Graceful and odd graceful labeling of graphs

Ujwala Deshmukh
Department of Mathematics
Mithibai College
Vile Parle (west)
Mumbai-400056 India.
ujwala_deshmukh@rediffmail.com

Abstract

In this paper we prove gracefulness and odd gracefulness of arbitrary super -subdivision of triangular snake, where labeling of the vertices follows arithmetic progression.

Keywords: Super- subdivisions of graph, arbitrary super subdivisions of graph, triangular snake.
AMS Subject Classification (2010): 0578C.

1 Introduction

The graceful labeling was introduced by Rosa [8] as β - valuation and later Golomb [4] named it as graceful labeling. Graph labelling is an active area of research in graph theory which has rigorous applications in coding theory, communication networks, optimal layouts and graphs decomposition problems. A lot of research has been done on graceful graphs. Kathiresan [6] proved that subdivisions of ladder are graceful. Sethuraman and Selvaraju [9] have introduced super subdivisions of graphs and proved that there exists a super subdivision of $c_{n}, n \geq 3$ with certain conditions. Kathiresan [5] also proved that arbitrary super subdivisions of stars are graceful. Ramchandran and Sekar [7] have given graceful labeling of super subdivision of ladder. Ujwala Deshmukh and Bhatavadekar [2] proved that arbitrary super subdivisions of cycle are graceful.

2 Definitions and Notations

Definition 2.1. The triangular snake T_{n} is a graph containing a path of length n with vertices $u_{1}, u_{2}, \ldots . u_{n}, u_{n+1}$ and each pair of consecutive vertices u_{i}, u_{i+1} is joined to a common vertex $v_{i, i} i=$ $1,2 \ldots \ldots, n$. Thus it has $2 n+1$ vertices and $3 n$ edges.

Definition 2.2. A quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots \ldots u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively for $1 \leq i \leq n-1$.

Definition 2.3. Let G be a graph with p vertices and q edges. A graphs H is said to be a subdivisions of G if H is obtained by subdivision of every edge of G exactly once. H is denoted by $S(G)$. Thus $|\mathrm{v}|=\mathrm{p}+\mathrm{q}$ and $|\mathrm{E}|=2 \mathrm{q}$.

Definition 2.4. Let G be a graph with p vertices and q edges. A graphs H is said to be a super subdivisions of G if it is obtained from G by replacing every edge e of G by a complete bipartite $\mathrm{k}_{2, \mathrm{~m}}$ is denoted by $S S(G)$ thus $|\mathrm{v}|=\mathrm{p}+\mathrm{mq}$ and $|\mathrm{E}|=2 \mathrm{mq}$.

Definition 2.5. Let G be a graph with p vertices and q edges. A graphs H is said to be a arbitrary super subdivision of G if it is obtained from G by replacing every edge e_{i} of G by a complete bipartite graph $\mathrm{k}_{2, \mathrm{~m}_{\mathrm{i}}} \mathrm{i}=1,2 \ldots . \mathrm{q} . H$ is denoted by $\operatorname{ASS}(G)$ Thus $|\mathrm{v}|=\mathrm{p}+$ $\sum_{\mathrm{i}-1}^{\mathrm{q}} \mathrm{m}_{\mathrm{i}}$ and $|\mathrm{E}|=\sum_{\mathrm{i}=1}^{\mathrm{q}} 2 \mathrm{~m}_{\mathrm{i}}$.

Definition 2.6. Let $f: V \rightarrow\{0,1,2, \ldots, q\}$ be an injective function and for an edge $e=u v$, the induced edge labelling $f^{*}: E(G) \rightarrow\{1,2, \ldots, q\}$ is a bijective function such that $f^{*}(u v)=$ $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$. Then function f is called graceful labeling. A graph which admits graceful labeling is called a graceful graph.

Definition 2.7. Let $f: V \rightarrow\{0,1, \ldots, 2 q-1\}$ be an injective function and for an edge $\mathrm{e}=\mathrm{uv}$, the induced edge labeling $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3,5, \ldots, 2 \mathrm{q}-1\}$ is a bijective function such that $\mathrm{f}^{*}(\mathrm{uv})=|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$. A function f is called odd graceful labeling. A graph which admits odd graceful labeling is called an odd graceful graph.

