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Abstract

Let G be an LCA group, ω be a weight function on G, and A be a semisimple, commu-
tative Banach algebra. We characterize some Banach algebra properties of vector-valued
Beurling algebra L1(G,ω,A) in terms of L1(G,ω) and A using the Bochner integration the-
ory. These properties are unique uniform norm property (UUNP), unique C∗-norm prop-
erty (UC∗NP), quasi divisor of zero property (QDZP), weak regularity (WR), regularity,
and complete regularity (CR).
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1 Introduction and preliminaries

Let G be an LCA group, µ be the Haar measure on G, ω be a weight on G and A be
a semisimple, commutative Banach algebra. Then the vector-valued, weighted, Banach space
L1(G,ω,A) of A-valued Bochner integrable functions is a semisimple, commutative Banach
algebra with respect to the convolution product; it is called the vector-valued Beurling algebra
and its Gelfand theory is developed in [6]. In this paper, we characterize some Banach algebra
properties of L1(G,ω,A) in terms of L1(G,ω) and A using the Bochner integration theory
which is relatively simpler than the tensor product theory.

Most of the notations and terminologies used in this paper are same as in [6] except a few
ones. For example, we use ‖ · ‖ω,A as the Banach algebra norm on L1(G,ω,A) instead of ‖ · ‖1,ω.
The elements of L1(G,ω) are denoted by f, g, h, while the elements of L1(G,ω,A) are denoted
by f̃ , g̃, h̃, etc. Throughout this paper we assume that ω(s) ≥ 1 (s ∈ G).

We start an introduction to the Bochner integration theory and our main reference for the
Bochner integration theory is [8].
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Definition 1.1. A function f : G−→A is strongly measurable if f−1(U) is Borel measurable
for every open set U of A and f(G) ⊂ A is separable.

Definition 1.2. A function s̃ : G−→A is a simple function onG if it is of the form s̃ =
n∑
i=1

χEi,ai
,

where n ∈ N, ai ∈ A \ {0}, Ei is a Borel measurable subset of G, and Ei ∩ Ej = ∅ (i 6= j). Let
S(G,A) be the set of all simple functions on G.

Definition 1.3. A simple function s̃ =
n∑
i=1

χEi,ai
∈ S(G,A) is Bochner integrable if

n∑
i=1
‖ai‖µ(Ei) <∞. In this case, define

‖s̃‖1,A =
n∑
i=1
‖ai‖µ(Ei) and

∫
G
s̃(t) dµ(t) =

n∑
i=1

aiµ(Ei).

Let L1
s(G,A) be the set of all Bochner integrable simple functions on G. Usually we verify

whether (L1
s(G,A), ‖ · ‖1,A) is a normed algebra with pointwise linear operations and convolu-

tion product ?.

Definition 1.4. Let ω be a weight on G such that ω(s) ≥ 1 (s ∈ G). A simple function
s̃ =

n∑
i=1

χEi,ai
is Bochner ω-integrable on G if

∫
Ei
ω(t) dµ(t) < ∞ for each 1 ≤ i ≤ n. In this

case, define

‖s̃‖ω,A =
n∑
i=1

( ∫
Ei

ω(t) dµ(t)
)
‖ai‖ and

∫
G
s̃(t) dµ(t) =

n∑
i=1

aiµ(Ei).

Let L1
s(G,ω,A) be the set of all Bochner ω-integrable simple functions on G. Again we ver-

ify whether (L1
s(G,ω,A), ‖ · ‖ω,A) is a normed algebra with pointwise linear operations and

convolution product. Since ω(s) ≥ 1 (s ∈ G), we have L1
s(G,ω,A) ⊆ L1

s(G,A).

Definition 1.5. A strongly measurable function f : G−→A is Bochner ω-integrable if there
exists a sequence {s̃n} ⊂ L1

s(G,ω,A) such that

1. s̃n−→f pointwise almost everywhere;

2.
∫
G ‖s̃n(t)− s̃m(t)‖ω(t) dµ(t)−→0 as m,n−→∞.

