International Journal of Mathematics and Soft Computing Vol.6, No.2 (2016), 43 - 56.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

Cordialness of arbitrary supersubdivision of graphs

Ujwala Deshmukh¹, Smita A. Bhatavadekar²

¹Department of Mathematics Mithibai College, Vile Parle(West) Mumbai, India. ujwala_deshmukh@rediffmail.com

² Department of Applied Mathematics Lokmanya Tilak College of Engineering Koparkhairne, Navi Mumbai, India. smitasj1@gmail.com

Abstract

In this paper we prove that arbitrary supersubdivision of ladder, cyclic ladder, triangular snake and certain double triangular snake are cordial.

Keywords: Ladder, cyclic ladder, triangular snake, double triangular snake, subdivision of a graph, supersubdivision of a graph, cordial labeling. AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph we mean simple, finite and undirected graph G = (V, E). The concept of cordial labeling was introduced by Cahit [1]. Sethuraman and Selvaraju [5] proved gracefulness of supersubdivision of graphs. Kathiresan [3] has proved subdivision of ladders are graceful. Ramchandran and Sekar [4] have discussed graceful labeling of supersubdivision of ladder. Vaidya [8] proved cordial labeling of snakes.

A ladder is defined by $P_n \times P_2$, where P_n is a path of length n-1 and is denoted by L_n . The ladder L_n has 2n vertices and 3n-2 edges. Cyclic ladder is obtained by taking cartesian product of cycle C_n and P_2 . The triangular snake T_n is a graph containing a path of length n with vertices $u_1, u_2, \ldots, u_n, u_{n+1}$ and each pair of consecutive vertices u_i, u_{i+1} is joined to a common vertex v_i , $i = 1, 2, \ldots, n$. Thus it consists of 2n + 1 vertices and 3n edges. The double triangular snake $D(T_n)$ is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively, $1 \le i \le n-1$.

Definition 1.1. Let G be a graph with p vertices and q edges. A graph H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once. H is denoted by S(G). Thus, |V| = p + q and |E| = 2q.

Definition 1.2. Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge e of G by a complete bipartite graph $K_{2,m}$. H is denoted by SS(G). Thus, |V| = p + mq and |E| = 2mq.

Definition 1.3. Let G be a graph with p vertices and q edges. A graph H is said to be a arbitrary supersubdivision of G if it is obtained from G by replacing every edge e_i of G by a complete bipartite graph K_{2,m_i} , i = 1, 2, ..., q. H is denoted by ASS(G). Thus, $|V| = p + \sum_{i=1}^{q} m_i$ and $|E| = \sum_{i=1}^{q} 2m_i$.

Definition 1.4. Let f be a function from the vertices of G to $\{0,1\}$ and for an edge e = uv, the induced edge labeling $f^* : E(G) \to \{0,1\}$ is given by $f^*(e) = |f(u) - f(v)|$. f is said to be cordial labeling of G if $|V_0 - V_1| \leq 1$ and $|E_0 - E_1| \leq 1$ where V_0 and V_1 are the number of vertices of G having labels 0 and 1 respectively under f and E_0 and E_1 be the number of edges having labels 0 and 1 respectively under induced labeling f^*

In the complete bipartite graph $K_{2,m}$, we call the part consisting of two vertices as 2-vertices part of $K_{2,m}$ and the part consisting of m vertices as m-vertices part of $K_{2,m}$.

2 Main Results

Theorem 2.1. Arbitrary supersubdivision of L_n , $ASS(L_n)$ is cordial.

Proof: Let u_i , i = 1, 2, ..., n and v_i , i = 1, 2, ..., n be the vertices of two paths of Ladder L_n . Let $x_i^k, k = 1, 2, ..., m_i^1$ be the vertices of the m_i^1 -vertices part of K_{2,m_i^1} replacing the edge $u_i u_{i+1}$, for i = 1, 2, ..., n-1. Let $y_i^k, k = 1, 2, ..., m_i^2$ be the vertices of the m_i^2 -vertices part of K_{2,m_i^2} replacing the edge $v_i v_{i+1}$, for i = 1, 2, ..., n-1. Let $w_i^k, k = 1, 2, ..., m-1$. Let $w_i^k, k = 1, 2, ..., m_i^3$ be the vertices of the vertices of the m_i^3 -vertices part of K_{2,m_i^3} replacing the edge $u_i v_i$, for $i = 1, 2, ..., m_i^3$ be the vertices of the m_i^3 -vertices part of K_{2,m_i^3} replacing the edge $u_i v_i$, for i = 1, 2, ..., n.