Notations for Triangular snake:

Let $u_{i, i}=1,2, \ldots ., n+1$ be vertices of path of length n and $v_{i, i}=1,2, \ldots ., n$ be vertices adjacent to u_{i} and u_{i+1} respectively.
Let $x_{i}^{k}, k=1,2, . ., m_{i}^{1}$ be the vertices of the m_{i}^{1} vertices part of $k_{2, m_{i}^{1}}$ replacing the edge $u_{i} v_{i} i=$ $1,2, \ldots, n$.
Let $y_{i}^{k}, k=1,2, . . . m_{i}^{2}$ be the vertices of the m_{i}^{2} vertices part of $k_{2, m_{i}^{2}}$ replacing the edge $u_{i+1} v_{i}$ for $i=1,2, \ldots, n$.
Let $z_{i}^{k}, k=1,2, . ., m_{i}^{3}$ be the vertices of the m_{i}^{3} vertices part of $k_{2, m_{i}^{3}}$ replacing the edge $u_{i} u_{i+1}$ for $i=1,2, \ldots, n$.

3 Main Results

Theorem 3.1. Arbitrary super subdivisions of triangular snake where $m_{i}^{3} \equiv \operatorname{omod} 2, i=$ $1,2, \ldots, n$ is graceful.

Proof: Let $m=\sum_{i=1}^{n} m_{i}^{1}+\sum_{i=1}^{n} m_{i}^{2}+\sum_{i=1}^{n} m_{i}^{3}$.
Define a labeling f as follows:

$$
\begin{array}{ll}
f\left(u_{i}\right)=2 i-2 & , 1 \leq i \leq n+1 ; \\
f\left(v_{i}\right)=2 i-1 & , 1 \leq i \leq n .
\end{array}
$$

Let $\alpha_{i}=f\left(u_{i}\right)+2 m-2\left(\sum_{r=1}^{i-1} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\sum_{r=1}^{i-1} m_{r}^{3}\right), i=2,3, \ldots, n$ and $\propto_{1}=2 m$.

$$
\begin{aligned}
& f\left(x_{i}^{k}\right)=\alpha_{i}+2-2 k, k=1 \text { to } m_{i}^{1}, i=1 \text { to } n . \\
& \beta_{i}=f\left(v_{i}\right)+2 m-2\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\sum_{r=1}^{i-1} m_{r}^{3}\right) . i=2,3, \ldots, n \text { and } \beta_{1}=1+2 m-2 m_{1}^{1} \\
& f\left(y_{i}^{k}\right)=\beta_{i}+2-2 k, k=1 \text { to } m_{i}^{2}, i=1 \text { to } n \\
& \gamma_{i}=f\left(u_{i}\right)+2 m-2\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\sum_{r=0}^{i-1} m_{r}^{3}, i=2,3, \ldots n \text { and } \gamma_{1}=2 m-2 m_{1}^{1}-2 m_{1}^{2}\right. \\
& f\left(z_{i}^{k}\right)=\gamma_{i}+4-4 l \quad, l=1,2, \ldots, \frac{m_{i}^{3}}{2} \quad \text { for } k=1,3 \ldots . . ., m_{i}^{3}-1 \\
&=\gamma_{i}+3-4 l \quad, l=1,2, \ldots, \frac{m_{i}^{3}}{2} \quad \text { for } k=2,4 \ldots, m_{i}^{3} .
\end{aligned}
$$

Table 1: Range of vertex labels.
Graphs Range of vertex labels

$k_{2, m_{1}^{1}}$	$\alpha_{1}=2 m$	to	$\alpha_{1}-2 m_{1}^{1}+2$
$k_{2, m_{1}^{2}}$	$\beta_{1}=\alpha_{1}-2 m_{1}^{1}+1$	to	$\beta_{1}-2 m_{1}^{2}+2$
$k_{2, m_{1}^{3}}$	$\gamma_{1}=\beta_{1}-2 m_{1}^{2}-1$	to	$\gamma_{1}-2 m_{1}^{3}+2$
$k_{2, m_{i}^{1}}$	α_{i}	to	$\alpha_{i}-2 m_{1}^{1}+2$
$k_{2, m_{i}^{2}}$	$\beta_{i}=\alpha_{1}-2 m_{i}^{1}+1$	to	$\beta_{i}-2 m_{i}^{2}+2$
$k_{2, m_{i}^{3}}$	$\gamma_{i}=\beta_{1}-2 m_{i}^{2}+1$	to	$\gamma_{i}-2 m_{i}^{3}+2$

Table 2: Range of edge labels.

