International Journal of Mathematics and Soft Computing Vol.6, No.1 (2016), 143 - 152.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

On horizontal and complete lifts of (1,1) tensor fields F satisfying the structure equation F(2K+S,S) = 0

Abhishek Singh, Ramesh Kumar Pandey, Sachin Khare

Department of Mathematics B.B.D. University Lucknow-226005, Uttar Pradesh, India. abhi.rmlau@gmail.com, drrkpandey65@rediffmail.com, sachinuptu1@gmail.com

Abstract

The horizontal and complete lifts from a manifold M^n to its cotangent bundles $T^*(M^n)$ were studied by several authors. The purpose of this paper is to deal with some problems on horizontal and complete lifts tensor fields satisfying structure equation $F^{2K+S} + F^S = 0$. We also discuss the integrability conditions and prolongations in the third tangent space $T_3(M^n)$.

Keywords: Horizontal and complete lifts, distribution, integrability conditions and prolongations.

AMS Subject Classification(2010): 35D01.

1 Introduction

Let M^n be a differentiable manifold of class C^{∞} and F be a non-null tensor field of type (1,1) satisfying

$$F^{2K+S} + F^S = 0 (1)$$

where K is a fixed integer greater than or equal to 1 and S is a fixed odd integer greater than or equal to 1. F is of constant rank r everywhere in M^n . We call such a structure an F(2K + S, S)- structure of rank 2r.

Let the operators l and m be defined as

$$l = -F^{2K} \tag{2}$$

$$m = I + F^{2K} \tag{3}$$

where I denotes the identity operator on M^n .

The operators l and m defined by (2) and (3) satisfy the following:

$$\left. \begin{array}{l} l + m = I \\ l^2 = l, \ m^2 = m, \ lm = ml = 0 \\ Fl = lF = F, \ Fm = mF = 0 \end{array} \right\} \tag{4}$$

Thus there exist in M^n two complementary distributions D_l and D_m corresponding to the projection tensors l and m, respectively. If the rank of F is r, then D_l is r-dimensional and D_m is (n-r)-dimensional, where dim $M^n = n$.

2 The complete lift of F in the tangent bundle $T(M^n)$

Let M^n be a n- dimensional differentiable manifold of class C^{∞} and $T_P(M^n)$ the tangent space at a point p of M^n . Then

$$T(M^n) = \bigcup_{P \in M^n} T_P(M^n)$$

is the tangent bundle over the manifold M^n . The tangent bundle $T(M^n)$ of M^n is a differentiable manifold of dimension 2n.

Let \Im_s^r denote the set of tensor field of class C^{∞} and type (r, s) in M^n and let $\Im_s^r(T(M^n))$ denote the corresponding set of tensor fields in $T(M^n)$.

The complete lift F^C of an element F of $\mathfrak{S}^1_1(M^n)$ with local components F^h_i has components of the form [11]

$$F^{C} = \begin{pmatrix} F_{i}^{h} & 0\\ \partial F_{i}^{h} & F_{i}^{h} \end{pmatrix}.$$
(5)

Let $F, G, \epsilon \mathfrak{S}_1^1(M^n)$. Then we have [11]

$$(FG)^C = F^C G^C \tag{6}$$

Putting F = G in (6), we obtain

$$(F^2)^C = (F^C)^2 (7)$$

Putting $G = F^2$ in (6) and making use of (7), we get

$$(F^3)^C = (F^C)^3$$

Continuing the above process of replacing G in equation (6) by some higher powers of F, we obtain

$$(F^{K})^{C} = (F^{C})^{K} (F^{S})^{C} = (F^{C})^{k} (F^{S+2K})^{C} = (F^{C})^{2K+S}$$

$$(8)$$

where k is any positive integer. Also if G and H are tensors of the same type then

$$(G+H)^C = G^C + H^C$$

Taking complete lift on both sides of equation (1) we get

$$(F^{2K+S} + F^S)^C = 0$$
$$(F^{2K+S})^C + (F^S)^C = 0$$

Using (2.4) and $I^C = I$, we get

$$(F^C)^{2K+S} + (F^C)^S = 0 (9)$$

We see that the equation (1) implies (9) and by page 34 in [11] the rank of F^C is 2r if and only if the rank of F is r. Thus we have the following theorem.

