Cordialness of arbitrary supersubdivision of graphs

Ujwala Deshmukh ${ }^{1}$, Smita A. Bhatavadekar ${ }^{2}$
${ }^{1}$ Department of Mathematics
Mithibai College, Vile Parle(West)
Mumbai, India.
ujwala_deshmukh@rediffmail.com
${ }^{2}$ Department of Applied Mathematics Lokmanya Tilak College of Engineering
Koparkhairne, Navi Mumbai, India.
smitasj1@gmail.com

Abstract

In this paper we prove that arbitrary supersubdivision of ladder, cyclic ladder, triangular snake and certain double triangular snake are cordial.

Keywords: Ladder, cyclic ladder, triangular snake, double triangular snake, subdivision of a graph, supersubdivision of a graph, cordial labeling.
AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph we mean simple, finite and undirected graph $G=(V, E)$. The concept of cordial labeling was introduced by Cahit [1]. Sethuraman and Selvaraju [5] proved gracefulness of supersubdivision of graphs. Kathiresan [3] has proved subdivision of ladders are graceful. Ramchandran and Sekar [4] have discussed graceful labeling of supersubdivision of ladder. Vaidya [8] proved cordial labeling of snakes.

A ladder is defined by $P_{n} \times P_{2}$, where P_{n} is a path of length $n-1$ and is denoted by L_{n}. The ladder L_{n} has $2 n$ vertices and $3 n-2$ edges. Cyclic ladder is obtained by taking cartesian product of cycle C_{n} and P_{2}. The triangular snake T_{n} is a graph containing a path of length n with vertices $u_{1}, u_{2}, \ldots . u_{n}, u_{n+1}$ and each pair of consecutive vertices u_{i}, u_{i+1} is joined to a common vertex $v_{i}, i=1,2, \ldots, n$. Thus it consists of $2 n+1$ vertices and $3 n$ edges. The double triangular snake $D\left(T_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to two new verices v_{i} and w_{i} respectively, $1 \leq i \leq n-1$.

Definition 1.1. Let G be a graph with p vertices and q edges. A graph H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once. H is denoted by $S(G)$. Thus, $|V|=p+q$ and $|E|=2 q$.

Definition 1.2. Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge e of G by a complete bipartite graph $K_{2, m}$. H is denoted by $S S(G)$. Thus, $|V|=p+m q$ and $|E|=2 m q$.

Definition 1.3. Let G be a graph with p vertices and q edges. A graph H is said to be a arbitrary supersubdivision of G if it is obtained from G by replacing every edge e_{i} of G by a complete bipartite graph $K_{2, m_{i}}, i=1,2, \ldots, q . \quad H$ is denoted by $A S S(G)$. Thus, $|V|=$ $p+\sum_{i=1}^{q} m_{i}$ and $|E|=\sum_{i=1}^{q} 2 m_{i}$.

Definition 1.4. Let f be a function from the vertices of G to $\{0,1\}$ and for an edge $e=u v$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e)=|f(u)-f(v)| \cdot f$ is said to be cordial labeling of G if $\left|V_{0}-V_{1}\right| \leqslant 1$ and $\left|E_{0}-E_{1}\right| \leqslant 1$ where V_{0} and V_{1} are the number of vertices of G having labels 0 and 1 respectively under f and E_{0} and E_{1} be the number of edges having labels 0 and 1 respectively under induced labeling f^{*}

In the complete bipartite graph $K_{2, m}$, we call the part consisting of two vertices as 2 -vertices part of $K_{2, m}$ and the part consisting of m vertices as m-vertices part of $K_{2, m}$.