Graphs	Range of edge labels		
$k_{2, m_{1}^{1}}$	$2 m$	to	$2 \mathrm{~m}-2 m_{1}^{1}+1$
$k_{2, m_{1}^{2}}$	$2 \mathrm{~m}-2 m_{1}^{1}$	to	$2 \mathrm{~m}-2 m_{1}^{1}-2 m_{1}^{2}+1$
$k_{2, m_{1}^{3}}$	$2 \mathrm{~m}-2 m_{1}^{1}-2 m_{1}^{2}$	to	$2 \mathrm{~m}-2 m_{1}^{1}-2 m_{1}^{2}-2 m_{1}^{3}+1$
$k_{2, m_{i}^{1}}$	$\begin{aligned} & 2 m-2\left(\sum_{r=1}^{i-1} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right) \end{aligned}$	to	$\begin{aligned} & 2 m-2\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{i}^{2}}$	$\begin{aligned} & 2 m-2\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right) \end{aligned}$	to	$\begin{aligned} & 2 m-2\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{i}^{3}}$	$\begin{aligned} & 2 m-2\left(\sum_{r=0}^{i} m_{r}^{1}+\sum_{r=0}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=0}^{i-1} m_{r}^{3}\right) \end{aligned}$	to	$\begin{aligned} & 2 m-2\left(\sum_{r=0}^{i} m_{r}^{1}+\sum_{r=0}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=0}^{i} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{n}^{1}}$	$2\left(m_{n}^{3}+m_{n}^{2}\right)+1$	to	$2\left(m_{n}^{3}+m_{n}^{2}+m_{n}^{1}\right)$
$k_{2, m_{n}^{2}}$	$2\left(m_{n}^{3}\right)+1$	to	$2\left(m_{n}^{3}+m_{n}^{2}\right)$
$k_{2,} m_{n}^{3}$	1	to	$2 m_{n}^{3}$

From Table 1, labels of vertices of $m_{i}^{1}-$ part of $k_{2, m_{i}^{1}}$ and m_{i}^{2} - part of $k_{2, m_{i}^{2}}$ are in arithmetic progression with common difference -2 , Thus they are distinct.

Whereas, the labels of vertices of $m_{i}^{3}-$ part of $k_{2, m_{i}^{3}}$ are from γ_{i} to $\gamma_{i}-2 m_{i}^{3}+2$ follows arithmetic progression A_{l} and B_{l} alternatively where

$$
\begin{aligned}
& A_{l}=\gamma_{i}+4-4 l, \\
& B_{l}=\gamma_{i}+3-4 l \text { for } l=1,2, \ldots, \frac{m_{i}^{3}}{2} .
\end{aligned}
$$

As $\quad A_{l}=B_{l}+1, \quad A_{i} \neq B_{j}$ for all i and j.
Thus vertex labels of m_{i}^{3} - parts of $k_{2, m_{l}^{3}}$ are distinct. The labels of vertex on triangular snake are $f\left(u_{i}\right)=2 i-2$ for, $1 \leq i \leq n+1$ and $f\left(v_{i}\right)=2 i-1$ for $1 \leq i \leq n$ which are distinct and are less than least label of $m_{i}^{j}-$ part of $k_{2}, m_{i}^{j}, j=1,2,3$.

Thus vertex labels are distinct. From Table 2, it can be clearly seen that all edge weights are distinctly covered.

Theorem 3.2. Arbitrary super Subdivision of triangular snake where $m_{i}^{3} \equiv \operatorname{ogod} 2, i=1$ to n is odd graceful.

