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1 Introduction and preliminaries

The stability problem for functional equations starts from the famous talk of Ulam and
the partial solution of Hyers to the Ulam’s problem see ([17] and [7]). Thereafter, Rassias [14]
attempted to solve the stability problem of the cauchy additive functional equation in a more
general setting. The concept introduced by Rassias’s theorem significantly influenced a number
of mathematicians to investigate the stability problems for various functional equations see ([1],
[7], [8], [9], [13]).

Choonkil Park and Dong Yun Shin [2] investigated functional equation in paranormed spaces.
Choonkil Park and Jung Rye Lee [3] proved the Hyers-Ulam stability of an additive-quadratic-
cubic-quartic functional equation in paranormed spaces. Recently, Choonkil Park and Dong
Yun Shin [4] prove the Hyers-Ulam stability of Cauchy additive functional inequality, the Cauchy
additive functional equation and quadratic functional equation in matrix paranormed spaces.

The concept of statistical convergence for sequences of real numbers was introduced by Fast
[5] and Steinhaus [16] independently and since then several generalizations and applications
of this notion have been investigated by various authors [6], [10], [12], [15]. This notion was
defined in normed spaces by Kolk [11].
We recall some basic facts concerning Frechet spaces.

Definition 1.1. [18] Let X be a vector space. A paranorm P (.) : X → [0,∞) is a function on
X such that
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1. P (0) = 0;

2. P (−x) = P (x);

3. P (x+ y) ≤ P (x) + P (y)(triangle inequality);

4. If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0, then
P (tnxn − tx)→ 0(continuity of multiplication).
The pair (X,P (.)) is called a paranormed space if P (.) is a paranorm on X.

The paranorm is called total if, in addition, we have

5. P (x) = 0 implies x = 0.
A Frechet space is a total and complete paranormed space.

We use the following notations:
Mn(X) is that set of all n× n matrices in X;
ej ∈M1,n(C) is that jth component is 1 and the other components are zero;
Eij ∈Mn(C) is that (i, j)- component is 1 and the other components are zero;
Eij ⊗ x ∈Mn(X) is that (i, j)- component is x and the other components are zero.
For x ∈Mn(X), y ∈Mk(X),

x⊕ y =
(
x 0
0 y

)

Note that (X, {‖.‖n})is a matrix normed space if and only if (Mn(X), ‖.‖n) is a normed space
for each positive integer n and ‖AxB‖k ≤ ‖A‖ ‖B‖ ‖x‖n holds for A ∈Mk,n, x = [xij ] ∈Mn(X)
and B ∈Mn,k and that (X, {‖.‖n})is a matrix Banach space if and only if X is a Banach space
and (X, {‖.‖n}) is a matrix normed space.

Definition 1.2. Let (X,P (.)) be a paranormed space.

1. (X, {Pn(.)}) is a matrix paranormed space if (Mn(X), Pn(.)) is a paranormed space for
each positive integer n, Pn (Ekl ⊗ x) = P (x) for x ∈ X, and P (xkl) ≤ Pn([xij ]) for
[xij ] ∈Mn(X).

2. (X, {Pn(.)}) is a matrix Frechet space if X is a Frechet spaces and (X, {Pn(.)}) is a matrix
paranormed space.

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n,
define hn : Mn(E)→Mn(F ) by

hn ([xij ]) = [h(xij)]

for all [xij ] ∈Mn(E).
Throughout this paper, let (X, {‖.‖n}) be a matrix Banach space and (Y, {Pn(.)}) be a matrix
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Frechet space.
Note that P (2x) ≤ 2P (x) for all x ∈ Y.

Lemma 1.3. Let (X, {Pn(.)}) be a matrix paranormed space. Then

1. P (xkl) ≤ Pn([xij ]) ≤
∑n

i,j=1 P (xij) for [xij ] ∈Mn(X).

2. lims→∞ xs = x if and only if lims→∞ xsij = xij for xs = [xsij ],
x = [xij ] ∈Mk(X).

Proof: 1. By Definition 1.2, P (xkl) ≤ Pn([xij ]).
Since [xij ] =

∑n
i,j=1Eij ⊗ xij ,

Pn([xij ]) = Pn

 n∑
i,j=1

Eij ⊗ xij

 ≤ n∑
i,j=1

Pn (Eij ⊗ xij) =
n∑

i,j=1
P (xij).