In this case, define

‖f‖ω,A =
∫
G
‖f(t)‖ω(t) dµ(t) and

∫
G
f(t) dµ(t) = lim

n→∞

∫
G
s̃n(t) dµ(t).

Let L1(G,ω,A) be the set of all Bochner ω-integrable functions f : G−→A. Then(
L1(G,ω,A), ‖ · ‖ω,A

)
is a Banach algebra with pointwise linear operations and convolution

product ?.
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For reference, we state some useful lemmas without proofs and some results from [6, 7]. We
start with a definition.

Definition 1.6. [7] An ω-bounded generalised character on G is a continuous homomorphism
α : G −→ (C \ {0},×) satisfying |α(s)| ≤ ω(s) for all s ∈ G. Let Ĝ(ω) be the set of all
ω-bounded generalised characters on G equipped with the compact-open topology.

Theorem 1.7. [7, Th.2.8.2] LetG and ω be as above. Then the mapping Ĝ(ω)−→∆(L1(G,ω));
α 7−→ ψα is a homeomorphism, where ψα is defined as ψα(f) =

∫
G α(t)f(t) dµ(t).

Here we note that the second statement of the next result is not proved in [6]. However, it
can be proved using [7, Cor.3.3.4].

Theorem 1.8. [6] Let G,ω,A be as above.

1. The mapping Ĝ(ω) × ∆(A)−→∆(L1(G,ω,A)); (α,ϕ) 7−→ ψα,ϕ is a homeomorphism,
where ψα,ϕ(f̃) =

∫
G α(t)ϕ(f̃(t)) dµ(t).

2. The mapping ∂L1(G,ω) × ∂A−→∂L1(G,ω,A); (α,ϕ) 7−→ ψα,ϕ is a homeomorphism,
where ∂B is the Shilov boundary of the commutative Banach algebra B.

3. Let ω be symmetric and A having a continuous algebra involution ∗. Then the mapping
Ĝ × ∆̃(A)−→∆̃(L1(G,ω,A)); (α,ϕ) 7−→ ψα,ϕ is a homeomorphism, where ∆̃(B) is the
hermitian Gelfand space of the commutative Banach ∗-algebra B.

Lemma 1.9. For each ϕ ∈ ∆(A), there exists a unique continuous homomorphism ηϕ :
L1(G,ω,A)−→L1(G,ω) satisfying

ηϕ(s̃) =
n∑
i=1

ϕ(ai)χEi

(
s̃ =

n∑
i=1

χEi,ai
∈ L1

s(G,ω,A)
)
.

Lemma 1.10. For each α ∈ Ĝ(ω), there exists a unique continuous homomorphism ηα :
L1(G,ω,A)−→A satisfying

ηα(s̃) =
n∑
i=1

ψα(χEi
)ai

(
s̃ =

n∑
i=1

χEi,ai
∈ L1

s(G,ω,A)
)
.

Lemma 1.11. Let f ∈ L1(G,ω), and a ∈ A. Then fa ∈ L1(G,ω,A) and ψα,ϕ(fa) =
â(ϕ)f̂(α) (α ∈ Ĝ(ω); ϕ ∈ ∆(A)).

Definition 1.12. Let π1 : ∆(L1(G,ω,A)) ∼= Ĝ(ω)×∆(A)−→Ĝ(ω) be defined as π1(ψα,ϕ) = ψα;
and π2 : ∆(L1(G,ω,A)) ∼= Ĝ(ω) × ∆(A)−→∆(A) be defined as π2(ψα,ϕ) = ϕ. The maps π1

and π2 are called the projection maps. Both of them are continuous as well as open.
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2 UUNP, UC∗NP and QDZP

A uniform norm on an algebra B is a (not necessarily complete) submultiplicative norm | · |
on B satisfying the square property |b2| = |b|2 (b ∈ B). In fact, H. V. Dedania has proved in
[5] that the submultiplicativity of | · | is automatic in the presence of the square property. If
B admits at least one uniform norm, then B is necessarily semi simple and commutative. The
converse holds if B is a Banach algebra. Note that any two equivalent uniform norms must
be identical. A semisimple, commutative Banach algebra B has unique uniform norm property
(UUNP) if B admits exactly one uniform norm. The UUNP was introduced and extensively
studied by Bhatt and Dedania in [3, 4].