Figure 1: $ASS(L_5)$ with vertex labels.

$$|V| = 2n + \left(\sum m_i^1 + \sum m_i^2 + \sum m_i^3\right) \qquad |E| = 2\left(\sum m_i^1 + \sum m_i^2 + \sum m_i^3\right)$$

Define a labeling $f:V\to \{0,1\}$ as follows.

$$\begin{array}{rll} f(u_i) &= 0 & if \ i \equiv 1 \ (mod \ 2) \\ &= 1 & if \ i \equiv 0 \ (mod \ 2) \ , & 1 \leq i \leq n. \\ f(v_i) &= 1 & if \ i \equiv 1 \ (mod \ 2) \\ &= 0 & if \ i \equiv 0 \ (mod \ 2) \ , & 1 \leq i \leq n. \\ f(x_1^k) &= 0 & if \ k \equiv 1 \ (mod \ 2) \ , \\ &= 1 & if \ k \equiv 0 \ (mod \ 2) \ , & 1 \leq k \leq m_1^1. \end{array}$$

$$= 1 \qquad if \quad k \equiv 0 \pmod{2}, \quad 1$$

For i = 1 to n - 2,

If
$$f\left(x_{i}^{m_{i}^{1}}\right) = 0$$
 then,
 $f(x_{i+1}^{k}) = 1$ if $k \equiv 1 \pmod{2}$,
 $= 0$ if $k \equiv 0 \pmod{2}$, $1 \le k \le m_{i+1}^{1}$.

$$\begin{split} \text{If } f\left(x_{i}^{m_{i}^{1}}\right) &= 1 \text{ then,} \\ f(x_{i+1}^{k}) &= 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{1} . \\ \text{If } f\left(x_{n-1}^{m_{n-1}^{1}}\right) &= 1 \text{ then,} \\ f(y_{1}^{k}) &= 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{1}^{2} . \\ \text{If } f\left(x_{n-1}^{m_{n-1}^{1}}\right) &= 0 \text{ then,} \\ f(y_{1}^{k}) &= 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \end{split}$$

$$= 0 \qquad if \quad k \equiv 0 \pmod{2}, \quad 1 \le k \le m_1^2.$$

For i = 1 to n - 1,

$$\begin{split} \text{If } f\left(y_{i}^{m_{i}^{2}}\right) &= 0 \text{ then,} \\ f(y_{i+1}^{k}) &= 1 & if \ k \equiv 1 \left(mod \ 2\right), \\ &= 0 & if \ k \equiv 0 \left(mod \ 2\right), \quad 1 \leq k \leq m_{i+1}^{2}. \end{split}$$
$$\\ \text{If } f\left(y_{i}^{m_{i}^{2}}\right) &= 1 \text{ then,} \\ f(y_{i+1}^{k}) &= 0 & if \ k \equiv 1 \left(mod \ 2\right), \end{split}$$

$$= 1 \qquad if \quad k \equiv 0 \ (mod \ 2) \ , \quad 1 \le k \le m_{i+1}^2.$$

$$\begin{split} &\text{If } f\left(y_{n-1}^{m_{n-1}^2}\right) = 0 \text{ then}, \\ &f(w_1^k) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_1^3. \end{split} \\ &\text{If } f\left(y_{n-1}^{m_{n-1}^2}\right) = 1 \text{ then}, \\ &f(w_1^k) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_1^3. \end{split} \\ &\text{For } i = 1 \text{ to } n, \\ &\text{If } f\left(w_i^{m_i^3}\right) = 0 \text{ then}, \\ &f(w_{i+1}^k) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{i+1}^3. \end{split} \\ &\text{If } f\left(w_i^{m_i^3}\right) = 1 \text{ then}, \\ &f(w_i^{m_i^3}) = 1 \text{ then}, \\ &f(w_i^{m_i^3}) = 1 \text{ then}, \\ &f(w_{i+1}^k) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{i+1}^3. \end{split}$$

Let V_0 and V_1 be the number of vertices of G having labels 0 and 1 respectively under f and E_0 and E_1 be the number of edges having labels 0 and 1 respectively under induced labeling f^* .