Proof: Define $f: V \rightarrow\{0,1,2, \ldots, 4 m-1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=4 i-4 & \\
f\left(u_{i}\right)=4 i-2 & \\
=1 \text { to } n+1, \\
& =1 \text { to } n .
\end{array}
$$

Define $\propto_{i}=f\left(u_{i}\right)+(4 m-1)-4\left(\sum_{r=1}^{i-1} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\sum_{r=1}^{i-1} m_{r}^{3}\right), i=2,3, \ldots, n$ and

$$
\begin{aligned}
& \alpha_{1}=4 m-1 . \\
& \qquad f\left(x_{i}^{k}\right)=\alpha_{i}-4-4 k, \quad k=1 \text { to } m_{i}^{1}, i=1 \text { to } n . \\
& \beta_{i}=f\left(v_{i}\right)+(4 m-1)-4\left(1+\sum_{r=1}^{i-1} m_{r}^{2}+\sum_{r=1}^{i-1} m_{r}^{3}\right), i=2,3, \ldots, n \text { and } \\
& \beta_{1}=4 m-4 m_{1}^{1}+1 \\
& \qquad f\left(y_{i}^{k}\right)=\beta_{i}-4-4 k, \quad k=1 \text { to } m_{i}^{2}, i=1 \text { to } n . \\
& \gamma_{i}=f\left(u_{i}\right)+(2 m-1)-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\sum_{r=1}^{i} m_{r}^{3}\right), \quad i=2,3, \ldots, n \text { and } \\
& \gamma_{1}=4 m-4 m_{1}^{1}-4 m_{1}^{2}-1 . \\
& \qquad f\left(z_{i}^{k}\right)=\gamma_{i}+6-6 l, \\
& \quad=\gamma_{i}+4-6 l, \quad l=1,2, \ldots, \frac{m_{i}^{3}}{2}, \quad \text { for } k=1,3, \ldots, m_{i}^{3}-1, \\
&
\end{aligned}
$$

Table 3: Range of vertex labels.

Graphs	Range of vertex labels		
$k_{2, m_{1}^{1}}$	$\alpha_{1}=4 m-1$	to	$\alpha_{1}-4 m_{1}^{1}+4$
$k_{2, m_{1}^{2}}$	$\beta_{1}=\alpha_{1}-4 m_{1}^{1}+2$	to	$\beta_{1}-4 m_{1}^{2}+4$
$k_{2, m_{1}^{3}}$	$\gamma_{1}=\beta_{1}-4 m_{1}^{2}-2$	to	$\gamma_{1}-4 m_{1}^{3}+6$
$k_{2, m_{i}^{1}}$	\propto_{i}	to	$\propto_{i}-4 m_{1}^{1}+4$
$k_{2, m_{i}^{2}}$	β_{i}	to	$\beta_{i}-4 m_{i}^{2}+4$
$k_{2, m_{i}^{3}}$	γ_{i}	to	$\gamma_{i}-4 m_{i}^{3}+6$

Table 4: Range of edge labels.

Graph Parts	Range of edge labels		
$k_{2, m_{1}^{1}}$	$4 m-1$	to	$4 \mathrm{~m}-4 m_{1}^{1}+1$
$k_{2, m_{1}^{2}}$	$4 \mathrm{~m}-4 m_{1}^{1}-1$	to	$4 \mathrm{~m}-4 m_{1}^{1}-4 m_{1}^{2}+1$
$k_{2, m_{1}^{3}}$	$4 \mathrm{~m}-4 m_{1}^{1}-4 m_{1}^{2}-1$	to	$4 \mathrm{~m}-4 m_{1}^{1}-4 m_{1}^{2}-4 m_{1}^{3}+1$
$k_{2, m_{i}^{1}}$	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i-1} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)-1 \end{aligned}$	to	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{i}^{2}}$	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i-1} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)-1 \end{aligned}$	to	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{i}^{3}}$	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i-1} m_{r}^{3}\right)-1 \end{aligned}$	to	$\begin{aligned} & 4 m-4\left(\sum_{r=1}^{i} m_{r}^{1}+\sum_{r=1}^{i} m_{r}^{2}+\right. \\ & \left.\sum_{r=1}^{i} m_{r}^{3}\right)+1 \end{aligned}$
$k_{2, m_{n}^{1}}$	$4\left(m_{n}^{3}+m_{n}^{2}\right)+1$	to	$4\left(m_{n}^{3}+m_{n}^{2}+m_{n}^{1}\right)-1$
$k_{2, m_{n}^{2}}$	$4\left(m_{n}^{3}\right)+1$	to	$4\left(m_{n}^{3}+m_{n}^{2}\right)-1$
k_{2}, m_{n}^{3}	1	to	$4 m_{n}^{3}-1$