It is proved in [7, Th.4.6.13] that if A and B are semi simple, commutative Banach algebras
such that A⊗̂πB is also semisimple, then A⊗̂πB has UUNP if and only if both A and B have
UUNP. Its proof uses the tensor product theory. Here we prove the similar result for L1(G,ω,A)
using Bochner integral theory.

Theorem 2.1. [3, Th.2.3] The following are equivalent.

1. B has UUNP.

2. If F ⊂ ∆(B) is closed and not containing ∂B, then there exists b ∈ B such that r(b) > 0
(equivalently, b 6= 0) and b̂(F ) = {0}.

Theorem 2.2. L1(G,ω,A) has UUNP if and only if both L1(G,ω) and A have UUNP.

Proof: Let L1(G,ω,A) have UUNP. First, let F be a closed subset of Ĝ(ω) which does not
contain ∂L1(G,ω). Set F̃ = F × ∆(A). Then ∂L1(G,ω,A) ∼= ∂L1(G,ω) × ∂A 6⊂ F̃ . So by
Theorem 2.1, there exists f̃ ∈ L1(G,ω,A) \ {0} such that ̂̃f (F̃ ) = {0}. Choose α0 ∈ Ĝ(ω) and
ϕ0 ∈ ∆(A) such that ψα0,ϕ0(f̃) 6= 0, and set f = ηϕ0(f̃) ∈ L1(G,ω) \ {0}, where ηϕ0 is as in
Lemma 1.9. Then for every α ∈ Ĝ(ω), we have ψα(f) = ψα(ηϕ0(f̃)) = ψα,ϕ0(f̃). Now if α ∈ F ,
then (α,ϕ0) ∈ F̃ and so we have ψα(f) = ψα,ϕ0(f̃) = 0. Thus L1(G,ω) satisfies Theorem
2.1(2). Hence L1(G,ω) has UUNP. Secondly, let E be a closed subset of ∆(A) which does not
contain ∂A. Set Ẽ = Ĝ(ω) × E. Then ∂L1(G,ω,A) ∼= ∂L1(G,ω) × ∂A 6⊂ Ẽ. Therefore, by
Theorem 2.1, there exists f̃ ∈ L1(G,ω,A) \ {0} such that ̂̃f (Ẽ) = {0}. Choose α0 ∈ Ĝ(ω) and
ϕ0 ∈ ∆(A) such that ψα0,ϕ0(f̃) 6= 0, and set a = ηα0(f̃) ∈ A \ {0}, where ηα0 is as in Lemma
1.10. Then for every ϕ ∈ ∆(A), we have ϕ(a) = ϕ(ηα0(f̃)) = ψα0,ϕ(f̃). Now if ϕ ∈ E, then
(α0, ϕ) ∈ Ẽ and so we have ϕ(a) = ψα0,ϕ(f̃) = 0. Thus A satisfies Theorem 2.1(2). Hence A
has UUNP.