2 Main Results

Theorem 2.1. Arbitrary supersubdivision of $L_{n}, A S S\left(L_{n}\right)$ is cordial.
Proof: Let $u_{i}, \quad i=1,2, \ldots, n$ and $v_{i}, \quad i=1,2, \ldots, n$ be the vertices of two paths of Ladder L_{n}. Let $x_{i}^{k}, k=1,2, \ldots, m_{i}^{1}$ be the vertices of the m_{i}^{1}-vertices part of $K_{2, m_{i}^{1}}$ replacing the edge $u_{i} u_{i+1}$, for $i=1,2, \ldots, n-1$. Let $y_{i}^{k}, k=1,2, \ldots, m_{i}^{2}$ be the vertices of the m_{i}^{2}-vertices part of $K_{2, m_{i}^{2}}$ replacing the edge $v_{i} v_{i+1}$, for $i=1,2, \ldots, n-1$. Let $w_{i}^{k}, k=1,2, \ldots, m_{i}^{3}$ be the vertices of the m_{i}^{3}-vertices part of $K_{2, m_{i}^{3}}$ replacing the edge $u_{i} v_{i}$, for $i=1,2, \ldots, n$.

Figure 1: $A S S\left(L_{5}\right)$ with vertex labels.

$$
|V|=2 n+\left(\sum m_{i}^{1}+\sum m_{i}^{2}+\sum m_{i}^{3}\right) \quad|E|=2\left(\sum m_{i}^{1}+\sum m_{i}^{2}+\sum m_{i}^{3}\right)
$$

Define a labeling $f: V \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =0 \quad \text { if } i \equiv 1(\bmod 2) \\
& =1 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n . \\
f\left(v_{i}\right) & =1 \quad \text { if } i \equiv 1(\bmod 2) \\
& =0 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n . \\
f\left(x_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{1} .
\end{aligned}
$$

For $i=1$ to $n-2$,
If $f\left(x_{i}^{m_{i}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1} .
\end{aligned}
$$

If $f\left(x_{i}^{m_{i}^{1}}\right)=1$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1} .
\end{aligned}
$$

If $f\left(x_{n-1}^{m_{n-1}^{1}}\right)=1$ then,

$$
\begin{array}{rlll}
f\left(y_{1}^{k}\right) & =0 & \text { if } & k \equiv 1(\bmod 2), \\
& =1 & \text { if } & k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{array}
$$

If $f\left(x_{n-1}^{m_{n-1}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =1 & \text { if } k \equiv 1(\bmod 2), \\
& =0 & \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{aligned}
$$

For $i=1$ to $n-1$,
If $f\left(y_{i}^{m_{i}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2} .
\end{aligned}
$$

If $f\left(y_{i}^{m_{i}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2} .
\end{aligned}
$$

If $f\left(y_{n-1}^{m_{n-1}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(w_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2) \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

If $f\left(y_{n-1}^{m_{n-1}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(w_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2) \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

For $i=1$ to n,
If $f\left(w_{i}^{m_{i}^{3}}\right)=0$ then,

$$
\begin{aligned}
& f\left(w_{i+1}^{k}\right)=1 \\
&=0 \quad \text { if } k \equiv 1(\bmod 2), \\
& \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3} .
\end{aligned}
$$

If $f\left(w_{i}^{m_{i}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(w_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3} .
\end{aligned}
$$

Let V_{0} and V_{1} be the number of vertices of G having labels 0 and 1 respectively under f and E_{0} and E_{1} be the number of edges having labels 0 and 1 respectively under induced labeling f^{*}.

Along both paths vertex labels are 0 and 1 alternately. As labeling of m_{i}-part of each $K_{2, m_{i}^{j}}$ is done alternately edge weights get balanced in every $K_{2, m_{i}^{1}}$ and $K_{2, m_{i}^{2}}$. Also in $K_{2, m_{i}^{3}}$, labels of 2 -vertices part are 0 and 1 , thus balance edge weights. Thus, $\left|E_{0}\right|=\left|E_{1}\right|$. Vertex labels are given alternately starting with 1 , so if it ends with 0 we get $\left|V_{0}\right|=\left|V_{1}\right|$ or else we get $\left|V_{0}\right|-\left|V_{1}\right|=1$. Thus, $\left|\left|V_{0}\right|-\left|V_{1}\right|\right| \leq 1$.

Theorem 2.2. Arbitrary supersubdivision of cyclic ladder, $A S S\left(C_{n} \times P_{2}\right)$ is cordial if $m_{n}^{2} \equiv$ $0(\bmod 2)$ and $m_{n}^{3} \equiv 0(\bmod 2)$.