Along both paths vertex labels are 0 and 1 alternately. As labeling of m_i -part of each K_{2,m_i^j} is done alternately edge weights get balanced in every K_{2,m_i^1} and K_{2,m_i^2} . Also in K_{2,m_i^3} , labels of 2-vertices part are 0 and 1, thus balance edge weights. Thus, $|E_0| = |E_1|$. Vertex labels are given alternately starting with 1, so if it ends with 0 we get $|V_0| = |V_1|$ or else we get $|V_0| - |V_1| = 1$. Thus, $|V_0| - |V_1| \le 1$.

Theorem 2.2. Arbitrary supersubdivision of cyclic ladder, $ASS(C_n \times P_2)$ is cordial if $m_n^2 \equiv 0 \pmod{2}$ and $m_n^3 \equiv 0 \pmod{2}$.

Proof: Let $c_1^1, c_2^1, \ldots, c_n^1$ be the vertices of the inner cycle and $c_1^2, c_2^2, \ldots, c_n^2$ be the vertices of the outer cycle. Let K_{2,m_i^1} be the graph replacing edges $c_i^1 c_i^2, i = 1, 2, \ldots, n$ and x_i^k be the vertices of m_i^1 -part of K_{2,m_i^1} . Let K_{2,m_i^2} be the graph replacing edges $c_i^1 c_{i+1}^1, i = 1, 2, \ldots, n-1$ and y_i^k be the vertices of m_i^2 -part of K_{2,m_i^2} . Let K_{2,m_n^2} be the graph replacing edges $c_i^1 c_{i+1}^1, i = 1, 2, \ldots, n-1$ and y_n^k be the vertices of m_i^2 -part of K_{2,m_i^2} . Let K_{2,m_n^2} be the graph replacing edges $c_i^2 c_{i+1}^2, i = 1, 2, \ldots, n-1$ and y_n^k be the vertices of m_n^2 -part of K_{2,m_n^2} . Let K_{2,m_i^3} be the graph replacing edges $c_i^2 c_{i+1}^2, i = 1, 2, \ldots, n-1$ and z_i^k be the vertices of m_i^3 -part of K_{2,m_i^3} . Let K_{2,m_n^3} be the graph replacing edges $c_i^2 c_{i+1}^2, i = 1, 2, \ldots, n-1$ and z_i^k be the vertices of m_i^3 -part of K_{2,m_i^3} .

Define a labeling $f: V \to \{0, 1\}$ as follows.

$$\begin{split} f(c_i^1) &= 1 & \text{if } i \equiv 1 \ (mod \ 2), \\ &= 0 & \text{if } i \equiv 0 \ (mod \ 2), \ 1 \leq i \leq n. \\ f(c_i^2) &= 0 & \text{if } i \equiv 1 \ (mod \ 2), \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq i \leq n. \\ f(x_1^k) &= 1 & \text{if } k \equiv 1 \ (mod \ 2), \\ &= 0 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_i^1. \\ \end{split}$$
For $i = 1 \ to \ n - 1$,
If $f\left(x_i^{m_i^1}\right) = 0$ then,
 $f(x_{i+1}^k) &= 1 & \text{if } k \equiv 1 \ (mod \ 2), \\ &= 0 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^1. \\ \end{cases}$
If $f\left(x_i^{m_i^1}\right) = 1$ then,
 $f(x_{i+1}^k) &= 0 & \text{if } k \equiv 1 \ (mod \ 2), \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^1. \\ \end{cases}$
If $f\left(x_n^{m_n^1}\right) = 0$ then,
 $f(y_1^k) &= 1if \quad k \equiv 1 \ (mod \ 2), \\ &= 0 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_1^2. \\ \end{cases}$
If $f\left(x_n^{m_n^1}\right) = 1$ then,
 $f(y_1^k) &= 0 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_1^2. \\ \end{cases}$
For $i = 1 \ to \ n - 1, \\$
If $f\left(y_i^{m_n^2}\right) = 0$ then,
 $f(y_i^k) &= 0 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 0 \quad \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_1^2. \\ \end{cases}$
For $i = 1 \ to \ n - 1, \\$
If $f\left(y_i^{m_n^2}\right) = 0$ then,
 $f(y_i^{k+1}) &= 1 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 0 \quad \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^2. \\ \end{cases}$
If $f\left(y_i^{m_n^2}\right) = 1$ then,
 $f(y_{i+1}^k) &= 0 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 0 \quad \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^2. \\ \end{cases}$
If $f\left(y_i^{m_n^2}\right) = 1$ then,
 $f(y_{i+1}^k) &= 0 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 1 \quad \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^2. \\ \end{cases}$
If $f\left(y_i^{m_n^2}\right) = 0$ then,
 $f(y_{i+1}^k) &= 0 \quad \text{if } k \equiv 1 \ (mod \ 2), \\ &= 1 \quad \text{if } k \equiv 0 \ (mod \ 2), \ 1 \leq k \leq m_{i+1}^2. \\ \end{cases}$