Conversely, let L1(G,ω) and A have UUNP. Suppose, if possible, L1(G,ω,A) does not have
UUNP. Then by Theorem 2.1, there exists a closed subset F̃ of ∆(L1(G,ω,A)) such that F̃
does not contain ∂L1(G,ω,A) and

|f̃ |
F̃

:= sup{|ψα,ϕ(f̃)| : ψα,ϕ ∈ F̃} (f̃ ∈ L1(G,ω,A))
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is a uniform norm on L1(G,ω,A). So choose ψα0,ϕ0 ∼ (α0, ϕ0) ∈ ∂L1(G,ω) × ∂A such that
ψα0,ϕ0 /∈ F̃ . Since F̃ is a closed, so F̃ c is open, so by the definition of the product topology,
there exist open sets U and V in Ĝ(ω) and ∆(A), respectively, such that α0 ∈ U and ϕ0 ∈ V
and (U × V ) ∩ F̃ = ∅. Since L1(G,ω) has UUNP and since U c does not contain ∂L1(G,ω),
by Theorem 2.1, there exists f ∈ L1(G,ω) \ {0} such that f̂(U c) = {0}. Similarly, there exists
a ∈ A\{0} such that â(V c) = {0}. Set f̃ = fa. Then f̃ ∈ L1(G,ω,A)\{0}. Now let ψα,ϕ ∈ F̃ .
Because (U ×V )∩ F̃ = ∅, either α /∈ U or ϕ /∈ V . If α /∈ U , then f̂(ψα) = 0, and if ϕ /∈ V , then
â(ϕ) = 0. Hence by Lemma 1.11,

ψα,ϕ(f̃) = ψα,ϕ(fa) = â(ϕ) f̂(ψα) = 0.

Thus |f̃ |
F̃

= 0 which is a contradiction because f̃ 6= 0 and | · |
F̃

is a norm. Hence L1(G,ω,A)
has UUNP.

A C∗-norm on a ∗-algebra B is a (not necessarily complete) submultiplicative norm | · | on
B satisfying the C∗-property |b∗b| = |b|2 (b ∈ B). A Banach ∗-algebra B has unique C∗-norm
property (UC∗NP) if B admits exactly one C∗-norm. In fact, Z. Sebestyen has proved in [12]
that the submultiplicativity of | · | is automatic in the presence of the C∗-property. Note that
any two equivalent C∗-norms must be identical. So there is a natural comparision between the
square property and the C∗-property of norms [2, 12]. Probably, B. A. Barnes was the first to
study the UC∗NP in detail [1].

Next we characterize the UC∗NP of L1(G,ω,A) in terms of L1(G,ω) and A. Note that if ω
is symmetric on G (i.e., ω(−s) = ω(s) (s ∈ G)), then L1(G,ω) is ∗-semi simple. Further, if A
is a ∗-algebra, then L1(G,ω,A) is ∗-semi simple if and only if A is ∗-semi simple [6, Th.4.2].

Note that if B is a ∗-semisimple, commutative Banach ∗-algebra, then
∏
B used in [1,

Prop.1.3], is exactly the hermitian Gelfand space of B (i.e. ∆̃(B)) and irreducible ∗-representations
in [1] are exactly self adjoint complex homomorphisms (that is, ϕ∗ = ϕ). So Theorem [1,
Prop.1.3] is exactly as following.

Proposition 2.3. [1] Let B be a ∗-semisimple, commutative Banach ∗-algebra. Then B has
unique C∗-norm if and only if for every proper closed set F ⊂ ∆̃(B) there exists b ∈ B \ {0},
such that b̂(F ) = {0}.

Theorem 2.4. Let ω be symmetric and A have a continuous algebra involution ∗. Then
L1(G,ω,A) has UC∗NP if and only if both L1(G,ω) and A have UC∗NP.