2. By (1), we have

P (xskl − xkl) ≤ Pn ([xsij − xij ]) = Pn ([xsij ]− [xij ]) ≤
n∑

i,j=1
P (xsij − xij).

So, we get the result.

Lemma 1.4. Let (X, {‖.‖n}) be a matrix normed space. Then

1. ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X;

2. ‖xkl‖ ≤ ‖[xij ]‖n ≤
∑n

i,j=1 ‖xij‖ for [xij ] ∈Mn(X);

3. limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn],
x = [xij ] ∈Mk(X).

Proof: (1) Since Ekl⊗x = e∗kxel and ‖e∗k‖ = ‖el‖ = 1, ‖Ekl ⊗ x‖n ≤ ‖x‖ . Since ek (Ekl ⊗ x) e∗l =
x, ‖x‖ ≤ ‖Ekl ⊗ x‖n . So, ‖Ekl ⊗ x‖n = ‖x‖ .
(2) Since ekxe

∗
l = xkl and ‖ek‖ = ‖e∗l ‖ = 1, ‖xkl‖ ≤ ‖[xij ]‖n . Since [xij ] =

∑n
i,j=1Eij ⊗ xij ,

‖[xij ]‖n =

∥∥∥∥∥∥
n∑

i,j=1
Eij ⊗ xij

∥∥∥∥∥∥
n

≤
n∑

i,j=1
‖Eij ⊗ xij‖n =

n∑
i,j=1
‖xij‖ .

(3) By ‖xkln − xkl‖ ≤ ‖[xijn − xij ]‖n = ‖[xijn]− [xij ]‖n ≤
∑n

i,j=1 ‖xijn − xij‖ , we get the
result.
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2 Hyers-Ulam stability of the cubic functional equation in matrix para-
normed spaces

In this section, we prove the Hyers-Ulam stability of the cubic functional equation in Matrix
Paranormed spaces. For a mapping f : X → Y , define Df : X2 → Y and Dfn : Mn

(
X2) →

Mn (Y ) by

Df (a, b) = 1
2f (2a+ b) + 1

2f (2a− b)− f (a+ b)− f (a− b)− 6f(a)

Dfn ([xij ] , [yij ]) = 1
2fn (2 [xij ] + [yij ]) + 1

2fn (2 [xij ]− [yij ])

− fn ([xij + yij ])− fn ([xij − yij ])− 6fn[xij ]

for all a, b ∈ X and all x = [xij ], y = [yij ] ∈Mn(X)

Theorem 2.1. Let r, θ be positive real numbers with r > 3. Let f : X → Y be a mapping such
that

Pn (Dfn ([xij ], [yij ])) ≤
n∑

i,j=1
θ (‖xij‖r + ‖yij‖r) (2.1)

for all x = [xij ], y = [yij ] ∈Mn(X). Then there exist a unique cubic mapping C : X → Y such
that

Pn (fn ([xij ])− Cn ([xij ])) ≤
n∑

i,j=1

θ

2r − 8 ‖xij‖r (2.2)

for all x = [xi,j ] ∈Mn(X).

Proof: Let n = 1 in (2.1). Then (2.1) is equivalent to

P

(1
2f (2a+ b) + 1

2f (2a− b)− f (a+ b)− f (a− b)− 6f(a)
)
≤ θ (‖a‖r + ‖b‖r) (2.3)

for all a, b ∈ X.
Letting b = 0 in (2.3), we get P (f(2a)− 8f(a)) ≤ θ ‖a‖r and so P

(
f(a)− 8f(a2)

)
≤ 1

2r
θ ‖a‖r

for all a ∈ X. One can easily show that

P

(
8pf( a2p

)− 8qf( a2q
)
)
≤

q−1∑
l=p

P

(
8lf

(
a

2l

)
− 8l+1f

(
a

2l+1

))
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≤ 1
2r

q−1∑
l=p

8l

2rl
θ ‖a‖r (2.4)

for all a, b ∈ X and nonnegative integers p, q with p < q. It follows from (2.4) that the sequence{
8lf( a2l