$$\begin{split} &\text{If } f\left(y_{n}^{m_{n}^{2}}\right) = 1 \text{ then,} \\ & f(z_{1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ & = 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ & 1 \leq k \leq m_{1}^{3} . \end{split}$$
 $\begin{aligned} &\text{For } i = 1 \ to \ n-1, \\ &\text{If } f\left(z_{i}^{m_{i}^{3}}\right) = 0 \text{ then,} \\ & f(z_{i+1}^{k}) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ & = 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ & 1 \leq k \leq m_{i+1}^{3} . \end{aligned}$ $\begin{aligned} &\text{If } f\left(z_{i}^{m_{i}^{3}}\right) = 1 \text{ then,} \\ &f(z_{i+1}^{m_{i}^{3}}) = 1 \text{ then,} \\ & f(z_{i+1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ & = 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ & 1 \leq k \leq m_{i+1}^{3}. \end{split}$

Let V_0 and V_1 be the number of vertices of G having labels 0 and 1 respectively under f and E_0 and E_1 be the number of edges having labels 0 and 1 respectively under induced labeling f^* .

We can see that vertex labels 0 and 1 on both cycles get balanced. m_n^2 and m_n^3 are even, hence vertex label in K_{2,m_n^2} and K_{2,m_n^3} get balanced. If $\left(\sum_{i=1}^n m_i^1 + \sum_{i=1}^{n-1} m_i^2 + \sum_{i=1}^{n-1} m_i^3\right)$ is even then $|V_1| = |V_0|$. If $\left(\sum_{i=1}^n m_i^1 + \sum_{i=1}^{n-1} m_i^2 + \sum_{i=1}^{n-1} m_i^3\right)$ is odd then $|V_1| - |V_0| = 1$. In any case, it can be easily seen that $|E_0| = |E_1|$.

Notations for Triangular snake

Let u_i , i = 1, 2, ..., n + 1 be vertices of path of length n and v_i , i = 1, 2, ..., n be the vertices adjecent to u_i and u_{i+1} respectively.

Let $x_i^k, k = 1, 2, ..., m_i^1$ be the vertices of the m_i^1 -vertices part of K_{2,m_i^1} replacing the edge $u_i v_i$, for i = 1, 2, ..., n.

Let $y_i^k, k = 1, 2, ..., m_i^2$ be the vertices of the m_i^2 -vertices part of K_{2,m_i^2} replacing the edge $u_{i+1}v_i$, for i = 1, 2, ..., n.

Let even m_i 's among K_{2,m_i} replacing the edges $u_i u_{i+1}$, i = 1, 2, ..., n be renamed as m_i^3 , i = 1, 2, ..., l (say). Let $w_i^k, k = 1, 2, ..., m_i^3$ be the vertices of the m_i^3 -vertices part of K_{2,m_i^3} replacing the edge $u_i u_{i+1}$, for i = 1, 2, ..., l.

Let odd m_i 's among K_{2,m_i} replacing the edges $u_i u_{i+1}$, i = 1, 2, ..., n be renamed as m_i^4 , i = 1, 2, ..., n - l.