Proof: Let $c_{1}^{1}, c_{2}^{1}, \ldots, c_{n}^{1}$ be the vertices of the inner cycle and $c_{1}^{2}, c_{2}^{2}, \ldots, c_{n}^{2}$ be the vertices of the
 of $m_{i}{ }^{1}$-part of $K_{2, m_{i}{ }^{1}}$. Let $K_{2, m_{i}{ }^{2}}$ be the graph replacing edges $c_{i}^{1} c_{i+1}^{1}, i=1,2, \ldots, n-1$ and
 y_{n}^{k} be the vertices of $m_{n}{ }^{2}$-part of $K_{2, m_{n}}{ }^{2}$. Let $K_{2, m_{i}}{ }^{3}$ be the graph replacing edges $c_{i}^{2} c_{i+1}^{2}, i=$ $1,2, \ldots, n-1$ and z_{i}^{k} be the vertices of $m_{i}{ }^{3}$-part of $K_{2, m_{i}{ }^{3}}$. Let $K_{2, m_{n}{ }^{3}}$ be the graph replacing edges $c_{n}^{2} c_{1}^{2}$ and z_{n}^{k} be the vertices of $m_{n}{ }^{3}$-part of $K_{2, m_{n}}{ }^{3}$.

Define a labeling $f: V \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
f\left(c_{i}^{1}\right) & =1 \quad \text { if } i \equiv 1(\bmod 2), \\
& =0 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n . \\
f\left(c_{i}^{2}\right) & =0 \quad \text { if } i \equiv 1(\bmod 2), \\
& =1 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n . \\
f\left(x_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i}^{1} .
\end{aligned}
$$

For $i=1$ to $n-1$,
If $f\left(x_{i}^{m_{i}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1} .
\end{aligned}
$$

If $f\left(x_{i}^{m_{i}^{1}}\right)=1$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1} .
\end{aligned}
$$

If $f\left(x_{n}^{m_{n}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =1 \text { if } \quad k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{aligned}
$$

If $f\left(x_{n}^{m_{n}^{1}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =0 & \text { if } k \equiv 1(\bmod 2), \\
& =1 & \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{aligned}
$$

For $i=1$ to $n-1$,
If $f\left(y_{i}^{m_{i}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =1 & \text { if } k \equiv 1(\bmod 2), \\
& =0 & \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2} .
\end{aligned}
$$

If $f\left(y_{i}^{m_{i}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2} .
\end{aligned}
$$

If $f\left(y_{n}^{m_{n}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =1 \quad \text { if } \quad k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3} .
\end{aligned}
$$

If $f\left(y_{n}^{m_{n}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

For $i=1$ to $n-1$,
If $f\left(z_{i}^{m_{i}^{3}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

If $f\left(z_{i}^{m_{i}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

Let V_{0} and V_{1} be the number of vertices of G having labels 0 and 1 respectively under f and E_{0} and E_{1} be the number of edges having labels 0 and 1 respectively under induced labeling f^{*}.

We can see that vertex labels 0 and 1 on both cycles get balanced. m_{n}^{2} and m_{n}^{3} are even, hence vertex label in $K_{2, m_{n}^{2}}$ and $K_{2, m_{n}^{3}}$ get balanced. If $\left(\sum_{i=1}^{n} m_{i}^{1}+\sum_{i=1}^{n-1} m_{i}^{2}+\sum_{i=1}^{n-1} m_{i}^{3}\right)$ is even then $\left|V_{1}\right|=\left|V_{0}\right|$. If $\left(\sum_{i=1}^{n} m_{i}^{1}+\sum_{i=1}^{n-1} m_{i}^{2}+\sum_{i=1}^{n-1} m_{i}^{3}\right)$ is odd then $\left|V_{1}\right|-\left|V_{0}\right|=1$. In any case, it can be easily seen that $\left|E_{0}\right|=\left|E_{1}\right|$.

Notations for Triangular snake

Let $u_{i}, \quad i=1,2, \ldots, n+1$ be vetices of path of length n and $v_{i}, \quad i=1,2, \ldots, n$ be the vertices adjecent to u_{i} and u_{i+1} respectively.

