International Journal of Mathematics and Soft Computing Vol.6, No.2. (2016), 13 - 19.

Graceful and odd graceful labeling of graphs

Ujwala Deshmukh

Department of Mathematics Mithibai College Vile Parle (west) Mumbai-400056 India. ujwala_deshmukh@rediffmail.com

Abstract

In this paper we prove gracefulness and odd gracefulness of arbitrary super -subdivision of triangular snake, where labeling of the vertices follows arithmetic progression.

Keywords: Super- subdivisions of graph, arbitrary super subdivisions of graph, triangular snake.

AMS Subject Classification (2010): 0578C.

1 Introduction

The graceful labeling was introduced by Rosa [8] as β – valuation and later Golomb [4] named it as graceful labeling. Graph labelling is an active area of research in graph theory which has rigorous applications in coding theory, communication networks, optimal layouts and graphs decomposition problems. A lot of research has been done on graceful graphs. Kathiresan [6] proved that subdivisions of ladder are graceful. Sethuraman and Selvaraju [9] have introduced super subdivisions of graphs and proved that there exists a super subdivision of c_n , $n \ge 3$ with certain conditions. Kathiresan [5] also proved that arbitrary super subdivision of stars are graceful. Ramchandran and Sekar [7] have given graceful labeling of super subdivision of ladder. Ujwala Deshmukh and Bhatavadekar [2] proved that arbitrary super subdivisions of cycle are graceful.

2 Definitions and Notations

Definition 2.1. The triangular snake T_n is a graph containing a path of length n with vertices $u_{1,}u_{2,}\ldots u_{n,}u_{n+1}$ and each pair of consecutive vertices $u_{i,}u_{i+1}$ is joined to a common vertex $v_{i,i} = 1, 2, \ldots, n$. Thus it has 2n + 1 vertices and 3n edges.

Definition 2.2. A quadrilateral snake Q_n is obtained from a path u_1, u_2, \dots, u_n by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively for $1 \le i \le n-1$.

Definition 2.3. Let G be a graph with p vertices and q edges. A graphs H is said to be a subdivisions of G if H is obtained by subdivision of every edge of G exactly once. H is denoted by S(G). Thus $|\mathbf{v}| = \mathbf{p} + \mathbf{q}$ and $|\mathbf{E}| = 2\mathbf{q}$.

Definition 2.4. Let *G* be a graph with *p* vertices and *q* edges. A graphs *H* is said to be a super subdivisions of *G* if it is obtained from *G* by replacing every edge *e* of *G* by a complete bipartite $k_{2,m}$ is denoted by SS(G) thus |v| = p + mq and |E| = 2mq.

Definition 2.5. Let *G* be a graph with *p* vertices and *q* edges. A graphs *H* is said to be a arbitrary super subdivision of *G* if it is obtained from *G* by replacing every edge e_i of *G* by a complete bipartite graph $k_{2,m_i} i = 1, 2 \dots q$. *H* is denoted by ASS(*G*) Thus $|v| = p + \sum_{i=1}^{q} m_i$ and $|E| = \sum_{i=1}^{q} 2m_i$.

Definition 2.6. Let $f: V \to \{0, 1, 2, ..., q\}$ be an injective function and for an edge e = uv, the induced edge labelling $f^*: E(G) \to \{1, 2, ..., q\}$ is a bijective function such that $f^*(uv) = |f(u) - f(v)|$. Then function f is called graceful labeling. A graph which admits graceful labeling is called a graceful graph.

Definition 2.7. Let $f: V \to \{0, 1, ..., 2q-1\}$ be an injective function and for an edge e = uv, the induced edge labeling $f^*: E(G) \to \{1, 3, 5, ..., 2q-1\}$ is a bijective function such that $f^*(uv) = |f(u) - f(v)|$. A function *f* is called odd graceful labeling. A graph which admits odd graceful labeling is called an odd graceful graph.

Notations for Triangular snake:

Let $u_{i,i} = 1, 2, ..., n + 1$ be vertices of path of length n and $v_{i,i} = 1, 2, ..., n$ be vertices adjacent to u_i and u_{i+1} respectively.

Let x_i^k , $k = 1, 2, ..., m_i^1$ be the vertices of the m_i^1 vertices part of k_{2,m_i^1} replacing the edge $u_i v_i$ i = 1, 2, ..., n.

Let $y_i^k, k = 1, 2, ..., m_i^2$ be the vertices of the m_i^2 vertices part of k_{2,m_i^2} replacing the edge $u_{i+1}v_i$ for i = 1, 2, ..., n.