Let $z_i^k, k = 1, 2, ..., m_i^4$ be the vertices of the m_i^4 -vertices part of K_{2,m_i^4} replacing the edge $u_i u_{i+1}$, for i = 1, 2, ..., n - l.

Figure 2: $ASS(T_3)$ with vertex labels.

Theorem 2.3. Arbitrary supersubdivision of T_n , $ASS(T_n)$ is cordial if there are even number of odd m_i^4 's.

Proof: Define a labeling $f: V \to \{0, 1\}$ as follows.

$$\begin{aligned} f(u_i) &= 1 & if \ i = 1, 2, \dots, n+1, \\ f(v_i) &= 0 & if \ i = 1, 2, \dots, n. \\ \end{aligned}$$

$$\begin{aligned} f(x_1^k) &= 0 & if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 & if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_1^1 \end{aligned}$$

For i = 1 to n - 1,

If
$$f\left(x_{i}^{m_{i}^{1}}\right) = 0$$
 then,
 $f(x_{i+1}^{k}) = 1$ if $k \equiv 1 \pmod{2}$,
 $= 0$ if $k \equiv 0 \pmod{2}$, $1 \le k \le m_{i+1}^{1}$.

If $f\left(x_i^{m_i^1}\right) = 1$ then, $\begin{array}{ll} f(x_{i+1}^k) &= 0 & \quad if \ \ k \equiv 1 \, (mod \ \ 2) \,, \\ &= 1 & \quad if \ \ k \equiv 0 \, (mod \ \ 2) \,, \quad 1 \leq k \leq m_{i+1}^1. \end{array}$ If $f\left(x_n^{m_n^1}\right) = 1$ then, $\begin{array}{ll} f(y_1^k) &= 0 & \quad if \ \ k \equiv 1 \, (mod \ \ 2) \,, \\ &= 1 & \quad if \ \ k \equiv 0 \, (mod \ \ 2) \,, \quad 1 \leq k \leq m_1^2. \end{array}$ If $f\left(x_n^{m_n^1}\right) = 0$ then, $\begin{array}{ll} f(y_1^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^2. \end{array}$ For i = 1 to n - 1, If $f\left(y_i^{m_i^2}\right) = 0$ then, $\begin{array}{ll} f(y_{i+1}^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^2. \end{array}$ If $f\left(y_{i}^{m_{i}^{2}}\right) = 1$ then, $\begin{array}{ll} f(y_{i+1}^k) &= 0 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 1 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^2. \end{array}$ If $f\left(y_n^{m_n^2}\right) = 0$ then, $\begin{array}{ll} f(w_1^k) &= 1 & \quad if \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^3. \end{array}$ If $f\left(y_n^{m_n^2}\right) = 1$ then, $\begin{array}{ll} f(w_1^k) &= 0 & \quad if \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 1 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^3. \end{array}$ For i = 1 to l, If $f\left(w_i^{m_i^3}\right) = 0$ then, $\begin{array}{ll} f(w_{i+1}^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^3. \end{array}$ If $f\left(w_{i}^{m_{i}^{3}}\right) = 1$ then,

$$\begin{split} f(w_{i+1}^k) &= 0 & \text{if } k \equiv 1 \ (mod \ 2) \,, \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^3 \,. \\ \text{If } f\left(w_l^{m_l^3}\right) &= 0 \text{ then} \,, \\ f(z_1^k) &= 1 & \text{if } k \equiv 1 \ (mod \ 2) \,, \\ &= 0 & \text{if } k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_1^4 \,. \\ \text{If } f\left(w_l^{m_l^3}\right) &= 1 \text{ then} \,, \\ f(z_1^k) &= 0 & \text{if } k \equiv 1 \ (mod \ 2) \,, \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_1^4 \,. \\ \text{For } i = 1 \quad to \ n - l \,, \\ \text{If } f\left(z_i^{m_i^4}\right) &= 0 \text{ then} \,, \\ f(z_i^{k+1}) &= 1 & \text{if } k \equiv 1 \ (mod \ 2) \,, \\ &= 0 & \text{if } k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^4 \,. \\ \text{If } f\left(z_i^{m_i^4}\right) &= 1 \text{ then} \,, \\ f(z_i^{k+1}) &= 1 & \text{then} \,, \\ f(z_i^{k+1}) &= 1 & \text{then} \,, \\ f(z_i^{k+1}) &= 0 & \text{if } k \equiv 1 \ (mod \ 2) \,, \\ &= 1 & \text{if } k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^4 \,. \end{split}$$

Let V_0 and V_1 be the number of vertices of G having labels 0 and 1 respectively under f and E_0 and E_1 be the number of edges having labels 0 and 1 respectively under induced labeling f^* .

