Edge antimagic total labeling of isomorphic copies of subdivided stars

A. Raheem ${ }^{1}$, A. Q. Baig 2
${ }^{1}$ Department of Mathematics
COMSATS Institute of information Technology
Islamabad, Pakistan.
rahimciit7@gmail.com
${ }^{2}$ Department of Mathematics
COMSATS Institute of Information Technology
Attock, Pakistan.
aqbaig1@gmail.com

Abstract

Enomoto, Llado, Nakamigawa and Ringel defined the concept of a super ($a, 0$)-edgeantimagic total labeling and proposed the conjecture that every tree is a super ($a, 0$)-edgeantimagic total labeling. In the support of this conjecture, the present paper deals with different results on antimagicness of isomorphic copies of subdivided stars.

Keywords: Super edge antimagic total graph, subdivided stars.
AMS Subject Classification(2010): 05C78.

1 Introduction

We begin with simple, finite, connected and undirected graph $G(V, E)$ with V and E denote the vertex-set and the edge-set. A labeling of a graph is a mapping that carries the graph elements to numbers (usually to positive or non-negative integers). Some labelings use the vertex-set only or the edge-set. We shall call them vertex-labelings or edge-labelings, respectively. A general reference for graph-theoretic ideas can be found in [22]. For a detailed survey of the graph labeling we refer to Gallian [11]. In this paper the domain will be the set of all vertices and edges and such a labeling is called a total labeling. The notion of edge-magic total labeling of graphs has its origin in the works of Kotzig and Rosa $[12,13]$ on what they called magic valuations of graphs. The definition of (a, d)-edge-antimagic total labeling was introduced by Simanjuntak, Bertault and Miller in [20] as a natural extension of edge-magic labeling defined by Kotzig and Rosa.

Conjecture 1.1. [8] Every tree admits a super edge-magic total labeling.

[^0]To support this conjecture, many authors have considered super edge-magic total labeling for many particular classes of trees for example, [1-7,9, 10, 15-21]. Lee and Shah [14] verified this conjecture by a computer search for trees with at most 17 vertices. However, this conjecture is still as an open problem. Ngurah et. al. [15] proved that $T(m, n, k)$ is also super edge-magic if $k=n+3$ or $n+4$. In [19], Salman et. al. found the super edge-magic total labeling of a subdivision of a star S_{n}^{m} for $m=1,2$. However, super (a, d)-edge-antimagic total labelings of copies of subdivided star $G \cong m T\left(n_{1}, n_{2}, n_{3}, \ldots, n_{r}\right)$ for different $\left\{n_{i}: 1 \leq i \leq r\right\}$ and $m \geq 3$ is still an open problem.

Definition 1.2. A graph G is called (a, d)-edge-antimagic total $((a, d)-E A T)$ if there exist integers $a>0, d \geq 0$ and a bijection $\lambda: V(G) \cup E(G) \rightarrow\{1,2, \ldots, v+e\}$ such that $W=\{w(x y)$: $x y \in E(G)\}$ forms an arithmetic progression starting from a with the common difference d, where $w(x y)=\lambda(x)+\lambda(y)+\lambda(x y)$ for any $x y \in E(G)$. W is called the set of edge-weights of the graph G.

Definition 1.3. A (a, d)-edge-antimagic total labeling λ is called super (a, d)-edge-antimagic total labeling if $\lambda(V(G))=\{1,2, \ldots, v\}$.

Lemma 1.4. [7] If g is a super edge-magic total labeling of G with the magic constant a, then the function $g_{1}: V(G) \cup E(G) \rightarrow\{1,2, \ldots, v+e\}$ defined by

$$
g_{1}(x)= \begin{cases}v+1-g(x), & \text { for } x \in V(G), \\ 2 v+e+1-g(x), & \text { for } x \in E(G) .\end{cases}
$$

is also a super edge-magic total labeling of G with the magic constant $a_{1}=4 v+e+3-a$.
Definition 1.5. For $n_{i} \geq 1$ and $p \geq 3$, let $G \cong T\left(n_{1}, n_{2}, \ldots, n_{p}\right)$ be a graph obtained by inserting $n_{i}-1$ vertices to each of the i-th edge of the star $K_{1, p}$, where $1 \leq i \leq p$.