)
}

is Cauchy for all a ∈ X. Since Y is complete, the sequence
{

8lf( a2l
)
}

converges. So,
one can define the mapping C : X → Y by

C(a) = lim
l→∞

8lf

(
a

2l

)
for all a ∈ X.
Moreover, letting p = 0 and passing the limit q →∞ in (2.4), we get

P (f(a)− C(a)) ≤ θ

2r − 8 ‖a‖
r (2.5)

for all a ∈ X. It follows from 2.3 that

P

(
8l
(1

2f
(2a+ b

2l

)
+ 1

2f
(2a− b

2l

)
− f

(
a+ b

2l

)(
a− b

2l

)
− 6f

(
a

2l

)))
≤ 8lP

(1
2f
(2a+ b

2l

)
+ 1

2f
(2a− b

2l

)
− f

(
a+ b

2l

)(
a− b

2l

)
− 6f

(
a

2l

))
≤ 8l

2lr
θ (‖a‖r + ‖b‖r)

which tends to zero as l→∞. So,

P

(1
2C (2a+ b) + 1

2C (2a− b)− C (a+ b)− C (a− b)− 6C(a)
)

= 0

That is, 1
2C (2a+ b) + 1

2C (2a− b) = C (a+ b) + C (a− b) + 6C(a)

for all a, b ∈ X. Hence C : X → Y is cubic. Now, let T : X → Y be another cubic mapping
satisfying (2.5). Then we have

P (C(a)− T (a)) = P

(
8l
(
C

(
a

2l

)
− T

(
a

2l

)))
≤ 8lP

(
C

(
a

2l

)
− T

(
a

2l

))
≤ 8l

(
P

(
C

(
a

2l

)
− f

(
a

2l

))
+ P

(
T

(
a

2l

)
− f

(
a

2l

)))
≤ 2.8l

(2r − 8) 2lr
θ ‖a‖r ,

which tends to zero as l→∞ for all a ∈ X. So, we conclude that C(a) = T (a) for all a ∈ X.
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By Lemma 1.3 and (2.5)

Pn (fn ([xij ])− Cn ([xij ])) ≤
n∑

i,j=1
P (f(xij)− C(xij))

≤
n∑

i.j=1

θ

2r − 8 ‖xij‖r

for all x = [xi,j ] ∈ Mn(X). Thus C : X → Y is the unique cubic mapping satisfying (2.2) as
desired.

Theorem 2.2. Let r, θ be positive real numbers r < 3. Let f : Y → X be a mapping such that

‖Dfn ([xij , yij ])‖n ≤
n∑

i,j=1
θ (P (xij)r + P (yij)r) (2.6)

for all x = [xij ], y = [yij ] ∈ Mn(Y ). Then there exist a unique cubic mapping C : Y → X such
that

‖fn ([xij ])− Cn ([xij ])‖n ≤
n∑

i,j=1

θ

8− 2r
P (xij)r (2.7)

for all x = [xij ] ∈Mn(Y ).

Proof: Let n = 1 in (2.6). Then (2.6) is equivalent to∥∥∥∥1
2f (2a+ b) + 1

2f (2a− b)− f (a+ b)− f (a− b)− 6f(a)
∥∥∥∥ ≤ θ (P (a)r + P (b)r) (2.8)

for all a, b ∈ Y.
Letting b = 0 in (2.8), we get

‖f(2a)− 8f(a)‖ ≤ θP (a)r and so
∥∥∥∥f(a)− 1

8f(2a)
∥∥∥∥ ≤ θ

8P (a)r for all a ∈ Y.

One can easily show that

∥∥∥∥ 1
8p
f(2pa)− 1

8q
f(2qa)

∥∥∥∥ ≤ q−1∑
l=p

∥∥∥∥ 1
8l
f(2la)− 1

8l+1 f(2l+1a)
∥∥∥∥

≤ 1
8

q−1∑
l=p

2rl

8l
θP (a)r (2.9)

for all a ∈ Y and non-negative integers p, q with p < q. It follows from (2.9) that the sequence{
1
8l f(2la)

}
is a Cauchy for all a ∈ Y . Since X is complete, the sequence

{
1
8l f(2la)

}
converges.
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So, one can define the mapping C : Y → X by

C(a) = lim
l→∞

1
8l
f(2la), for all a ∈ Y.