Among u_i , i = 1, 2, ..., n + 1 and v_i , i = 1, 2, ..., n, number of vertices with 0 labels are n and with 1 are n + 1. As the remaining vertices are labeled alternately we have,

$$||V_1| - |V_0|| = 0$$
 if $f(w_n^{m_n^3}) = 0$,
= 1 if $f(w_n^{m_n^3}) = 1$.

Edge weights of K_{2,m_i^1} and K_{2,m_i^2} are balanced as 2-vertices part is labeled as 0 and 1 with alternate labeling to m_i^j -vertices part. For path P_n , if m_i^3 is even then for corresponding K_{2,m_i^3} we will get $|E_o| = |E_1|$. And as number of odd m_i^3 is even, altogether in union of K_{2,m_i^3} , we get, $|E_o| = |E_1|$. Hence in general, $|E_o| = |E_1|$.

Theorem 2.4. Arbitrary supersubdivision of $D(T_n)$, $ASS(D(T_n))$ is cordial if $\sum m_i^4 \equiv 0 \pmod{2}$ and $\sum m_i^5 \equiv 0 \pmod{2}$.

Proof: Let u_i , i = 1, 2, ..., n be the vertices of the path. Each u_i and u_{i+1} are joined to v_i and w_i respectively for i = 1, 2, ..., n - 1. Let K_{2,m_i} be the graph replacing edges $u_i u_{i+1}$, i = 1, 2, ..., n - 1.

 $1, 2, \ldots, n-1$ and x_i^k be the vertices of m_i^1 -part of K_{2,m_i^1} . Let K_{2,m_i^2} be the graph replacing edges $v_i u_{i+1}, i = 1, 2, \ldots, n-1$ and y_i^k be the vertices of m_i^2 -part of K_{2,m_i^2} . Let K_{2,m_i^3} be the graph replacing edges $w_i u_i, i = 1, 2, \ldots, n-1$ and z_i^k be the vertices of m_i^3 -part of K_{2,m_i^3} .

Figure 3: $ASS(D(T_5))$ with vertex labels.

For n even,

Let K_{2,m_i^4} be the graph replacing edges $u_{2i-1}v_{2i-1}$, $i = 1, 2, \ldots, \frac{n}{2}$ and edges $w_{2i-n}u_{2i-n+1}$, $i = \frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n-1$ and p_i^k be the vertices of m_i^4 -part of K_{2,m_i^4} .

Let K_{2,m_i^5} be the graph replacing edges $u_{2i}v_{2i}$, $i = 1, 2, \ldots, \frac{n}{2} - 1$ and edges $w_{2i-n+1}u_{2i-n+2}$, $i = 1, 2, \ldots, \frac{n}{2} - 1$

 $\frac{n}{2}, \frac{n}{2}+1, \ldots, n-1$ and q_i^k be the vertices of m_i^5 -part of K_{2,m_i^5} .

For n odd,

Let K_{2,m_i^4} be the graph replacing edges $u_{2i-1}v_{2i-1}$, $i = 1, 2, \ldots, \frac{n-1}{2}$ and edges $w_{2i-n}u_{2i-n+1}$, $i = \frac{n-1}{2} + 1, \frac{n}{2} + 2, \ldots, n-1$ and let p_i^k be the vertices of m_i^4 -part of K_{2,m_i^4} .

Let K_{2,m_i^5} be the graph replacing edges $u_{2i}v_{2i}$, $i = 1, 2, \ldots, \frac{n+1}{2} - 1$ and edges $w_{2i-n+1}u_{2i-n+2}$, $i = \frac{n+1}{2}, \frac{n}{2} + 1, \ldots, n-1$ and let q_i^k be the vertices of m_i^5 -part of K_{2,m_i^5} .

Labeling is as follows.