Theorem 2.1. Let F be an element of $\mathfrak{S}_1^1(M^n)$. Then F satisfies the structure equation (1) if F^C satisfies the structure equation (9) Furthermore, F is of rank r if and only if F^C is of rank 2r.

Proof: Let F be an F(2K + S, S)-structure of rank r in M^n . Then the complete lift l^C of l and m^C of m are complementary projection tensors in $T(M^n)$. Thus there exist in $T(M^n)$ two complementary distribution D_l^C and D_m^C determined by l^C and m^C respectively. The distributions D_l^C and D_m^C are respectively the complete lifts D_l^C and D_m^C of D_l and D_m .

3 Integrability conditions of F(2K + S, S) – structures in a tangent bundle

Let $F \in \mathfrak{S}_1^1(M^n)$ and suppose that F satisfies (1). Then the Nijenhuis tensor N_F of F is a tensor field of type (1,2) given by [11]

(i)
$$N(X,Y) = [FX,FY] - F[FX,Y] - F[X,FY] + F^2[X,Y]$$
 (10)

Let N^C be the Nijenhuis tensor of F^C in $T(M^n)$, where F^C is the complete lift of F in M^n . Then we have

$$(ii) \ N^{C}(X^{C}, Y^{C}) = [F^{C}X^{C}, F^{C}Y^{C}] - F^{C}[F^{C}X^{C}, Y^{C}] - F^{C}[X^{C}, F^{C}Y^{C}] + (F^{2})^{C}[X^{C}, Y^{C}]$$

For any $X, Y \in \mathfrak{S}_0^1(M^n)$ and $F \in \mathfrak{S}_1^1(M^n)$ we have [11]

(i)
$$[X^C, Y^C] = [X, Y]^C$$
 and $(X + Y)^C = X^C + Y^C$, (11)

$$(ii) \quad F^C X^C = (FX)^C$$

From (4) and (11) we have

$$F^C l^C = (Fl)^C = F^C \tag{12}$$

 $F^C m^C = (Fm)^C = 0.$ and

Theorem 3.1. The following identities hold:

$$N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (F^{C})^{2}[m^{C}X^{C}, m^{C}Y^{C}],$$
(13)

$$m^{C}N^{C}(X^{C}, Y^{C}) = m^{C}[F^{C}X^{C}, F^{C}Y^{C}],$$
(14)

$$m^{C}N^{C}(l^{C}X^{C}, l^{C}Y^{C}) = m^{C}[F^{C}X^{C}, F^{C}Y^{C}]$$
(15)

$$m^{C}N^{C}((F^{2K+S}+F^{S})^{C}X^{C},(F^{2K+S}+F^{S})^{C}Y^{C})) = m^{C}N^{C}[l^{C}X^{C},l^{C}Y^{C}].$$
(16)

Proof: The proofs of (13) to (16) follow by virtue of (2),(3),(10) and (12)

Theorem 3.2. For any $X, Y \in \mathfrak{S}_0^1(M^n)$ the following conditions are equivalent.

 $m^C N^C (X^C, Y^C) = 0$ (i)

(ii)
$$m^C N^C (l^C X^C, l^C Y^C) = 0$$

$$\begin{split} m^C N^C (l^C X^C, l^C Y^C) &= 0 \\ m^C N^C ((F^{2K+S} + F^S)^C X^C, (F^{2K+S} + F^S)^C Y^C) = 0. \end{split}$$
(iii) and

Proof: In consequence of equation (16) we have,

 $N^{C}(l^{C}X^{C}, l^{C}Y^{C}) = 0$ if and only if $N^{C}((F^{2K+S} + F^{S})^{C}X^{C}, (F^{2K+S} + F^{S})^{C}Y^{C})) = 0$ for all $X, Y \in \mathfrak{S}^1_0(M^n)$.