Proof: Let L1(G,ω,A) have UC∗NP. Let F be a closed subset of Ĝ and let F̃ = F × ∆̃(A).
Then F̃ is a closed subset of ∆̃(L1(G,ω,A)). Since L1(G,ω,A) has UC∗NP, by Proposition 2.3,
there exists f̃ ∈ L1(G,ω,A) \ {0} such that ̂̃f (F̃ ) = {0}. Choose α0 ∈ Ĝ and ϕ0 ∈ ∆̃(A) such
that ψα0,ϕ0(f̃) 6= 0, and set f = ηϕ0(f̃) ∈ L1(G,ω) \ {0}, where ηϕ0 is as in Lemma 1.9. Then,
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for every α ∈ Ĝ, we have, ψα(f) = ψα(ηϕ0(f̃)) = ψα,ϕ0(f̃). Now if α ∈ F , then (α,ϕ0) ∈ F̃ and
so we have ψα(f) = ψα,ϕ0(f̃) = 0. Hence, by Proposition 2.3, L1(G,ω) has UC∗NP. Secondly,
let E be a closed subset of ∆̃(A). Then Ẽ = Ĝ×E is a closed subset of ∆̃(L1(G,ω,A)). Since
L1(G,ω,A) has UC∗NP by Proposition 2.3, there exists f̃ ∈ L1(G,ω,A)\{0} such that ̂̃f (Ẽ) =
{0}. Choose α0 ∈ Ĝ and ϕ0 ∈ ∆̃(A) such that ψα0,ϕ0(f̃) 6= 0 and set a = ηα0(f̃) ∈ A\{0}, where
ηα0 is as in Lemma 1.10. Then, for every ϕ ∈ ∆̃(A), we have ϕ(a) = ϕ(ηα0(f̃)) = ψα0,ϕ(f̃).
Now if ϕ ∈ E, then (α0, ϕ) ∈ Ẽ and so we have ϕ(a) = ψα0,ϕ(f̃) = 0. Hence, by Proposition
2.3, A has UC∗NP.

Conversely, let L1(G,ω) and A have UC∗NP. Suppose, if possible, L1(G,ω,A) does not have
UC∗NP. Then, by Proposition 2.3, there exists a proper closed subset Ẽ of ∆̃(L1(G,ω,A)) such
that

|f̃ |
Ẽ

:= sup{|ψα,ϕ(f̃)| : ψα,ϕ ∈ Ẽ} (f̃ ∈ L1(G,ω,A))

is a C∗-norm on L1(G,ω,A). Choose ψα0,ϕ0 ∼ (α0, ϕ0) ∈ Ĝ×∆̃(A) such that ψα0,ϕ0 /∈ Ẽ. Since
Ẽ is a closed, so Ẽc is open, so by the definition of the product topology, there exist open sets U
and V in Ĝ(ω) and ∆(A), respectively, such that α0 ∈ U and ϕ0 ∈ V and (U×V )∩Ẽ = ∅. Define
F̃1 = U c× ∆̃(A), F̃2 = Ĝ×V c and F̃ = F̃1 ∪ F̃2. Then F̃ is a proper closed subset of Ĝ× ∆̃(A)
such that Ẽ ⊂ F̃ . Note that L1(G,ω) is ∗- semisimple. Since L1(G,ω) has UC∗NP and U c

does not contain Ĝ, by Proposition 2.3, there exists f ∈ L1(G,ω) \ {0} such that f̂(U c) = {0}.
Similarly, there exists a ∈ A\{0} such that â(V c) = {0}. Set f̃ = fa ∈ L1(G,ω,A) \ {0}. Now
let ψα,ϕ ∈ Ẽ. Since (α,ϕ) ∈ Ẽ ⊂ F̃ , either (α,ϕ) ∈ F̃1 or (α,ϕ) ∈ F̃2. Therefore either α /∈ U
or ϕ /∈ V . If α /∈ U , then f̂(ψα) = 0, and if ϕ /∈ V , then â(ϕ) = 0. Hence, by Lemma 1.11,

ψα,ϕ(f̃) = ψα,ϕ(fa) = â(ϕ) f̂(ψα) = 0.

Thus |f̃ |
F̃

= 0 which is a contradiction because f̃ 6= 0 and | · |
Ẽ

is a norm. Hence L1(G,ω,A)
has UC∗NP.

Next we characterize the quasi divisor of zero property (QDZP) of L1(G,ω,A) in terms of
L1(G,ω) and A, which was introduced by M. J. Meyer [9].