2 Main Results

We consider the following proposition which will be used frequently in the main results.
Proposition 2.1. [3] If a (v, e)-graph G has a (s, d)-EAV labeling then

- G has a super $(s+v+1, d+1)$-EAT labeling,
- G has a super $(s+v+e, d-1)$-EAT labeling.

Theorem 2.2. Let $G \cong 2 T(n+2, n, n)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 0$)-edge-antimagic total labeling with $a=2 v+s-1$ and super ($a, 2$)-edgeantimagic total labeling with $a=v+s+1$, where $s=3 n+7$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq 3 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 3 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq 3 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=6(n+1)$ and $e=2(3 n+2)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=2(n+3)+\frac{3 n+1}{2} j, j=1,2
$$

For odd $l_{i} \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2$ and 3 , we define

$$
\lambda(u)= \begin{cases}\frac{n+4-l_{1}}{2}+\frac{3 n+5}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{n+4+l_{2}}{2}+\frac{3 n+5}{2}(j-1), & \text { for } u=x_{2}^{l_{2}}, \\ \frac{3 n+5}{2}(j-1) & \text { for } u=x_{3 j}^{l_{3}} ; l_{3}=1, \\ \frac{3(n+2)-l_{3}}{2}+\frac{9(n+1)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}} ; l_{i} \geq 3\end{cases}
$$

For even $\quad l_{i}, \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2$ and 3 , we define

$$
\lambda(u)= \begin{cases}\frac{7 n+13-l_{1}}{2}+\frac{3 n+1}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}} \\ \frac{7 n+13+l_{2}}{2}+\frac{3 n+1}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}} \\ \frac{9 n+13-l_{3}}{2}-\frac{3(n+1)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}}\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{(3 n+6)+1,(3 n+6)+2, \ldots,(3 n+6)+e\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 0$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=15 n+17$. Similarly by Proposition 2.1, λ can be extended to a super ($a, 2$)-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=9 n+14$.

Theorem 2.3. Let $G \cong 2 T(n+2, n, n+1)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 1$)-edge-antimagic total labeling with $a=2 v+s-1$ and super ($a, 3$)-edgeantimagic total labeling with $a=v+s+1$, where $s=4$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq 3 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 3\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 3 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq 3 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=2(3 n+4)$ and $e=6(n+1)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=(2 n+4)+j, \quad j=1,2
$$

For all $l_{i} \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2$ and 3 , we define

$$
\lambda(u)= \begin{cases}(2 n+4)+j-2 l_{1}, & \text { for } u=x_{1 j}^{l_{1}}, \\ (2 n+4)+j+2 l_{2}, & \text { for } u=x_{2 j}^{l_{2}}, \\ (6 n+8)+j-2 l_{3}, & \text { for } u=x_{3 j}^{l_{3}} .\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{4,4+2, \ldots, 4+2(e-1)\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 1$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=6(2 n+3)$. Similarly by Proposition 2.1, λ can be extended to a super ($a, 3$)-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=(6 n+13)$.

Theorem 2.4. Let $G \cong 2 T(n+2, n, n+1,2 n+1)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 0$)-edge-antimagic total labeling with $a=2 v+s-1$ and super ($a, 2$)-edge-antimagic total labeling with $a=v+s+1$, where $s=5 n+9$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i j}} \mid 1 \leq i \leq 4 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 4 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i j}} x_{i j}^{l_{i j}+1} \mid 1 \leq i \leq 4 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=10(n+1)$ and $e=(10 n+8)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=3 n+7+\frac{5 n+3}{2} j, j=1,2 .
$$

For odd $l_{i} \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2,3$ and 4 , we define

$$
\lambda(u)= \begin{cases}\frac{n+4-l_{1}}{2}+\frac{5 n+7}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{n+4+l_{2}}{2}+\frac{5 n+7}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}}, \\ \frac{3(n+2)-l_{3}}{2}+\frac{(5 n+7)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}}, \\ \frac{(5 n+7)}{2} j, & \text { for } u=x_{4 j}^{l_{4}} ; l_{4}=1 \\ \frac{5 n+8-l_{4}}{2}+\frac{15(n+1)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}} ; l_{4} \geq 3\end{cases}
$$

