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Abstract

The switching of a vertex v of a graph G means removing all the edges incident to v and
adding the edges joining v to every vertex which is not adjacent to v in G.The resultant
graph is denoted by G̃. In this paper, we explore the concept of independent domination in
the context of switching of a vertex in a graph.
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1 Introduction

The domination in graphs is one of the concepts in graph theory which has attracted many
researchers to work on it because of its many and varied applications in fields like linear alge-
bra and optimization, design analysis of communication networks, social sciences and military
surveillance. Many variants of domination models are available in the existing literature. For
a comprehensive bibliography of papers on the concept of domination, the readers are referred
to Hedetniemi and Laskar [9]. This paper is focused on independent domination in graphs.

By a graph G we mean a simple, finite and undirected graph G of order n. We denote the
vertex set and edge set of a graph G by V (G) and E(G), respectively. The open neighborhood
N(v) of v ∈ V (G) is the set of vertices adjacent to v, and the set N [v] = N(v) ∪ {v} is the
closed neighborhood of v. We denote the degree of a vertex v in a graph G by deg(v). The
maximum degree among the vertices of G is denoted by 4(G). A vertex of degree one is called
a pendant vertex and a vertex which is not the end of any edge is called the isolated vertex.

The set S ⊆ V (G) of vertices in a graph G is called a dominating set if every vertex v ∈ V (G)
is either an element of S or is adjacent to at least one vertex of S. The minimum cardinality
of a dominating set in G is called the domination number of G which is denoted by γ(G).
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An independent set in a graph G is a set of pairwise non-adjacent vertices of G. A set S
of vertices in a graph G is called an independent dominating set if S is both an independent
and a dominating set of G. The independent domination number of G, denoted by i(G), is the
minimum cardinality of an independent dominating set in G.

The theory of independent domination was formalized by Berge [2] and Ore [12] in 1962. The
independent domination number, i(G) was introduced by Cockayne and Hedetniemi in [3, 4].
Ching-Hau liu et al. [11] discussed the NP-completeness of both the independent dominating
set problem and the dominating set problem on at most cubic grid graphs. Duckworth and
Wormald [5] found the upper bounds on the independent domination number of random regular
graphs while Henning et al. [10] established the upper bound on the independent domination
number of a bipartite cubic graph of order n and of girth at least 6. Goddard et al. [7]
studied independent domination in regular graph and proved that if G is a connected graph
then i(G) ≤ (3

2)γ(G), with equality if and only if G = K3,3 while the independent domination
number of some wheel related graphs is discussed by Vaidya and Pandit [15]. Allan and Laskar
[1] proved that if G is a claw-free graph then γ(G) = i(G) while Vaidya and Pandit [13] found
the graphs G containing claw as an induced subgraph with γ(G) = i(G).

The wheel Wn is defined to be the join Cn−1 +K1 where n ≥ 4. The vertex corresponding
to K1 is known as the apex vertex and the vertices corresponding to cycle are known as the
rim vertices.

For any real number n, dne denotes the smallest integer not less than n and bnc denotes the
greatest integer not greater than n.

Throughout the paper, Pn, Cn,Wn and Kn denote the path, the cycle, the wheel and the
complete graph with n vertices, respectively.

For notation and graph theoretic terminology not defined herein, the reader may refer to
West [16] while the terms related to the concept of domination are used in the sense of Haynes
et al. [8].

Many domination parameters are formed by combining domination with several other graph
theoretic properties. We investigate the independent domination number of the graphs obtained
by switching of a vertex in the wheel Wn, the complete graph Kn, the shell Sn, the helm Hn

and the generalized web graph W (t, n− 1).

2 Main Results

Definition 2.1. The switching of a vertex v of G means removing all the edges incident to v
and adding edges joining v to every vertex which is not adjacent to v in G. The resultant graph
is denoted by G̃.

Proposition 2.2. [6] For the path and cycle, i(Pn) = i(Cn) =
⌈

n
3
⌉
.

Theorem 2.3. If W̃n is the graph obtained by switching of an arbitrary vertex v of wheel Wn
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then

i(W̃n) =

 2 if v is a rim vertex of Wn (n 6= 5),⌈
n−1

3

⌉
+ 1 if v is the apex vertex .

Proof: Let Wn = Cn−1 + K1 and let W̃n denote the graph obtained by switching of a vertex
v of Wn.

Case (i): Let the switched vertex v be a rim vertex of Wn (n 6= 5).
In this case, the apex vertex of Wn dominates all the vertices of W̃n except the switched

vertex and there is no vertex in W̃n which can dominate all the vertices of W̃n. Moreover, two
non-adjacent vertices of W̃n, namely, the apex vertex and the switched vertex, dominate all the
vertices of W̃n. Therefore, for any independent dominating set S of W̃n, | S | ≥ 2 implying that
i(W̃n) = 2.