Let z_i^k , $k = 1, 2, ..., m_i^3$ be the vertices of the m_i^3 vertices part of k_{2,m_i^3} replacing the edge $u_i u_{i+1}$ for i = 1, 2, ..., n.

3 Main Results

Theorem 3.1. Arbitrary super subdivisions of triangular snake where $m_i^3 \equiv o \mod 2, i = 1, 2, ..., n$ is graceful.

Proof: Let $m = \sum_{i=1}^{n} m_i^1 + \sum_{i=1}^{n} m_i^2 + \sum_{i=1}^{n} m_i^3$.

Define a labeling f as follows:

$$f(u_i) = 2i - 2$$
, $1 \le i \le n + 1;$
 $f(v_i) = 2i - 1$, $1 \le i \le n.$

Let $\alpha_i = f(u_i) + 2m - 2(\sum_{r=1}^{i-1} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3), i = 2, 3, ..., n \text{ and } \alpha_1 = 2m.$

	$f(x_i^k)$	$= \propto_i + 2 - 2k$, $k=1$ to m_i^1 , $i=$	1 to <i>n</i> .		
$\beta_i = f(v_i) + 2m - 2(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3). \ i = 2, 3,, n \text{ and } \beta_1 = 1 + 2m - 2m_1^1$						
	$f(y_i^k) = eta_i + 2 - 2k$, $k = 1 \ to \ m_i^2$, $i = 1 \ to \ n$					
$\gamma_i = f$	$(u_i)+2m-2i$	$(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^1)$	$m_r^2 + \sum_{r=0}^{i-1} m_r^3$, i =	=2,3, <i>n</i> and $\gamma_1 = 2m - 2m_1^2$	$\frac{1}{2} - 2m_1^2$	
	$f(z_i^k)$	$=\gamma_i+4-4l$	$, l = 1, 2,, \frac{m_i^3}{2}$	for $k = 1, 3 \dots, m_i^3 - 1$		
		$=\gamma_i+3-4l$	$, l = 1, 2,, \frac{m_i^3}{2}$	for $k = 2, 4, \dots, m_i^3$.		
Table 1: Range of vertex labels.						
	Graphs	Range of vert	ex labels			
	$k_{2,m_{1}^{1}}$	$\propto_1 = 2m$	to	$\propto_1 - 2m_1^1 + 2$		
	$k_{2,m_{1}^{2}}$	$\beta_1 = \alpha_1 - 2m$	$n_1^1 + 1$ to	$\beta_1 - 2m_1^2 + 2$		
	$k_{2,m_{1}^{3}}$	$\gamma_1 = \beta_1 - 2n$	$n_1^2 - 1$ to	$\gamma_1 - 2m_1^3 + 2$		
	k_{2,m_i^1}	\propto_i	to	$\propto_i - 2m_1^1 + 2$		
	$k_{2,m_{i}^{2}}$	$\beta_i = \alpha_1 - 2m$	$l_i^1 + 1$ to	$\beta_i - 2m_i^2 + 2$		
	$k_{2,m_{i}^{3}}$	$\gamma_i = \beta_1 - 2m$	$u_i^2 + 1$ to	$\gamma_i - 2m_i^3 + 2$		

Table 2:	Range	of edge	labels.
----------	-------	---------	---------

Graphs	Range of edge labels		
$k_{2,m_{1}^{1}}$	2 <i>m</i>	to	$2m - 2m_1^1 + 1$
$k_{2,m_{1}^{2}}$	$2m - 2m_1^1$	to	$2m - 2m_1^1 - 2m_1^2 + 1$
$k_{2,m_{1}^{3}}$	$2m - 2m_1^1 - 2m_1^2$	to	$2m - 2m_1^1 - 2m_1^2 - 2m_1^3 + 1$
k_{2,m_i^1}	$\begin{array}{l} 2m-2\;(\sum_{r=1}^{i-1}m_r^1+\sum_{r=1}^{i-1}m_r^2+\\ \sum_{r=1}^{i-1}m_r^3) \end{array}$	to	$2m - 2\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) + 1$
$k_{2,m_{i}^{2}}$	$2m - 2\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right)$	to	$2m - 2\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) + 1$
$k_{2,m_{i}^{3}}$	$2m - 2\left(\sum_{r=0}^{i} m_{r}^{1} + \sum_{r=0}^{i} m_{r}^{2} + \sum_{r=0}^{i-1} m_{r}^{3}\right)$	to	$2m - 2\left(\sum_{r=0}^{i} m_{r}^{1} + \sum_{r=0}^{i} m_{r}^{2} + \sum_{r=0}^{i} m_{r}^{3}\right) + 1$
k_{2,m_n^1}	$2(m_n^3 + m_n^2) + 1$	to	$2(m_n^3 + m_n^2 + m_n^1)$
k_{2,m_n^2}	$2(m_n^3) + 1$	to	$2(m_n^3 + m_n^2)$
$k_{2,}m_n^3$	1	to	$2 m_n^3$

Ujwala Deshmukh

From Table 1, labels of vertices of m_i^1 – part of k_{2,m_i^1} and m_i^2 - part of k_{2,m_i^2} are in arithmetic progression with common difference –2, Thus they are distinct.