Definition 2.5. [9, Definition 4, p-71] Let B be a semisimple, commutative, Banach algebra.
Then B has quasi divisor of zero property (QDZP) if there exists an open set U ⊂ ∆(B) such
that: (i) ∂B ⊂ U ; (ii) For every open set V ⊂ U , there exist b ∈ B and a non-empty open set
W ⊂ V such that b̂(V c) = {0} and b̂(W ) = {1}.

Theorem 2.6. L1(G,ω,A) has QDZP if and only if L1(G,ω) and A have QDZP.

Proof: Let L1(G,ω,A) have QDZP. Then there is an open set Ũ ⊂ ∆(L1(G,ω,A)) which
satisfies the properties stated in the definition of QDZP. Let U1 = π1(Ũ). Then U1 is an open
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subset of Ĝ(ω), and

∂L1(G,ω) = π1(∂L1(G,ω,A)) ⊂ π1(Ũ) ⊂ π1(Ũ) = U1.

Let V1 be any open subset of U1. Then Ṽ = [V1 × π2(Ũ)] ∩ Ũ is an open subset of Ũ . Since
L1(G,ω,A) has QDZP, there exist f̃ ∈ L1(G,ω,A) and a non-empty open subset W̃ of Ṽ such
that ̂̃f (Ṽ c) = {0} and ̂̃

f (W̃ ) = {1}. Choose ψα0,ϕ0 ∈ W̃ . Then there exists a basic open set
M ×N such that ψα0,ϕ0 ∼ (α0, ϕ0) ∈M ×N ⊂ W̃ . Set f = ηϕ0(f̃) ∈ L1(G,ω), where ηϕ0 is as
in Lemma 1.9. Let W1 = π1(M ×N) = M be a non-empty open subset of V1. Then, for every
α ∈ V c

1 , ψα,ϕ0 ∼ (α,ϕ0) /∈ Ṽ , and so ψα(f) = ψα(ηϕ0(f̃)) = ψα,ϕ0(f̃) = 0. Thus f̂(V c
1 ) = {0}.

Now, for every, α ∈ W1, ψα,ϕ0 ∼ (α,ϕ0) ∈ M × N ⊂ W̃ , and so ψα(f) = ψα(ηϕ0(f̃)) =
ψα,ϕ0(f̃) = 1. Thus f̂(W1) = {1}. Thus L1(G,ω) has QDZP. By similar arguments, we can
show that A has QDZP.

Conversely, let L1(G,ω) and A have QDZP. Then there exist open subsets, U1 ⊂ Ĝ(ω) and
U2 ⊂ ∆(A), which satisfies the properties in the definition of QDZP. Set Ũ = U1 × U2. Then
Ũ is an open subset of ∆(L1(G,ω,A)), and

∂L1(G,ω,A) = ∂L1(G,ω)× ∂A ⊂ U1 × U2 = U1 × U2 = Ũ .

Let Ṽ be any open subset of Ũ . We assume that Ṽ = V1 × V2 where V1 and V2 are open in
Ĝ(ω) and ∆(A), respectively. Then V1 ⊂ U1 and V2 ⊂ U2. Since L1(G,ω) and A have QDZP,
there exist f ∈ L1(G,ω), a ∈ A, and non-empty open subsets, W1 ⊂ V1,W2 ⊂ V2 such that

f̂(V c
1 ) = {0}, â(V c

2 ) = {0}, f̂(W1) = {1} and â(W2) = {1}.