Let $x_{i}^{k}, k=1,2, \ldots, m_{i}^{1}$ be the vertices of the m_{i}^{1}-vertices part of $K_{2, m_{i}^{1}}$ replacing the edge $u_{i} v_{i}$, for $i=1,2, \ldots, n$.

Let $y_{i}^{k}, k=1,2, \ldots, m_{i}^{2}$ be the vertices of the m_{i}^{2}-vertices part of $K_{2, m_{i}^{2}}$ replacing the edge $u_{i+1} v_{i}$, for $i=1,2, \ldots, n$.

Let even m_{i} 's among $K_{2, m_{i}}$ replacing the edges $u_{i} u_{i+1}, \quad i=1,2, \ldots, n$ be renamed as m_{i}^{3}, $i=1,2, \ldots, l($ say $)$. Let $w_{i}^{k}, k=1,2, \ldots, m_{i}^{3}$ be the vertices of the m_{i}^{3}-vertices part of $K_{2, m_{i}^{3}}$ replacing the edge $u_{i} u_{i+1}$, for $i=1,2, \ldots, l$.

Let odd m_{i} 's among $K_{2, m_{i}}$ replacing the edges $u_{i} u_{i+1}, \quad i=1,2, \ldots, n$ be renamed as m_{i}^{4}, $i=1,2, \ldots, n-l$.

Let $z_{i}^{k}, k=1,2, \ldots, m_{i}^{4}$ be the vertices of the m_{i}^{4}-vertices part of $K_{2, m_{i}^{4}}$ replacing the edge $u_{i} u_{i+1}$, for $i=1,2, \ldots, n-l$.

Figure 2: $A S S\left(T_{3}\right)$ with vertex labels.

Theorem 2.3. Arbitrary supersubdivision of $T_{n}, A S S\left(T_{n}\right)$ is cordial if there are even number of odd m_{i}^{4} 's.

Proof: Define a labeling $f: V \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
& f\left(u_{i}\right)=1 \\
& f\left(v_{i}\right)=0 \\
& f\left(x_{1}^{k}\right)=0 \quad \text { if } \quad i=1,2, \ldots, n+1, \\
&=1 \quad \text { if } \quad i=1,2 \ldots, n . \\
& \text { if } k \equiv 0(\bmod 2), \\
&\bmod 2), \quad 1 \leq k \leq m_{1}^{1} .
\end{aligned}
$$

For $i=1$ to $n-1$,

If $f\left(x_{i}^{m_{i}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1} .
\end{aligned}
$$

If $f\left(x_{i}^{m_{i}^{1}}\right)=1$ then,

$$
\begin{aligned}
& f\left(x_{i+1}^{k}\right)=0 \quad \text { if } k \equiv 1(\bmod 2), \\
&=1 \quad \\
& \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1}
\end{aligned}
$$

If $f\left(x_{n}^{m_{n}^{1}}\right)=1$ then,

$$
\begin{aligned}
& f\left(y_{1}^{k}\right)=0 \quad \text { if } k \equiv 1(\bmod 2) \\
&=1 \quad \\
& \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2}
\end{aligned}
$$

If $f\left(x_{n}^{m_{n}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2}
\end{aligned}
$$

For $i=1$ to $n-1$,
If $f\left(y_{i}^{m_{i}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2}
\end{aligned}
$$

If $f\left(y_{i}^{m_{i}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2) \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2}
\end{aligned}
$$

If $f\left(y_{n}^{m_{n}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(w_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

If $f\left(y_{n}^{m_{n}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(w_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

For $i=1$ to l,

If $f\left(w_{i}^{m_{i}^{3}}\right)=0$ then,

$$
\begin{aligned}
f\left(w_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

If $f\left(w_{i}^{m_{i}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(w_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

If $f\left(w_{l}^{m_{l}^{3}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{4}
\end{aligned}
$$

If $f\left(w_{l}^{m_{l}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{4}
\end{aligned}
$$

For $i=1$ to $n-l$,
If $f\left(z_{i}^{m_{i}^{4}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{4}
\end{aligned}
$$

If $f\left(z_{i}^{m_{i}^{4}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{4}
\end{aligned}
$$

Let V_{0} and V_{1} be the number of vertices of G having labels 0 and 1 respectively under f and E_{0} and E_{1} be the number of edges having labels 0 and 1 respectively under induced labeling f^{*}.