Case (ii): Let the switched vertex be the apex vertex c of Wn.
Since the apex vertex c of Wn is an isolated vertex of W̃n, it follows that every independent

dominating set of W̃n must contain c. Moreover, V (W̃n) = V (Cn−1) ∪ {c} and by Proposition
2.2, i(Cn−1) =

⌈
n−1

3

⌉
. Hence, at least

⌈
n−1

3

⌉
+ 1 pairwise non-adjacent vertices are required to

dominate all the vertices of W̃n. Consequently, every independent dominating set of W̃n must
contain at least

⌈
n−1

3

⌉
+ 1 vertices implies that i(W̃n) =

⌈
n−1

3

⌉
+ 1.

Hence, we prove that

i(W̃n) =


2 if v is a rim vertex of Wn (n 6= 5),

⌈
n−1

3

⌉
+ 1 if v is the apex vertex .

Remark 2.4. Let W̃5 denote the graph obtained by switching of a rim vertex of W5. Since
there exists a vertex u ∈ V (W̃5) such that N [u] = V (W̃5), it follows that i(W̃5) = 1.

Illustration 2.5. In Figure 1, the graph W̃9 obtained by switching of a rim vertex v1 is shown
in which the set of solid vertices is its independent dominating set with minimum cardinality.

v1v1
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Figure 1
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Theorem 2.6. If K̃n is the graph obtained by switching of an arbitrary vertex of complete
graph Kn then i(K̃n) = 2.

Proof: Let v1, v2, . . . , vn be the successive vertices of Kn and K̃n denote the graph obtained
by switching of a vertex of Kn. Then, | V (K̃n) |= n.

Without loss of generality, let the switched vertex be v1. The vertex v1 of Kn becomes the
isolated vertex of K̃n. Hence, every dominating set of K̃n must contain the isolated vertex
v1. Consequently, every independent dominating set of K̃n must contain v1. Now, V (K̃n) =
V (Kn−1)∪{v1}. Since there exists a vertex u ∈ V (Kn−1) such that N [u] = V (Kn−1), it follows
that i(Kn−1) = 1. Thus, i(K̃n) = i(Kn−1) + 1 = 1 + 1 = 2.

Definition 2.7. A shell Sn (n > 3) is the graph obtained by taking n− 3 concurrent chords in
a cycle Cn. The vertex at which all the chords are concurrent is called the apex vertex. The
shell Sn is also called fan fn−1. That is, Sn = fn−1 = Pn−1 +K1.

Theorem 2.8. If S̃n is the graph obtained by switching of an arbitrary vertex v of shell Sn then

i(S̃n) =


⌈

n−1
3

⌉
+ 1 if v is the apex vertex ,

2 if v is not the apex vertex of Sn (n > 5).

Proof: Let S̃n denote the graph obtained by switching of a vertex v of Sn. Then, | V (S̃n) |= n.

Case (i): Let the switched vertex be the apex vertex c of Sn.
In this case, the apex vertex c of Sn becomes the isolated vertex of S̃n. Hence, every

dominating set of S̃n must contain c. Now, V (S̃n) = V (Pn−1) ∪ {c} and by Proposition 2.2,
i(Pn−1) =

⌈
n−1

3

⌉
. Therefore, at least

⌈
n−1

3

⌉
+ 1 pairwise non-adjacent vertices are required to

dominate all the vertices of S̃n. Hence, for any independent dominating set S of S̃n, | S | ≥⌈
n−1

3

⌉
+ 1 implies that i(S̃n) =

⌈
n−1

3

⌉
+ 1.

Case (ii): Let the switched vertex v be not the apex vertex of Sn (n > 5).
Since there exists no vertex u ∈ V (S̃n) such that N [u] = V (S̃n), it follows that i(S̃n) > 1.

Moreover, deg(c) = 4(S̃n) and the apex vertex c is adjacent to all the vertices of S̃n except the
switched vertex v. Hence, two non-adjacent vertices, namely, c and v dominate all the vertices
of S̃n. Therefore, any independent dominating set of S̃n must have at least two vertices which
implies that i(S̃n) = 2.
Thus, we prove that

i(S̃n) =


⌈

n−1
3

⌉
+ 1 if v is the apex vertex ,

2 if v is not the apex vertex of Sn (n > 5).
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Definition 2.9. The helm Hn is the graph obtained from a wheel Wn by attaching a pendant
edge to each of its rim vertices.

Theorem 2.10. If H̃n is the graph obtained by switching of an arbitrary vertex v of helm Hn

then

i(H̃n) =



⌈
n−1

3

⌉
+ 1 if v is the apex vertex ,

2 if v is a pendant vertex ,

3 otherwise.

Proof: Let H̃n denote the graph obtained by switching of a vertex v of helm Hn. Then,
| V (H̃n) |= 2n− 1.