Set f̃ = fa ∈ L1(G,ω,A) and W̃ = W1 ×W2. Then W̃ is a non-empty open, subset of Ṽ . Let
ψα,ϕ ∈ Ṽ c. Then either α /∈ V1 or ϕ /∈ V2 and so ψα(f) = 0 or ϕ(a) = 0. Hence, by Lemma 1.11,
ψα,ϕ(f̃) = ψα(f)ϕ(a) = 0. Thus ̂̃f (Ṽ c) = {0}. Now, for every ψα,ϕ ∈ W̃ , α ∈W1 and ϕ ∈W2,
and so ψα(f) = 1 and ϕ(a) = 1. Hence, by Lemma 1.11, ψα,ϕ(f̃) = ψα(f)ϕ(a) = 1 · 1 = 1.
Thus ̂̃f (W̃ ) = {1}. Thus L1(G,ω,A) has QDZP.

3 Three Regularity Properties

The property "regularity" is one of the most important Banach algebra properties. There are
various types of regularities studied in the literature. In this section, we are going to study
three of them in L1(G,ω,A); namely, weak regularity, regularity, and complete regularity.

Definition 3.1. [4, 9] A semi simple, commutative, Banach algebra B is

1. weakly regular (WR) if for each proper closed set F ⊂ ∆(B), there exists b ∈ B \ {0} such
that b̂(F ) = {0}.
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2. regular if for each closed set F ⊂ ∆(B) and an element ϕ ∈ ∆(B) \ F , there exists an
element b ∈ B such that b̂(F ) = {0} and b̂(ϕ) = 1.

3. completely regular (CR) if for every closed subset F and any compact subset K of ∆(B)
with F ∩K = ∅, there exists b ∈ B such that b̂(F ) = {0} and b̂(K) = {1}.

Theorem 3.2. L1(G,ω,A) is WR if and only if both L1(G,ω) and A are WR.

Proof: Let L1(G,ω,A) be WR. Let F be any proper closed subset of Ĝ(ω) and F̃ = F1×∆(A).
Then F̃ is a proper closed subset of ∆(L1(G,ω,A)). Since L1(G,ω,A) is WR, there exists
f̃ ∈ L1(G,ω,A) \ {0} such that ̂̃

f (F̃ ) = {0}. Choose ψα0,ϕ0 ∈ ∆(L1(G,ω,A)) such that
ψα0,ϕ0(f̃) 6= 0. Set f = ηϕ0(f̃) ∈ L1(G,ω) \ {0}, where ηϕ0 is as in Lemma 1.9. Now if
α ∈ F , then ψα,ϕ0 ∈ F̃ and hence ψα(f) = ψα(ηϕ0(f̃)) = ψα,ϕ0(f̃) = 0. Hence L1(G,ω) is WR.
Similarly, we prove that A is WR.

Conversely, let L1(G,ω) and A be WR. Let F̃ be any proper closed subset of ∆(L1(G,ω,A)).
Then F̃ c is open in ∆(L1(G,ω,A)). Let (α0, ϕ0) ∈ F̃ c. Then there exists a basic open set U×V
in Ĝ(ω)×∆(A) such that (α0, ϕ0) ∈ U×V ⊂ F̃ c. Set FU = Ĝ(ω)\U and FV = ∆(A)\V . Then
both FU and FV are proper closed subsets of Ĝ(ω) and ∆(A) respectively. Since L1(G,ω) and A
are WR, there exist f ∈ L1(G,ω)\{0} and a ∈ A\{0} such that f̂(FU ) = {0} and â(FV ) = {0}.
Set f̃ = fa ∈ L1(G,ω,A) \ {0}. Let ψα,ϕ ∼ (α,ϕ) ∈ F̃ . Then either α ∈ FU or ϕ ∈ FV , and
so either f̂(ψα) = 0 or â(ϕ) = 0. Hence, by Lemma 1.11, ̂̃f (ψα,ϕ) = ψα,ϕ(f̃) = â(ϕ)f̂(ψα) = 0.
Since ψα,ϕ ∈ F̃ is arbitrary, L1(G,ω,A) is WR.

Theorem 3.3. L1(G,ω,A) is regular if and only if both L1(G,ω) and A are regular.