Among $u_{i}, \quad i=1,2, \ldots, n+1$ and $v_{i}, \quad i=1,2, \ldots, n$, number of vertices with 0 labels are n and with 1 are $n+1$. As the remaining vertices are labeled alternately we have,

$$
\begin{aligned}
\left|\left|V_{1}\right|-\left|V_{0}\right|\right| & =0 \quad \text { if } f\left(w_{n}^{m_{n}^{3}}\right)=0 \\
& =1 \\
& \text { if } f\left(w_{n}^{m_{n}^{3}}\right)=1
\end{aligned}
$$

Edge weights of $K_{2, m_{i}^{1}}$ and $K_{2, m_{i}^{2}}$ are balanced as 2 -vertices part is labeled as 0 and 1 with alternate labeling to m_{i}^{j}-vertices part.For path P_{n}, if m_{i}^{3} is even then for corresponding $K_{2, m_{i}^{3}}$ we will get $\left|E_{o}\right|=\left|E_{1}\right|$. And as number of odd m_{i}^{3} is even, altogether in union of $K_{2, m_{i}^{3}}$, we get, $\left|E_{o}\right|=\left|E_{1}\right|$. Hence in general, $\left|E_{o}\right|=\left|E_{1}\right|$.
Theorem 2.4. Arbitrary supersubdivision of $D\left(T_{n}\right), A S S\left(D\left(T_{n}\right)\right)$ is cordial if $\sum m_{i}^{4} \equiv 0(\bmod 2)$ and $\sum m_{i}^{5} \equiv 0(\bmod 2)$.

Proof: Let $u_{i}, i=1,2, \ldots, n$ be the vertices of the path. Each u_{i} and u_{i+1} are joined to v_{i} and w_{i} respectively for $i=1,2, \ldots, n-1$. Let $K_{2, m_{i}}{ }^{1}$ be the graph replacing edges $u_{i} u_{i+1}, i=$
$1,2, \ldots, n-1$ and x_{i}^{k} be the vertices of $m_{i}{ }^{1}$-part of $K_{2, m_{i}{ }^{1}}$. Let $K_{2, m_{i}{ }^{2}}$ be the graph replacing edges $v_{i} u_{i+1}, i=1,2, \ldots, n-1$ and y_{i}^{k} be the vertices of $m_{i}{ }^{2}-$ part of $K_{2, m_{i}{ }^{2}}$. Let $K_{2, m_{i}}{ }^{3}$ be the graph replacing edges $w_{i} u_{i}, i=1,2, \ldots, n-1$ and z_{i}^{k} be the vertices of m_{i}^{3}-part of $K_{2, m_{i}{ }^{3}}$.

Figure 3: $A S S\left(D\left(T_{5}\right)\right)$ with vertex labels.

For n even,
Let $K_{2, m_{i}{ }^{4}}$ be the graph replacing edges $u_{2 i-1} v_{2 i-1}, i=1,2, \ldots, \frac{n}{2}$ and edges $w_{2 i-n} u_{2 i-n+1}, i=$ $\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n-1$ and p_{i}^{k} be the vertices of $m_{i}{ }^{4}$-part of $K_{2, m_{i}}{ }^{4}$.

Let $K_{2, m_{i}}{ }^{5}$ be the graph replacing edges $u_{2 i} v_{2 i}, i=1,2, \ldots, \frac{n}{2}-1$ and edges $w_{2 i-n+1} u_{2 i-n+2}, i=$
$\frac{n}{2}, \frac{n}{2}+1, \ldots, n-1$ and q_{i}^{k} be the vertices of $m_{i}{ }^{5}$-part of $K_{2, m_{i}}$.
For n odd,
Let $K_{2, m_{i}{ }^{4}}$ be the graph replacing edges $u_{2 i-1} v_{2 i-1}, i=1,2, \ldots, \frac{n-1}{2}$ and edges $w_{2 i-n} u_{2 i-n+1}, i=$ $\frac{n-1}{2}+1, \frac{n}{2}+2, \ldots, n-1$ and let p_{i}^{k} be the vertices of $m_{i}{ }^{4}$-part of $K_{2, m_{i}}{ }^{4}$.