Case (i): Let the switched vertex be the apex vertex c of Hn.
In this case, the apex vertex c is adjacent to all the pendant vertices of Hn in H̃n and hence,

c dominates all the pendant vertices of Hn in H̃n. Now, the vertices other than the pendant
vertices of Hn in H̃n form a cycle Cn−1. Since deg(c) = n− 1 = 4(H̃n) and by Proposition 2.2,
i(Cn−1) =

⌈
n−1

3

⌉
, it follows that at least

⌈
n−1

3

⌉
+ 1 pairwise non-adjacent vertices are essential

to dominate all the vertices of H̃n. Therefore, for any independent dominating set S of H̃n,
| S | ≥

⌈
n−1

3

⌉
+ 1 which implies that i(H̃n) =

⌈
n−1

3

⌉
+ 1.

Case (ii): Let the switched vertex v be a pendant vertex of Hn.
Here, by the definition of switching of a vertex, v being a pendant vertex in Hn, is adjacent

to all the vertices of H̃n except the vertex which is adjacent to v in Hn. Since deg(v) =
4(H̃n) = | V (H̃n) | −1, it follows that two vertices are enough to dominate all the vertices of
H̃n. Moreover, these two vertices are not adjacent. Hence, any independent dominating set of
H̃n must have at least two vertices implies that i(H̃n) = 2.

Case (iii): Let the switched vertex v be neither the apex vertex nor a pendant vertex of Hn.
Since H̃n has an isolated vertex u and there exists no vertex x ∈ V (H̃n) such that N [x] =

V (H̃n)− {u}, it follows that every dominating set of H̃n must contain more than two vertices
of H̃n. Now, the switched vertex v is adjacent to all the pendant vertices of Hn in H̃n and
the apex vertex c is adjacent to the remaining vertices of H̃n other than the isolated vertex.
Hence, the three vertices namely, u, c and v dominate all the vertices of H̃n. Therefore, every
dominating set of H̃n must have at least three vertices of H̃n. Moreover, these three vertices are
pairwise non-adjacent vertices. Hence, for any independent dominating set S of H̃n, | S | ≥ 3
which implies that i(H̃n) = 3.
Thus, we prove that



38 S K Vaidya and R M Pandit

i(H̃n) =



⌈
n−1

3

⌉
+ 1 if v is the apex vertex ,

2 if v is a pendant vertex ,

3 otherwise.

Definition 2.11. A web graph is the graph obtained by joining the pendant vertices of a helm
to form a cycle and then adding a single pendant edge to each vertex of this outer cycle.

The generalized web graph is the web graph with t− cycles each of order n − 1 and it is
denoted by W (t, n− 1).

Theorem 2.12. If W̃ (t, n− 1) is the graph obtained by switching of an arbitrary vertex v of
generalized web graph W (t, n− 1) then

i(W̃ (t, n− 1)) =



2 if v is a pendant vertex ,

3 if v is a vertex of the innermost cycle ,

⌈
n−1

3

⌉
+ 1 if v is the apex vertex ,

5 otherwise(n 6= 4).

Proof: Let W̃ (t, n − 1) denote the graph obtained by switching of a vertex v of W (t, n − 1).
Then, | V (W̃ (t, n− 1)) |= t(n− 1) + n.
Label the vertices of the generalized web graph W (t, n− 1) as follows:

Denote the vertices of the innermost cycle of W (t, n−1) successively as v1,1, v1,2, . . . , v1,n−1.
Then denote the vertices adjacent to v1,1, v1,2, . . . , v1,n−1 on the second cycle as v2,1, v2,2, v2,3 . . . ,

v2,n−1 respectively and the vertices adjacent to v2,1, v2,2, . . . , v2,n−1 on the third cycle as v3,1, v3,2,

. . . , v3,n−1 respectively and the vertices on the tth cycle (outermost cycle) as vt,1, vt,2, . . . , vt,n−1.
Next denote the pendant vertices of W (t, n − 1) as u1, u2, . . . , un−1 and the apex vertex of
W (t, n− 1) as c.

Case (i): Let the switched vertex v be a pendant vertex of W (t, n− 1).
Since there exists no vertex u ∈ V (W̃ (t, n− 1)) such that N [u] = V (W̃ (t, n− 1)), it follows

that i(W̃ (t, n− 1)) > 1. Moreover, N [v] = V (W̃ (t, n− 1))− {v1} where v1 is not adjacent to v
in W̃ (t, n− 1). Therefore, two non-adjacent vertices of W̃ (t, n− 1) namely, v and v1, dominate
all the vertices of W̃ (t, n− 1). Hence, i(W̃ (t, n− 1)) = 2.