From Table 3, the labels of vertices of m_{i}^{1} - part of $k_{2, m_{i}^{1}}$ and m_{i}^{2} part of $k_{2, m_{i}^{2}}$ are in arithmetic progression with common difference -4 , thus they are distinct. Whereas, the labels of vertices of m_{i}^{3} - part of $k_{2, m_{i}^{3}}$ are from γ_{i} to $\gamma_{i}-4 m_{i}^{3}+2$ follows arithmetic progression A_{l} and B_{l} alternatively where

$$
\begin{array}{ll}
A_{l}=\gamma_{i}+6-6 l & l=1,2, \ldots, \frac{m_{r}^{3}}{2} \\
B_{l}=\gamma_{i}+4-6 l & l=1,2, \ldots, \frac{m_{r}^{3}}{2}
\end{array}
$$

As $\quad A_{l}=B_{l}+2$, we have $A_{i} \neq B_{j}$ for all i and j.
Thus the vertex labels of m_{i}^{3} - parts of $k_{2, m_{i}^{3}}$ are distinct. The labels of the vertices on triangular snake are $f\left(u_{i}\right)=4 i-4,1 \leq i \leq n+1$ and $f\left(v_{i}\right)=4 i-2,1 \leq i \leq n$, which are district. Also, the labels of the vertices on the triangular snake are even and the labels of the vertices of m_{l}^{j} part of $k_{2, m_{i}^{j}}, \mathrm{j}=$ 1,2,3 are odd.

Thus the vertex labels are distinct. From Table 4, it can be clearly seen that all edge weights are distinctly covered.

Corollary 3.3. If f is a graceful labelling of $\operatorname{Ass}(\mathrm{Tn})$ and f^{*} is a odd graceful labelling of $\operatorname{Ass}(\mathrm{Tn})$ then

$$
\begin{array}{ll}
f^{*}(u)=2 f(u) & \text { if } f(u)<p \\
f^{*}(u)=2 f(u)-1 & \text { if } f(u) \geq P
\end{array}
$$

Illustration 3.4. Graceful labeling of $\operatorname{ASS}(\mathrm{T} 4)$ is given in Figure 1.

Figure1: Graceful labelling of ASS(T4).

Illustration 4.5. Odd graceful labeling of $\operatorname{ASS}(\mathrm{T} 4)$ is given in Figure 2.

Figure 2: Odd Graceful labelling of ASS (T4).

References

[1] R. Cattell, Graceful labeling of Paths, Discrete Maths., 307(2007), 3161-3176.
[2] Ujwala Deshmukh and Smita Bhatavdekar, Gracefulness of arbitrary super subdivisions of cycle, Preprint.
[3] J. A. Gallian, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, 15 (2015) \# DS6.
[4] S.W. Golomb, How to number a graph in Graph Theory and Computing, R.C. Read, Academic press, New York (1972), 23-37.
[5] K. M. Kathiersan and S. Amutha, Arbitrary super subdivisions of star are graceful, Indian J. Pure and Appl. Math., 35(2004), 81 - 84.
[6] K. M. Kathiersan, Subdivisions of ladders are graceful, Indian Journal of pure appl. Math., 23(1)(1992), 21 - 23.
[7] V. Ramchandran and C. Sekar, Graceful labeling of super subdivisions of Ladder, Int. J. Maths and its Appl., Vol 2, No.2(2014), 29-36.
[8] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris(1967), 349-355.
[9] G. Sethuraman and P. Selvaraju, Gracefulness of super subdivisions of graphs, Indian Journal of Pure and Appl. Math., 32(7)(2001),1059 - 1064.