Let $K_{2, m_{i}}{ }^{5}$ be the graph replacing edges $u_{2 i} v_{2 i}, i=1,2, \ldots, \frac{n+1}{2}-1$ and edges $w_{2 i-n+1} u_{2 i-n+2}, i=$ $\frac{n+1}{2}, \frac{n}{2}+1, \ldots, n-1$ and let q_{i}^{k} be the vertices of $m_{i}{ }^{5}$-part of $K_{2, m_{i}}{ }^{5}$.

Labeling is as follows.
Define a labeling $f: V \rightarrow\{0,1\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =0 \quad \text { if } i \equiv 1(\bmod 2) \\
& =1 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n \\
f\left(v_{i}\right) & =0 \quad \text { if } i \equiv 1(\bmod 2) \\
& =1 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n-1 \\
f\left(w_{i}\right) & =1 \quad \text { if } i \equiv 1(\bmod 2), \\
& =0 \quad \text { if } i \equiv 0(\bmod 2), \quad 1 \leq i \leq n-1 \\
f\left(x_{1}^{k}\right) & =1 \\
& =0 \quad \text { if } \quad k \equiv 1(\bmod 2), \\
& \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{1}
\end{aligned}
$$

For $i=1$ to $n-2$,

If $f\left(x_{i}^{m_{i}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1}
\end{aligned}
$$

If $f\left(x_{i}^{m_{i}^{1}}\right)=1$ then,

$$
\begin{aligned}
f\left(x_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{1}
\end{aligned}
$$

If $f\left(x_{n-1}^{m_{n-1}^{1}}\right)=0$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{aligned}
$$

If $f\left(x_{n-1}^{m_{n-1}^{1}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{2} .
\end{aligned}
$$

For $i=1$ to $n-2$,
If $f\left(y_{i}^{m_{i}^{2}}\right)=0$ then

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2}
\end{aligned}
$$

If $f\left(y_{i}^{m_{i}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(y_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{2}
\end{aligned}
$$

If $f\left(y_{n-1}^{m_{n-1}^{2}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =1 \quad \text { if } \quad k \equiv 1(\bmod 2) \\
& =0 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

If $f\left(y_{n-1}^{m_{n-1}^{2}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{1}^{k}\right) & =0 \quad \text { if } \quad k \equiv 1(\bmod 2) \\
& =1 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{3}
\end{aligned}
$$

For $i=1$ to $n-2$,
If $f\left(z_{i}^{m_{i}^{3}}\right)=0$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

If $f\left(z_{i}^{m_{i}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(z_{i+1}^{k}\right) & =0 \quad \text { if } k \equiv 1(\bmod 2) \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{3}
\end{aligned}
$$

If $f\left(z_{n-1}^{m_{n-1}^{3}}\right)=0$ then,

$$
\begin{aligned}
& f\left(p_{1}^{k}\right)=1 \quad \text { if } \quad k \equiv 1(\bmod 2) \\
&=0 \quad \\
& \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{4}
\end{aligned}
$$

If $f\left(z_{n-1}^{m_{n-1}^{3}}\right)=1$ then,

$$
\begin{aligned}
f\left(p_{1}^{k}\right) & =0 \quad \text { if } \quad k \equiv 1(\bmod 2) \\
& =1 \quad \text { if } \quad k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{4}
\end{aligned}
$$

For $i=1$ to $n-2$,

If $f\left(p_{i}^{m_{i}^{4}}\right)=0$ then,

$$
\begin{aligned}
f\left(p_{i+1}^{k}\right) & =1 \\
& =0 \quad \text { if } k \equiv 1(\bmod 2), \\
& \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{4} .
\end{aligned}
$$

If $f\left(p_{i}^{m_{i}^{3}}\right)=1$ then,

$$
\begin{aligned}
& f\left(p_{i+1}^{k}\right)=0 \quad \text { if } k \equiv 1(\bmod 2) \text {, } \\
& =1 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{4} .
\end{aligned}
$$