Now the right hand sides of the quations (14) and (15) are equal and in view of the last equation shows that conditions (i), (ii) and (iii) are equivalent.

Theorem 3.3. The complete lift D_m^C in $T(M^n)$ of a distribution D_m in M^n is integrable if D_m is integrable in M^n .

Proof: The distribution D_m is integrable if and only if [11]

$$l(mX, mY) = 0 \tag{17}$$

for all $X, Y \in \mathfrak{S}_0^1(M^n)$, where l = I - m.

Taking complete lift of both sides and using (11) we get

 $l^C(m^C X^C, m^C Y^C) = 0$

for all $X, Y \in \mathfrak{S}_0^1(M^n)$, where $l^C = (I-m)^C = I - m^C$ is the projection tensor complementary to m^C . Thus the condition (17) implies (3).

On horizontal and complete lifts of (1,1) tensor fields F satisfying F(2K+S,S) = 0 147

Theorem 3.4. The complete lift D_m^C in $T(M^n)$ of a distribution D_m in M^n is integrable if $l^C N^C(m^C X^C, m^C Y^C) = 0$, or equivalently $N^C(m^C X^C, m^C Y^C) = 0$ for all $X, Y \in \mathfrak{S}_0^1(M^n)$.

Proof: The distribution D_m is integrable in M^n if and only if N(mX, mY) = 0 for any $X, Y \in \mathfrak{S}^1_0(M^n)$ [11].

By virtue of condition (13), we have

$$N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (F^{C})^{2}[m^{C}X^{C}, m^{C}Y^{C}],$$

Multiplying throughout by l^C , we get

$$l^{C}N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = (F^{C})^{2}l^{C}[m^{C}X^{C}, m^{C}Y^{C}],$$

In view of (3) the above relation becomes

$$l^{C}N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = 0 (18)$$

Also we have

$$m^{C}N^{C}(m^{C}X^{C}, m^{C}Y^{C}) = 0 (19)$$

Adding (18) and (19), we get $(l^C + m^C)N^C(m^C X^C, m^C Y^C) = 0.$ Since $l^C + m^C = I^C = I$, we have $N^C(m^C X^C, m^C Y^C) = 0.$

Theorem 3.5. Let the distribution D_l be integrable in M^n , that is mN(X,Y) = 0 for all $X, Y \in \mathfrak{S}^1_0(M^n)$. Then the distribution D_l^C is integrable in $T(M^n)$ if and only if any one of the conditions of Theorem (3.2) is satisfied, for all $X, Y \in \mathfrak{S}^1_0(M^n)$.

Proof: The distribution D_l is integrable in M^n if and only if mN(lX, lY) = 0. Thus distribution D_l^C is integrable in $T(M^n)$ if and only if $m^C N^C(l^C X^C, l^C Y^C) = 0$. Hence the theorem follows by making use of the equation (16).

Theorem 3.6. The complete lift F^C of an $(F^{2K+S} + F^S)$ structure F in M^n is partially integrable in $T(M^n)$ if and only if F is partially integrable in M^n .

Proof: The $(F^{2K+S} + F^S)$ - structure F in M^n is partially integrable if and only if

$$N(lX, lY) = 0 \text{ for any } X, Y \in \mathfrak{S}^1_0(M^n).$$

$$\tag{20}$$

In view of the equations (2),(3),(10) we obtain $N^C(l^C X^C, l^C Y^C) = (N(lX, lY))^C$ which implies $N^C(l^C X^C, l^C Y^C) = 0$ if and only if N(lX, lY) = 0.

Also from Theorem (3.2), $N^C(l^C X^C, l^C Y^C) = 0$ is equivalent to $N^C((F^{2K+S}+F^S)^C X^C, (F^{2K+S}+F^S)^C Y^C)) = 0.$

Theorem 3.7. The complete lift F^C of an $(F^{2K+S}+F^S)$ – structure F is partially integrable in $T(M^n)$ if and only if F is partially integrable in M^n .