Define a labeling $f:V\to\{0,1\}$ as follows.

$$\begin{array}{lll} f(u_i) &= 0 & \mbox{ if } i \equiv 1 \ (mod \ 2) \,, \\ &= 1 & \mbox{ if } i \equiv 0 \ (mod \ 2) \,, & 1 \leq i \leq n. \\ f(v_i) &= 0 & \mbox{ if } i \equiv 1 \ (mod \ 2) \,, \\ &= 1 & \mbox{ if } i \equiv 0 \ (mod \ 2) \,, & 1 \leq i \leq n-1. \\ f(w_i) &= 1 & \mbox{ if } i \equiv 1 \ (mod \ 2) \,, \\ &= 0 & \mbox{ if } i \equiv 0 \ (mod \ 2) \,, & 1 \leq i \leq n-1. \\ f(x_1^k) &= 1 & \mbox{ if } k \equiv 1 \ (mod \ 2) \,, \end{array}$$

$$= 0 \qquad if \ k \equiv 0 \left(mod \ 2\right), \quad 1 \leq k \leq m_1^1$$

For i = 1 to n - 2,

$$\begin{split} &\text{If } f\left(x_{i}^{m_{i}^{1}}\right)=0 \text{ then,} \\ &f(x_{i+1}^{k}) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{i+1}^{1}. \end{split} \\ &\text{If } f\left(x_{i}^{m_{i}^{1}}\right)=1 \text{ then,} \\ &f(x_{i+1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{i+1}^{1}. \end{split} \\ &\text{If } f\left(x_{n-1}^{m_{n-1}^{1}}\right)=0 \text{ then,} \\ &f(y_{1}^{k}) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{1}^{2}. \end{split} \\ &\text{If } f\left(x_{n-1}^{m_{n-1}^{1}}\right)=1 \text{ then,} \\ &f(y_{1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \\ &= 1 \quad if \ k \equiv 0 \ (mod \ 2) \,, \\ &1 \leq k \leq m_{1}^{2}. \end{split}$$

For i = 1 to n - 2, If $f\left(y_i^{m_i^2}\right) = 0$ then $\begin{array}{ll} f(y_{i+1}^k) &= 1 & \quad if \ k \equiv 1 \, (mod \ 2) \,, \\ &= 0 & \quad if \ k \equiv 0 \, (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^2. \end{array}$ If $f\left(y_i^{m_i^2}\right) = 1$ then, $\begin{array}{ll} f(y_{i+1}^k) &= 0 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 1 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^2 . \end{array}$ If $f\left(y_{n-1}^{m_{n-1}^2}\right) = 0$ then, $\begin{array}{ll} f(z_1^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^3. \end{array}$ If $f(y_{n-1}^{m_{n-1}^2}) = 1$ then, $\begin{array}{ll} f(z_1^k) &= 0 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 1 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^3. \end{array}$ For i = 1 to n - 2, If $f\left(z_i^{m_i^3}\right) = 0$ then, $\begin{array}{ll} f(z_{i+1}^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^3. \end{array}$ If $f\left(z_i^{m_i^3}\right) = 1$ then, $\begin{array}{rll} f(z_{i+1}^k) &= 0 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \\ &= 1 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_{i+1}^3. \end{array}$ If $f\left(z_{n-1}^{m_{n-1}^3}\right) = 0$ then, $\begin{array}{ll} f(p_1^k) &= 1 & \quad if \ \ k \equiv 1 \ (mod \ \ 2) \ , \\ &= 0 & \quad if \ \ k \equiv 0 \ (mod \ \ 2) \ , \quad 1 \leq k \leq m_1^4. \end{array}$ If $f\left(z_{n-1}^{m_{n-1}^3}\right) = 1$ then, $\begin{array}{ll} f(p_1^k) &= 0 & \quad if \ \ k \equiv 1 \, (mod \ \ 2) \,, \\ &= 1 & \quad if \ \ k \equiv 0 \, (mod \ \ 2) \,, \quad 1 \leq k \leq m_1^4. \end{array}$ For i = 1 to n - 2,