If $f\left(p_{n-1}^{m_{n-1}^{5}}\right)=0$ then,

$$
\begin{aligned}
f\left(q_{1}^{k}\right) & =1 \\
& =0 \quad \text { if } \quad k \equiv 1(\bmod 2), \\
& \text { if } k 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{5} .
\end{aligned}
$$

If $f\left(p_{n-1}^{m_{n-1}^{5}}\right)=1$ then,

$$
\begin{array}{rlrl}
f\left(q_{1}^{k}\right) & =0 & \text { if } k \equiv 1(\bmod 2), \\
& =1 & & \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{1}^{5} .
\end{array}
$$

For $i=1$ to $n-2$,
If $f\left(q_{i}^{m_{i}^{5}}\right)=0$ then,

$$
\begin{aligned}
f\left(q_{i+1}^{k}\right) & =1 \quad \text { if } k \equiv 1(\bmod 2), \\
& =0 \quad \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{5} .
\end{aligned}
$$

If $f\left(q_{i}^{m_{i}^{5}}\right)=1$ then,

$$
\begin{aligned}
f\left(q_{i+1}^{k}\right) & =0 & \text { if } k \equiv 1(\bmod 2), \\
& =1 & \text { if } k \equiv 0(\bmod 2), \quad 1 \leq k \leq m_{i+1}^{5} .
\end{aligned}
$$

Let V_{0} and V_{1} be the number of vertices of G having labels 0 and 1 respectively under f and E_{0} and E_{1} be the number of edges having labels 0 and 1 respectively under induced labeling f^{*}.

In above labeling, vertices on path are given labels 0 and 1 alternately. Also, number of $0^{\prime} s$ and $1^{\prime} s$ in v_{i} and w_{i} are balanced with each other. Labeling of $K_{2, m_{i}^{j}}$ is done alternatively as 0 and 1 with condition that $\sum m_{i}^{4} \equiv 0(\bmod 2)$ and $\sum m_{i}^{5} \equiv 0(\bmod 2)$, thus balancing number of 0 ' s and1' s.

If n is even, with $\sum\left(m_{i}^{1}+m i^{2}+m_{i}^{3}\right)$ also even, we get $\left|V_{0}\right|=\left|V_{1}\right|$ and with $\sum\left(m_{i}^{1}+m i^{2}+m_{i}^{3}\right)$ is odd we have $\left|V_{1}\right|-\left|V_{0}\right|=1$.

If n is odd, with $\sum\left(m_{i}^{1}+m i^{2}+m_{i}^{3}\right)$ also even, we get $\left|V_{0}\right|-\left|V_{1}\right|=1$ and with $\sum\left(m_{i}^{1}+m i^{2}+m_{i}^{3}\right)$
is odd then $\left|V_{1}\right|=\left|V_{0}\right|$. In any case, it can be clearly seen that $\left|E_{0}\right|=\left|E_{1}\right|$.

References

[1] I.Cahit, On cordial and 3-equitable labellings of graphs, Util.Math,37(1990), 189-198.
[2] J. A. Gallian, A Dynamic Survry Of Graph Labeling, (2015).
[3] K.M. Kathiresan, Subdivisions of ladders are graceful, Indian Journal of Pure Appl Math., (1992), 21-23.
[4] V.Ramchandran and C.Sekar, Graceful labeling of supersubdivision of LadderInt J. Maths and it's Appl,Vol 2, No 2(2014), 29-36.
[5] G.Sethuraman and P. Selvaraju, Gracefulness of supersubdivision of graphs.Indian Jornal of Pure appl Math,32(7)(2001),1059-1064.
[6] S.K.Vaidya, N.A.Dani and K.Kanani,P.L Vihol, Cordial and 3-equitable labelling for some wheel related graphs, International J. Appl. Math.,41:2(2011).
[7] S.K.Vaidya and K.Kanani, Some new results on cordial labelling in the context of arbitrary supersubdivision of graph, Applied Math. Sci, 474(2010), 2323-2329.
[8] S.K.Vaidya and N.H.Shah, Cordial labeling of snakes, Int J. Maths and it's Appl, Vol. 2, No.3(2014), 17-27.