Whereas, the labels of vertices of m_i^3 – part of k_{2,m_i^3} are from γ_i to γ_i - $2m_i^3$ + 2 follows arithmetic progression A_l and B_l alternatively where

$$A_{l} = \gamma_{i} + 4 - 4l,$$

$$B_{l} = \gamma_{i} + 3 - 4l \text{ for } l = 1, 2, \dots, \frac{m_{i}^{3}}{2}.$$

As $A_l = B_l + 1$, $A_i \neq B_j$ for all *i* and *j*.

Thus vertex labels of m_i^3 – parts of k_{2,m_l^3} are distinct. The labels of vertex on triangular snake are $f(u_i) = 2i - 2$ for $1 \le i \le n + 1$ and $f(v_i) = 2i - 1$ for $1 \le i \le n$ which are distinct and are less than least label of m_i^j – part of k_{2,m_i^j} , j = 1,2,3.

Thus vertex labels are distinct. From Table 2, it can be clearly seen that all edge weights are distinctly covered.

Theorem 3.2. Arbitrary super Subdivision of triangular snake where $m_i^3 \equiv o \mod 2$, i = 1 to n is odd graceful.

Proof: Define
$$f: V \to \{0, 1, 2, ..., 4m-1\}$$
 by
 $f(u_i) = 4i - 4$ $i = 1 \text{ to } n + 1$,
 $f(u_i) = 4i - 2$ $i = 1 \text{ to } n$.

Define $\alpha_i = f(u_i) + (4m - 1) - 4$ $(\sum_{r=1}^{i-1} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3)$, i=2,3,...,n and $\alpha_1 = 4m - 1$. $f(x_i^k) = \alpha_i - 4 - 4k$, k = 1 to m_i^1 , i = 1 to n. $\beta_i = f(v_i) + (4m - 1) - 4(1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3)$, i=2,3,...,n and $\beta_1 = 4m - 4m_1^1 + 1$ $f(y_i^k) = \beta_i - 4 - 4k$, k = 1 to m_i^2 , i = 1 to n. $\gamma_i = f(u_i) + (2m - 1) - 4(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^2 + \sum_{r=1}^{i} m_r^3)$, i=2,3,...,n and $\gamma_1 = 4m - 4m_1^1 - 4m_1^2 - 1$. $f(z_i^k) = \gamma_i + 6 - 6l$, $l = 1,2,..., \frac{m_i^3}{2}$, for $k = 1,3,..., m_i^3 - 1$,

$$\begin{aligned} &(Z_i^*) = \gamma_i + 6 - 6l, & l = 1, 2, \dots, \frac{1}{2}, & f \text{ or } k = 1, 3, \dots, m_i^* - 1 \\ &= \gamma_i + 4 - 6l, & l = 1, 2, \dots, \frac{m_i^3}{2}, & f \text{ or } k = 2, 4, \dots, m_i^3. \end{aligned}$$

Graphs	Range of vertex labels		
$k_{2,m_{1}^{1}}$	$\propto_1 = 4m - 1$	to	$\propto_1 - 4m_1^1 + 4$
$k_{2,m_{1}^{2}}$	$\beta_1 = \propto_1 - 4m_1^1 + 2$	to	$\beta_1 - 4m_1^2 + 4$
$k_{2,m_{1}^{3}}$	$\gamma_1=\beta_1-4m_1^2-2$	to	$\gamma_1 - 4m_1^3 + 6$
$k_{2,m_{i}^{1}}$	\propto_i	to	$\propto_i - 4m_1^1 + 4$
$k_{2,m_{i}^{2}}$	β_i	to	$\beta_i - 4m_i^2 + 4$
$k_{2,m_{i}^{3}}$	γ _i	to	$\gamma_i - 4m_i^3 + 6$

Table 3: Range of vertex labels.