$$\begin{split} &\text{If } f\left(p_{i}^{m_{i}^{4}}\right) = 0 \text{ then,} \\ &f(p_{i+1}^{k}) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{4}. \\ &\text{If } f\left(p_{i}^{m_{i}^{3}}\right) = 1 \text{ then,} \\ &f(p_{i+1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{4}. \\ &\text{If } f\left(p_{n-1}^{m_{n-1}^{5}}\right) = 0 \text{ then,} \\ &f(q_{1}^{k}) = 1 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{1}^{5}. \\ &\text{If } f\left(p_{n-1}^{m_{n-1}^{5}}\right) = 0 \text{ then,} \\ &f(q_{1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{1}^{5}. \\ &\text{If } f\left(p_{n-1}^{m_{n-1}^{5}}\right) = 1 \text{ then,} \\ &f(q_{1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{1}^{5}. \\ &\text{For } i = 1 \ to \ n-2 \,, \\ &\text{If } f\left(q_{i}^{m_{1}^{5}}\right) = 0 \text{ then,} \\ &f(q_{i}^{k}) = 0 \quad \text{then,} \\ &f(q_{i}^{k}) = 0 \quad \text{then,} \\ &f(q_{i}^{k}) = 0 \quad \text{then,} \\ &f(q_{i}^{k}) = 1 \quad \text{then,} \\ &f(q_{i}^{m_{1}^{5}}) = 0 \text{ then,} \\ &f(q_{i}^{m_{1}^{5}}) = 1 \text{ then,} \\ &f(q_{i}^{m_{1}^{5}}) = 1 \text{ then,} \\ &f(q_{i+1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i}^{m_{1}^{5}}\right) = 1 \text{ then,} \\ &f(q_{i+1}^{k}) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 1 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad if \ k \equiv 0 \ (mod \ 2) \,, \quad 1 \leq k \leq m_{i+1}^{5}. \\ &\text{If } f\left(q_{i+1}^{k}\right) = 0 \quad$$

Let V_0 and V_1 be the number of vertices of G having labels 0 and 1 respectively under f and E_0 and E_1 be the number of edges having labels 0 and 1 respectively under induced labeling f^* .

In above labeling, vertices on path are given labels 0 and 1 alternately. Also, number of 0's and 1's in v_i and w_i are balanced with each other. Labeling of K_{2,m_i^j} is done alternatively as 0 and 1 with condition that $\sum m_i^4 \equiv 0 \pmod{2}$ and $\sum m_i^5 \equiv 0 \pmod{2}$, thus balancing number of 0's and 1's.

If n is even, with $\sum (m_i^1 + mi^2 + m_i^3)$ also even, we get $|V_0| = |V_1|$ and with $\sum (m_i^1 + mi^2 + m_i^3)$ is odd we have $|V_1| - |V_0| = 1$.

If n is odd, with $\sum (m_i^1 + m_i^2 + m_i^3)$ also even, we get $|V_0| - |V_1| = 1$ and with $\sum (m_i^1 + m_i^2 + m_i^3)$

is odd then $|V_1| = |V_0|$. In any case, it can be clearly seen that $|E_0| = |E_1|$.

References

- [1] I.Cahit, On cordial and 3-equitable labellings of graphs, Util.Math, 37(1990), 189-198.
- [2] J. A. Gallian, A Dynamic Survey Of Graph Labeling, (2015).
- [3] K.M. Kathiresan, Subdivisions of ladders are graceful, Indian Journal of Pure Appl Math., (1992), 21-23.
- [4] V.Ramchandran and C.Sekar, Graceful labeling of supersubdivision of Ladder Int J. Maths and it's Appl,Vol 2, No 2(2014), 29-36.
- [5] G.Sethuraman and P. Selvaraju, Gracefulness of supersubdivision of graphs. Indian Jornal of Pure appl Math, 32(7)(2001), 1059-1064.
- [6] S.K.Vaidya, N.A.Dani and K.Kanani, P.L Vihol, Cordial and 3-equitable labelling for some wheel related graphs, International J. Appl. Math., 41:2(2011).
- [7] S.K.Vaidya and K.Kanani, Some new results on cordial labelling in the context of arbitrary supersubdivision of graph, Applied Math. Sci, 474(2010), 2323-2329.
- [8] S.K.Vaidya and N.H.Shah, Cordial labeling of snakes, Int J. Maths and it's Appl, Vol. 2, No.3(2014), 17-27.