 (2012), 2411-2418.
[4] D.B.West, Introduction to Graph Theory, Second edition, PHI Learning Private Ltd, New Delhi.
[5] H.Sahbani and M.El. Marraki,Formula for the Number of Spanning Trees in Light Graph, Applied Mathematical Sciences, Vol. 8, No. 18 (2014), 865-874.