Proof: A necessary and sufficient condition for an $(F^{2K+S} + F^S)$ – structure in M^n to be integrable is that

$$N(X,Y) = 0 \tag{21}$$

for any $X, Y \in \mathfrak{S}_0^1(M^n)$.

In view of equation (3.1), we get $N^C(X^C, Y^C) = (N(X, Y))^C$. Therefore with the help of (21) we obtain the result.

4 The horizontal lift of an $(F^{2K+S} + F^S)$ - structure

The horizontal lift S^H of a tensor field S of arbitrary type in $T(M^n)$ is defined by

$$S^H = S^C - \nabla_\gamma S \tag{22}$$

where S is a tensor field defined by

$$S = S^{i....h}_{k....j} (\frac{\partial}{\partial x^i} \otimes \ldots \otimes \otimes \frac{\partial}{\partial x^h} \otimes dx^k \otimes \ldots \otimes \otimes dx^j,$$

in M^n with affine connection ∇ and $\nabla_{\gamma}S$ is a tensor field in $T(M^n)$ give

$$\nabla_{\gamma}S = (y^l \nabla_l S^{i....,h}_{k...,j}) (\frac{\partial}{\partial y^i} \otimes \ldots \otimes \otimes \otimes \frac{\partial}{\partial y^h} \otimes dx^k \otimes \ldots \otimes \otimes dx^j$$

with respect to the induced coordinates (x^h, y^k) in $\Pi^{-1}(U)$ [12].

The horizontal lift F^H of a tensor field F of type (1,1) in M^n with components F_i^H in M^n has components

$$F^{H} = \begin{pmatrix} F_{i}^{h} & 0\\ 0 & F_{i}^{h} \end{pmatrix}.$$
(23)

Now, we prove some theorems on horizontal lift satisfying the structure (1).

Theorem 4.1. Let $F \in \mathfrak{S}_1^1(M^n)$ be an F(2K + S, S)- structure in M^n . Then its horizontal lift F^H is also an F(2K + S, S)- structure in $T(M^n)$.

On horizontal and complete lifts of (1,1) tensor fields F satisfying F(2K+S,S) = 0 149

Proof: If P(t) is a polynomial in one variable t, then we have [11]

$$(P(F))^H = P(F^H) \tag{24}$$

for any $F \in \mathfrak{S}^1_1(M^n)$.

Also let I be the identity tensors field of type (1,1) in M^n . Then

$$I^H = I \tag{25}$$

where the right-hand side denote the field of the identity tenors in $T(M^n)$.

Taking horizontal lift on both sides of equation (1) and using (24), (25), we obtain

$$(F^H)^{2K+S} + (F^H)^S = 0$$

which shows that F^H is an F(2K + S, S) – structure in $T(M^n)$.

Now from the local expression of F^H , we see that, if F is of rank r, then F^H is of rank 2r. Thus we have the following result.

Theorem 4.2. If F is an F(2K + S, S)- structure of rank r in M^n , then its horizontal lift F^H is also F(2K + S, S)- structure of rank 2r in $T(M^n)$.

Proof: Let m be a projection tensor field of type (1, 1) in M^n defined by (2) and (3).

Then there exists in M^n a distribution D determined by m. Also

$$m^2 = m.$$

With the help of the equation (24), we find

$$(m^H)^2 = m^H.$$

Thus, m^H is also a projection tensor in $T(M^n)$. Hence there exists in M^n a distribution D^H corresponding to m^H , which is called the horizontal lift of the distribution D.

Theorems (4.1) and (4.2) also hold in the cotangent bundle $T^*(M^n)$. In $T^*(M^n)$ the connection ∇ is a symmetric affine connection.