Case (ii): Let the switched vertex be a vertex of the innermost cycle in W (t, n− 1).
Without loss of generality, let the switched vertex be v1,1. By arguing as in above Case (i),

i(W̃ (t, n − 1)) > 1. Since N [v1] ∪ N [v2] 6= V (W̃ (t, n − 1)) for any two non-adjacent vertices
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v1 and v2 in W̃ (t, n − 1)), it follows that i(W̃ (t, n − 1)) > 2. Now, the three pairwise non-
adjacent vertices, namely, v1,1, v2,1 and c dominate all the vertices of W̃ (t, n − 1)). Hence, for
any independent dominating set S of W̃ (t, n− 1), | S | ≥ 3 implies that i(W̃ (t, n− 1)) = 3.

Case (iii): Let the switched vertex be the apex vertex of W (t, n− 1).
In this case, the apex vertex dominates all the vertices of W (t, n− 1) except the vertices of

the innermost cycle Cn−1 of W (t, n−1). Now, by Proposition 2.2, i(Cn−1) =
⌈

n−1
3

⌉
. Therefore,

at least
⌈

n−1
3

⌉
+ 1 pairwise non-adjacent vertices are essential to dominate all the vertices of

i(W̃ (t, n− 1)). Hence, i(W̃ (t, n− 1)) =
⌈

n−1
3

⌉
+ 1.

Case (iv): Let the switched vertex be a vertex of mth cycle Cn−1 where 1 < m ≤ t.

Subcase (i) Let the switched vertex be a vertex of the outermost cycle (tth cycle) in W (t, n−1).
Without loss of generality, let the switched vertex be vt,1. Here, the pendant vertex u1

becomes the isolated vertex of W̃ (t, n − 1). Hence, every dominating set of W̃ (t, n − 1) must
contain this isolated vertex. Since any independent set of graph G of order n containing a
vertex of maximum degree 4(G) contains at most n − 4(G) vertices, i(G) ≤ n − 4(G).
Hence, i(W̃ (t, n − 1)) ≤ t(n − 1) + n − [t(n − 1) + n − 5] = 5. Since deg(u) ≤ 5 for all
u ∈ V (W̃ (t, n − 1)) − {vt,1, c} and from the structure of graph, one can observe that four
pairwise non-adjacent vertices of W̃ (t, n − 1) are not enough to dominate all the vertices of
W̃ (t, n− 1). But the five pairwise non-adjacent vertices namely, u1, vt,1, vt,2, vt,n−1 and v(t−1),1

dominate all the vertices of W̃ (t, n− 1) and i(W̃ (t, n− 1)) ≤ 5. Therefore, i(W̃ (t, n− 1)) = 5.

Subcase (ii): Let the switched vertex be a vertex of rth cycle in W (t, n− 1) where 1 < r < t.
Without loss of generality, let the switched vertex be v2,1 of second cycle in W (t, n− 1). By

arguing similar to Subcase (i), i(W̃ (t, n − 1)) > 4 and i(W̃ (t, n − 1)) ≤ 5. Moreover, the five
pairwise non-adjacent vertices, namely, v2,1, v2,2, v2,n−1, v3,1 and v1,1 dominate all the vertices
of W̃ (t, n− 1). Hence, i(W̃ (t, n− 1)) = 5.
Thus, we prove that

i(W̃ (t, n− 1)) =



2 if v is a pendant vertex ,

3 if v is a vertex of the innermost cycle ,

⌈
n−1

3

⌉
+ 1 if v is the apex vertex ,

5 otherwise(n 6= 4).

Remark 2.13. For n = 4 in Theorem 2.12., if we switch a vertex of mth cycle where 1 < m ≤ t
then one can observe that at least four pairwise non-adjacent vertices are essential to dominate



40 S K Vaidya and R M Pandit

all the vertices of W̃ (t, 3). Therefore, for any independent dominating set S of W̃ (t, 3), | S | ≥ 4
implies that i(W̃ (t, 3)) = 4.

Illustration 2.14. In Figure 2, the graph W̃ (2, 4) obtained by switching of the apex vertex
c is shown in which the set of solid vertices is its independent dominating set with minimum
cardinality.

c

v1,1
v1,2

v1,3

v1,4

v2,1
v2,2

u1

v2,4
v2,3

u2

u3u4

Figure 2

3 Concluding Remarks

Dominating sets of small cardinality are frequently used for backbone structures in any
communication network. Many applications of domination in graphs can be extended to the
theory of independent dominating sets. Independent dominating sets in wireless networks are
used in a variety of applications, especially at the lower layers directly involved with commu-
nication strategies and the topology of the communication network. In any network when the
existing link(s) between the nodes is/are failed, then the concept of switching of a vertex comes
to rescue. This concept is widely used for fault detection and fault tolerance. The concept of
independent domination in the context of switching of a vertex in various graphs is earlier stud-
ied by Vaidya and Pandit [14]. Here, we further explore the concept of independent domination
in the context of switching of a vertex in graphs.
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