Moreover, letting p = 0 and passing the limit q →∞ in (2.9), we get

‖f(a)− C(a)‖ ≤ 1
8− 2r

θP (a)r (2.10)

for all a ∈ Y. It follows from (2.8) that

∥∥∥∥ 1
8l

(1
2f
(
2l(2a+ b)

)
+ 1

2f
(
2l(2a− b)

)
− f

(
2l(a+ b)

)
− f

(
2l(a− b)

)
− 6f(2la)

)∥∥∥∥
≤ 2lr

8l
θ (P (a)r + P (b)r) .

which tends to zero as l→∞. So,∥∥∥∥1
2C (2a+ b) + 1

2C (2a− b)− C (a+ b)− C (a− b)− 6C(a)
∥∥∥∥ = 0

That is,
1
2C (2a+ b) + 1

2C (2a− b) = C (a+ b) + C (a− b) + 6C(a)

for all a, b ∈ Y. Hence C : Y → X is cubic.
Now, let T : Y → X be another cubic mapping satisfying (2.10). Then we have

‖C(a)− T (a)‖ = 1
8l

∥∥∥C(2la)− T (2la)
∥∥∥

≤ 1
8l

(∥∥∥C(2la)− f(2la))
∥∥∥+

∥∥∥T (2la)− f(2la)
∥∥∥)

≤ 2.2lr

(8− 2r) 8l
θP (a)r

which tends to zero as n → ∞ for all a ∈ Y. So we conclude that C(a) = T (a) for all a ∈ Y.
This proves the uniquness of C.
By Lemma 1.4 and (2.10),

‖fn ([xij ])− Cn ([xij ])‖n ≤
n∑

i,j=1
‖f(xij)− C(xij)‖

≤
n∑

i,j=1

θ

8− 2r
P (xij)r

for all x = [xij ] ∈Mn(Y ). Thus C : Y → X is the unique cubic mapping satisfying (2.7).
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3 Hyers-Ulam stability of the quartic functional equation

In this section, we prove the Hyers-Ulam Stability of the quartic functional equation in Matrix
Paranormed spaces. For a mapping f : X → Y , define Df : X2 → Y and Dfn : Mn(X2) →
Mn(Y ) by

Df(a, b) = 1
2f(2a+ b) + 1

2f(2a− b)− 2f(a+ b)− 2f(a− b)− 12f(a) + 3f(b)

Dfn ([xij ], [yij ]) = 1
2fn(2[xij ] + [yij ]) + 1

2fn(2[xij ]− [yij ])− 2fn([xij ] + [yij ])

− 2fn([xij ]− [yij ])− 12fn[xij ] + 3fn[yij ]

for all a, b ∈ X and all x = [xij ], y = [yij ] ∈Mn(X).

Theorem 3.1. Let r, θ be positive real numbers with r > 4. Let f : X → Y be a mapping such
that

Pn(Dfn([xij ], [yij ])) ≤
n∑

i,j=1
θ(‖xij‖r + ‖yij‖r) (3.1)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exist a unique quartic mapping Q : X → Y

such that

Pn(fn([xij ])−Qn([xij ])) ≤
n∑

i,j=1

θ

2r − 16 ‖xij‖r (3.2)

for all x = [xij ] ∈Mn(X).

Proof: Let n = 1 in (3.1). Then (3.1) is equivalent to

P

(1
2f(2a+ b) + 1

2f(2a− b)− 2f(a+ b)− 2f(a− b)− 12f(a) + 3f(b)
)
≤ θ(‖a‖r + ‖b‖r)

(3.3)

for all a, b ∈ X.
Letting b = 0 in (3.3), we get

P (f(2a)− 16f(a)) ≤ θ ‖a‖r

for all a ∈ X. So
P (f(a)− 16f(a2)) ≤ 1

2r
θ ‖a‖r
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for all a ∈ X. Hence

P

(
16pf( a2p

)− 16qf( a2q
)
)
≤

q−1∑
l=p

P

(
16lf( a2l

)− 16l+1f( a

2l+1 )
)
≤ 1

2r

q−1∑
l=p

16l

2rl
θ ‖a‖r (3.4)

for all a ∈ X and nonnegative integers p, q with p < q. It follows from (3.4) that the sequence{
16lf( a