5 Prolongation of an F(2K+S,S) – structure in third tangent space T_3M^n

Let us denote by $T_3(M^n)$, the third order tangent bundle over M^n and let F^{III} be the third lift on F in $T_3(M^n)$. Then for any $F, G \in \mathfrak{S}^1_1(M^n)$, we have

$$\begin{array}{l}
\left(G^{III}F^{III}\right)X^{III} = G^{III}(F^{III}X^{III}) \\
= G^{III}(FX)^{III} \\
= (G(FX))^{III} \\
= (GF)^{III}X^{III}
\end{array}$$
(26)

for any $F \in \mathfrak{S}_0^1(M^n)$, Thus we have

$$G^{III}F^{III} = (GF)^{III}$$

If P(t) is a polynomial of in t, then we have

$$(P(F))^{III} = P(F)^{III}$$

$$(27)$$

where $F \in \mathfrak{S}_1^1(M^n)$.

Theorem 5.1. The third lift F^{III} defines an F(2K+S,S)- structure in $T_3(M^n)$ if and only if F defines an F(2K+S,S)- structure in M^n .

Proof: Let F satisfy (1,1). Then F defines an F(2K+S,S) - structure in M^n satisfying

$$F^{2K+S} + F^S = 0$$

Taking third lift of F(2K + S, S) – structure

$$(F^{2K+S} + F^S)^{III} = 0$$

which in view of equation (27), shows that

$$((F)^{III})^{2K+S} + ((F)^{III})^S = 0 (28)$$

Therefore F^{III} defines an F(2K + S, S) – structure in $T_3(M^n)$.

Theorem 5.2. The third lift F^{III} is integrable in $T_3(M^n)$ if and only if F is integrable in M^n .

Proof: Let us denote by N^{III} and N, the nijenhuis tensor of F^{III} and F respectively. Then we have [11]

$$N^{III}(X,Y) = (N(X,Y))^{III}$$
(29)

We know that an F(2K + S, S) – structure is integrable in M^n if and only if

$$N(X,Y) = 0$$

and so, from (29), we obtain

$$N^{III}(X,Y) = 0 (30)$$

Thus F^{III} is integrable iff F is integrable in M^n .

Acknowledgments The authors are thankful to Professor S. Ahmad Ali Dean School of Applied Sciences, B.B.D. University, Lucknow for providing suggestions for the improvement of this paper.

References

- [1] L.S. Das, R. Nivas, and A. Singh, On CR-structures and F-Structures $F^{4n} + F^{(4n-1)} + \dots + F^2 + F = 0$, Tensor (N.S.), 70(2008), 255-260.
- [2] J. B.Kim, Notes on f- manifolds, Tensor N.S., 29(1975), 299-302.
- [3] Nivas, Ram and S. K. Srivastava, On horizontal and complete lifts from a manifold with $f_{\lambda}(7, -1)$ structure to its cotangent bundle, Jour. Tensor Soc. India, 14(1996),42-48.
- [4] A. Singh, R.K. Pandey and S. Khare, Parallelism of Distributions and Geodesics on F(2K + S, S) – Structure Lagrangian Manifolds, International Journal of Contemporary Mathematical Sciences, 9(2014), 515-522.
- [5] A. Singh, On CR- structures & F- structures satisfying $F^{2K+P} + F^P = 0$, Int. J. Contemp. Math. Sciences, 4(2009), 1029-1035.
- [6] S. K. Srivastava, On horizontal and complete lifts of (1, 1) tensor field F satisfying structure F^{v+1} - λ₂F^{v-1} = 0 and F^v + (-1)^{v+1}F = 0, Ph.D. Thesis, Lucknow University, India, 1999.
- K. Yano, and E. M. Patterson, Horizontal lifts from a manifold to its cotangent bundle, Jour. Math. Soc. Japan, 19(1967), 185-198.
- [8] K. Yano, and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, Jour. Math. Soc., Japan, 16(1967), 91-113.

- [9] K. Yano, C.S. Houch and B.T. Chen, Structure defined by a tensor field φ of type (1,1) satisfying $\varphi^4 \pm \varphi^2 = 0$, Tensor, 23(1972), 81-87.
- [10] K. Yano and S. Ishihara, On integrability conditions of a structure satisfying $f^3 + f = 0$, Quarterly J. Math., 15(1963), 207-222.
- [11] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.