Proof: Let L1(G,ω,A) be regular. Let F be any closed subset of ∆(A) and ϕ0 ∈ ∆(A) \ F .
Then F̃ = Ĝ(ω) × F is a closed subset of ∆(L1(G,ω,A)). Let ψα0,ϕ0 ∈ ∆(L1(G,ω,A)) \ F̃ .
Since L1(G,ω,A) is regular, there exists f̃ ∈ L1(G,ω,A) \ {0} such that ̂̃

f (F̃ ) = {0} and
ψα0,ϕ0(f̃) = 1. Take a = ηα0(f̃) ∈ A\{0}, where ηα0 is as in Lemma 1.10. Then, for every ϕ ∈ F ,
(α0, ϕ) ∈ F̃ and so ϕ(a) = ϕ(ηα0(f̃)) = ψα0,ϕ(f̃) = 0 and ϕ0(a) = ϕ0(ηα0(f̃)) = ψα0,ϕ0(f̃) = 1.
Hence A is regular. Similarly, using the homomorphism defined in Lemma 1.9, we prove that
L1(G,ω) is regular.

Conversely, let L1(G,ω) and A be regular. Let F̃ be any closed subset of ∆(L1(G,ω,A)) and
(α0, ϕ0) ∈ F̃ c. Then there exists a basic open set U × V in Ĝ(ω)×∆(A) such that (α0, ϕ0) ∈
U×V ⊂ F̃ c. Set FU = Ĝ(ω)\U and FV = ∆(A)\V . Then α0 /∈ FU , ϕ0 /∈ FV , and both FU and
FV are closed subsets of Ĝ(ω) and ∆(A), respectively. Since L1(G,ω) and A are regular, there
exist f ∈ L1(G,ω) and a ∈ A such that f̂(FU ) = {0}, â(FV ) = {0}, f̂(ψα0) = 1 and â(ϕ0) = 1.
Set f̃ = fa ∈ L1(G,ω,A). Let ψα,ϕ ∼ (α,ϕ) ∈ F̃ . Then either α ∈ FU or ϕ ∈ FV , and so
either f̂(ψα) = 0 or â(ϕ) = 0. Hence, by Lemma 1.11, ̂̃f (ψα,ϕ) = ψα,ϕ(f̃) = â(ϕ)f̂(ψα) = 0.
Moreover, ̂̃f (ψα0,ϕ0) = â(ϕ0)f̂(ψα0) = 1. Thus L1(G,ω,A) is regular.
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We do not know the converse of the following result.

Theorem 3.4. If L1(G,ω,A) is CR, then L1(G,ω) and A are CR.

Proof: Let L1(G,ω,A) be CR. Let F and K be closed and compact subsets of Ĝ(ω), respec-
tively, with F ∩ K = ∅. Fix ϕ0 ∈ ∆(A) \ {0}. Then F̃ = F × {ϕ0} and K̃ = K × {ϕ0}
are closed and compact subsets of ∆(L1(G,ω,A)), respectively, and F̃ ∩ K̃ = ∅. Since
L1(G,ω,A) is CR, there exists f̃ ∈ L1(G,ω,A) such that ̂̃

f (F̃ ) = {0} and ̂̃
f (K̃) = {1}.

Take f = ηϕ0(f̃) ∈ L1(G,ω), where ηϕ0 is as in Lemma 1.9. Then, for every α ∈ F ,
ψα,ϕ0 ∼ (α,ϕ0) ∈ F̃ , and so ψα(f) = ψα(ηϕ0(f̃)) = ψα,ϕ0(f̃) = 0. Thus f̂(F ) = {0}. Now,
for every β ∈ K, ψβ,ϕ0 ∼ (β, ϕ0) ∈ K̃, and so ψβ(f) = ψβ(ηϕ0(f̃)) = ψβ,ϕ0(f̃) = 1. Thus
f̂(K) = {1}. Thus L1(G,ω) is CR. By similar arguments, we can show that A is CR.
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