	Table	4:	Range	of	edge	labels.
--	-------	----	-------	----	------	---------

Graph Parts	Range of edge labels		
$k_{2,m_{1}^{1}}$	4m - 1	to	$4m - 4m_1^1 + 1$
k_{2,m_1^2}	$4m - 4m_1^1 - 1$	to	$4m - 4m_1^1 - 4m_1^2 + 1$
k_{2,m_1^3}	$4m - 4m_1^1 - 4m_1^2 - 1$	to	$4m - 4m_1^1 - 4m_1^2 - 4m_1^3 + 1$
k_{2,m_i^1}	$4m - 4\left(\sum_{r=1}^{i-1} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) - 1$	to	$4m - 4\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) + 1$
$k_{2,m_{i}^{2}}$	$4m - 4\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i-1} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) - 1$	to	$4m - 4\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) + 1$
$k_{2,m_{i}^{3}}$	$4m - 4\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^2 + \sum_{r=1}^{i-1} m_r^3\right) - 1$	to	$4m - 4\left(\sum_{r=1}^{i} m_r^1 + \sum_{r=1}^{i} m_r^2 + \sum_{r=1}^{i} m_r^3\right) + 1$
k_{2,m_n^1}	$4(m_n^3 + m_n^2) + 1$	to	$4(m_n^3 + m_n^2 + m_n^1) - 1$
$k_{2,m_{n}^{2}}$	$4(m_n^3) + 1$	to	$4(m_n^3 + m_n^2) - 1$
$k_{2,}m_{n}^{3}$	1	to	$4 m_n^3 - 1$

From Table 3, the labels of vertices of m_i^1 – part of k_{2,m_i^1} and m_i^2 - part of k_{2,m_i^2} are in arithmetic progression with common difference –4, thus they are distinct. Whereas, the labels of vertices of m_i^3 – part of k_{2,m_i^3} are from γ_i to γ_i - $4m_i^3$ + 2 follows arithmetic progression A_l and B_l alternatively where

$$\begin{split} A_{l} &= \gamma_{i} + 6 - 6l & l = 1, 2, \dots, \frac{m_{t}^{3}}{2} \\ B_{l} &= \gamma_{i} + 4 - 6l & l = 1, 2, \dots, \frac{m_{t}^{3}}{2} \end{split}$$

As $A_l = B_l + 2$, we have $A_i \neq B_j$ for all *i* and *j*.

Thus the vertex labels of m_i^3 – parts of k_{2,m_i^3} are distinct. The labels of the vertices on triangular snake are $f(u_i) = 4i - 4, 1 \le i \le n + 1$ and $f(v_i) = 4i - 2, 1 \le i \le n$, which are district. Also, the labels of the vertices on the triangular snake are even and the labels of the vertices of m_l^j part of k_{2,m_i^j} , j =1,2,3 are odd.

Thus the vertex labels are distinct. From Table 4, it can be clearly seen that all edge weights are distinctly covered.

Corollary 3.3. If f is a graceful labelling of Ass(Tn) and f^* is a odd graceful labelling of Ass(Tn) then

$$f^*(u) = 2f(u)$$
 if $f(u) < p$
 $f^*(u) = 2f(u) - 1$ if $f(u) \ge P$

Illustration 3.4. Graceful labeling of ASS(T4) is given in Figure 1.

Figure1: Graceful labelling of ASS(T4).

Illustration 4.5. Odd graceful labeling of ASS(T4) is given in Figure 2.

Figure 2: Odd Graceful labelling of ASS (T4).

References

- [1] R. Cattell, Graceful labeling of Paths, Discrete Maths., 307(2007), 3161 3176.
- [2] Ujwala Deshmukh and Smita Bhatavdekar, *Gracefulness of arbitrary super subdivisions* of cycle, Preprint.
- [3] J. A. Gallian, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, 15 (2015) # DS6.
- [4] S.W. Golomb, *How to number a graph in Graph Theory and Computing*, R.C. Read, Academic press, New York (1972), 23 37.
- [5] K. M. Kathiersan and S. Amutha, Arbitrary super subdivisions of star are graceful, Indian J. Pure and Appl. Math., 35(2004), 81 – 84.
- [6] K. M. Kathiersan, Subdivisions of ladders are graceful, Indian Journal of pure appl. Math., 23(1)(1992), 21 – 23.
- [7] V. Ramchandran and C. Sekar, *Graceful labeling of super subdivisions of Ladder*, Int. J. Maths and its Appl., Vol 2, No.2(2014), 29 36.
- [8] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris(1967), 349 355.
- [9] G. Sethuraman and P. Selvaraju, *Gracefulness of super subdivisions of graphs*, Indian Journal of Pure and Appl. Math., 32(7)(2001),1059 1064.