2l )
}

is a Cauchy for all a ∈ X. Since Y is complete, the sequence
{

16lf( a
2l )
}

converges.
So, one can define the mapping Q : X → Y by

Q(a) = lim
l→∞

16lf( a2l
)

for all a ∈ X. Moreover, letting p = 0 and passing the limit q →∞ in (3.4), we get

P (f(a)−Q(a)) ≤ θ

2r − 16 ‖a‖
r (3.5)

for all a ∈ X. It follows from (3.3) that

P

(
16l

(1
2f(2a+ b

2l
) + 1

2f(2a− b
2l

)− 2f(a+ b

2l
)− 2f(a− b2l

)− 12f( a2l
) + 3f( b2l

)
))

≤ 16lP

(1
2f(2a+ b

2l
) + 1

2f(2a− b
2l

)− 2f(a+ b

2l
)− 2f(a− b2l

)− 12f( a2l
) + 3f( b2l

)
)

≤ 16l

2lr
θ (‖a‖r + ‖b‖r)

which tends to zero as l→∞. So,

P

(1
2Q(2a+ b) + 1

2Q(2a− b)− 2Q(a+ b)− 2Q(a− b)− 12Q(a) + 3Q(b)
)

= 0

That is,
1
2Q(2a+ b) + 1

2Q(2a− b) = 2Q(a+ b) + 2Q(a− b) + 12Q(a)− 3Q(b)

for all a, b ∈ X. Hence Q : X → Y is quartic. The proof of the uniqueness of Q is similar to the
proof of Theorem 2.1.
By Lemma 1.3 and (3.5),

Pn (fn([xij ])−Qn([xij ])) ≤
n∑

i,j=1
P (f(xij)−Q(xij))

≤
n∑

i,j=1

θ

2r − 16 ‖xij‖r

for all x = [xij ] ∈Mn(X). Thus Q : X → Y is the unique quartic mapping satisfying (3.2).



10 R. Murali, A. Antony Raj and S. Sudha

Theorem 3.2. Let r, θ be positive real numbers with r < 4. Let f : Y → X be a mapping such
that

‖Dfn ([xij ], [yij ])‖n ≤
n∑

i,j=1
θ (P (xij)r + P (yij)r) (3.6)

for all x = [xij ], y = [yij ] ∈ Mn(Y ). Then there exists a unique quartic mapping Q : Y → X

such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

θ

16− 2r
P (xij)r (3.7)

for all x = [xij ] ∈Mn(Y ).

Proof: Let n = 1 in (3.6). Then (3.6) is equivalent to

∥∥∥∥1
2f(2a+ b) + 1

2f(2a− b)− 2f(a+ b)− 2f(a− b)− 12f(a) + 3f(b)
∥∥∥∥ ≤ θ (P (a)r + P (b)r)

(3.8)

for all a, b ∈ Y.
Letting b = 0 in (3.8), we get

‖16f(a)− f(2a)‖ ≤ θP (a)r

and so ∥∥∥∥f(a)− 1
16f(2a)

∥∥∥∥ ≤ θ

16P (a)r

for all a ∈ Y.
The rest of the proof is similar to the proof of Theorem 2.2.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn.,
2, (1950), 64-66.

[2] Choonkil Park and Dong Yun Shin, Functional equations in paranormed spaces, Advances
in Difference Equations, 2012.

[3] Choonkil Park and Jung Rye Lee, An AQCQ-functional equation in paranormed spaces,
Advances in Difference Equations, 2012.

[4] Choonkil Park, Jung Rye Lee and Dong Yun Shin, Functional equations and inequalities
in matrix paranormed spaces, Journal of Inequalities and Applications, 2013.



Hyers-Ulam stability of Cubic and Quartic Functional Equations in matrix paranormed spaces 11

[5] H. Fas, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

[6] J.A. Fridy, On statistical convergence Analysis, 5(1985), 301-313.

[7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., USA,
27(1941), 222-224.

[8] D.H. Hyers and Th.M.Rassias, Approximate homomorphisms, Aequationes Math., 44
(1992), 125-153.

[9] S.M. Jung, Hyers-Ulam Rassias Stability of Functional Equations in Nonlinear Analysis,
Springer, New York, 2011.

[10] S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun., 12
(2007), 11-23.

[11] E. Kolk, The statistical convergence in Banach spaces, Tartu Ülik. Toim., 928 (1991), 41-52.
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