For even $l_{i}, 1 \leq l_{i} \leq n_{i}$ and $i=1,2,3$ and 4 , we define

$$
\lambda(u)= \begin{cases}\frac{11 n+17-l_{1}}{2}+\frac{5 n+3}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}} \\ \frac{11 n+17+l_{2}}{2}+\frac{5 n+3}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}} \\ \frac{13 n+19-l_{3}}{2}-\frac{(5 n+3)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}} \\ \frac{15 n+17}{2}-\frac{5(n+1)}{2}(j-1), & \text { for } u=x_{4 j}^{l_{4}}\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{(5 n+8)+1,(5 n+8)+2, \ldots,(5 n+8)+e\}$. Let $s=\min (S)$. Therefore, by Proposition $2.1, \lambda$ can be extended to a super ($a, 0$)-edge-antimagic total labeling and we obtain the magic constant $a=v+s+e=25 n+27$. Similarly by Proposition $2.1, \lambda$ can be extended to a super ($a, 2$)-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=5(3 n+4)$.

Theorem 2.5. Let $G \cong 2 T(n+2, n, n+1,2 n+2)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 1$)-edge-antimagic total labeling with $a=v 2+s-1$ and super ($a, 3$)-edge-antimagic total labeling with $a=v+s+1$, where $s=4$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq 4 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 4 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq 4 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=2(5 n+6)$ and $e=10(n+1)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=(2 n+4)+j, \quad j=1,2
$$

For all $l_{i} 1 \leq l_{i} \leq n_{i}$, where $i=1,2$ and 3 , we define

$$
\lambda(u)= \begin{cases}(2 n+4)+j-2 l_{1}, & \text { for } u=x_{1 j}^{l_{1}}, \\ (2 n+4)+j+2 l_{2}, & \text { for } u=x_{2 j}^{l_{2}}, \\ (6 n+8)+j-2 l_{3}, & \text { for } u=x_{3 j}^{l_{3}}, \\ (10 n+12)+j-2 l_{4}, & \text { for } u=x_{4 j}^{l_{4}} .\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{4,4+2, \ldots, 4+2(e-1)\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 1$)-edge-antimagic total labeling and we obtain the magic constant
$a=v+e+s=2(10 n+13)$. Similarly by Proposition 2.1, λ can be extended to a super ($a, 3$)-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=10 n+17$.

Theorem 2.6. Let $G \cong 2 T(n+2, n, n+1,2(n+1), 4 n+3)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 0$)-edge-antimagic total labeling with $a=2 v+s-1$ and super ($a, 2$)-edge-antimagic total labeling with $a=v+s+1$, where $s=9 n+13$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq 5 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 5 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i j}+1} \mid 1 \leq i \leq 5 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=18(n+1)$ and $e=2(9 n+8)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=5 n+9+\frac{9 n+7}{2} j, j=1,2 .
$$

For odd $l_{i} \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2,3,4$ and 5 , we define

$$
\lambda(u)= \begin{cases}\frac{n+4-l_{1}}{2}+\frac{9 n+11}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{n+4+l_{2}}{2}+\frac{9 n+11}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}}, \\ \frac{3(n+2)-l_{3}}{2}+\frac{(9 n+11)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}}, \\ \frac{5 n+8-l_{4}}{2}+\frac{(9 n+11)}{2}(j-1), & \text { for } u=x_{4 j}^{l_{4}}, \\ \frac{9 n+11}{2}+\frac{(9 n+11)}{2}, & \text { for } u=x_{5 j}^{l_{5}} ; l_{5}=1, \\ \frac{9 n+12-l_{5}}{2}+\frac{27(n+1)}{2}, & \text { for } u=x_{5 j}^{l_{5}} ; l_{5} \geq 3 .\end{cases}
$$

For even $l_{i}, 1 \leq l_{i} \leq n_{i}$ and $i=1,2,3,4$ and 5 , we define

$$
\lambda(u)= \begin{cases}\frac{19 n+25-l_{1}}{2}+\frac{9 n+7}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{19 n+25+l_{2}}{2}+\frac{9 n+7}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}}, \\ \frac{21 n+27-l_{3}}{2}-\frac{(9 n+7)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}} \\ \frac{23 n+29-l_{4}}{2}+\frac{(9 n+7)}{2}(j-1), & \text { for } u=x_{4 j}^{l_{4}} \\ \frac{27 n+31-l_{5}}{2}-\frac{9(n+1)}{2}(j-1), & \text { for } u=x_{5 j}^{l_{5}}\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{(9 n+12)+1,(9 n+12)+2, \ldots,(9 n+12)+e\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 0$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=55 n+47$. Similarly by Proposition 2.1, λ can be extended to a super $(a, 2)$-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=45 n+47$.

Theorem 2.7. Let $G \cong 2 T(n+2, n, n+1,2(n+1), 4(n+1))$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super $(a, 1)$-edge-antimagic total labeling with $a=2 v+s-1$ and super $(a, 3)$-edge-antimagic total labeling with $a=v+s+1$, where $s=4$.

Proof: We suppose the vertex-set and the edge-set of G, as follows: $V(G)=\left\{c_{j} \mid 1 \leq j \leq\right.$ $2\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq 5 ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$, $E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq 5 ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq 5 ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$. The order and size of the graph G are $v=2(9 n+8)$ and $e=2(9 n+7)$. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=(2 n+4)+j, \quad j=1,2
$$

For all $l_{i} \quad 1 \leq l_{i} \leq n_{i}$, where $i=1,2$ and 3 , we define

$$
\lambda(u)= \begin{cases}(2 n+4)+j-2 l_{1}, & \text { for } u=x_{1 j}^{l_{1}} \\ (2 n+4)+j+2 l_{2}, & \text { for } u=x_{2 j}^{l_{2}} \\ (6 n+9)+j-2 l_{3}, & \text { for } u=x_{3 j}^{l_{3}} \\ (10 n+12)+j-2 l_{4}, & \text { for } u=x_{4 j}^{l_{4}} \\ (18 n+20)+j-2 l_{5}, & \text { for } u=x_{5 j}^{l_{5}}\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{4,4+2, \ldots, 4+2(e-1)\}$. Let $s=\min (S)$. Therefore, by Proposition $2.1, \lambda$ can be extended to a super ($a, 1$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=36 n+34$. Similarly by Proposition $2.1, \lambda$ can be extended to a super $(a, 3)-$ edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=18 n+19$.

Theorem 2.8. Let $G \cong T\left(n+2, n, n+1,2(n+1), 4(n+1), \ldots, n_{p}\right)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super ($a, 0$)-edge-antimagic total labeling with $a=2 v+s-1$ and super ($a, 2$)-edge-antimagic total labeling with $a=v+s+1, s=(n+5)+2^{p-2}(n+1)$, $n_{i}=2^{i-3}(n+1)$ for $i=4,5,6, \ldots, p-1$ and $n_{p}=2^{i-3}(n+1)-1$.

Proof: We suppose that the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq p ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq p ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq p ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=2(n+1)+2^{p-1}(n+1)$ and $e=2 n+2^{p-1}(n+1)$.
Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=\frac{2(n+2)+2^{p-2}(n+1)}{2}+\frac{(n-1)+2^{p-2}(n+1)}{2} j, j=1,2 .
$$

For odd $l_{i} \quad 1 \leq l_{i} \leq n_{i}$, where $i=1,2,3,4$ and 5 , we define

$$
\lambda(u)= \begin{cases}\frac{n+4-l_{1}}{2}+\frac{(n+3)+2^{p-2}(n+1)}{2}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{n+4+l_{2}}{2}+\frac{(n+3)+2^{p-2}(n+1)}{2}(j-1), & \text { for } u=x_{2 j}^{l_{2}}, \\ \frac{(3 n+4)-l_{3}}{2}+\frac{(n+3)+2^{p-2}(n+1)}{2}(j-1), & \text { for } u=x_{3 j}^{l_{3}}, \\ \frac{(n+4)+2^{k-2}(n+1)-l_{k}}{2}+\frac{(n+3)+2^{p-2}(n+1)}{2}(j-1), & \text { for } u=x_{4 j}^{l_{4}}, \\ & \text { for } 1 \leq l_{k} \leq n_{k}, \\ \frac{\text { for } k=4,5, \ldots, p-1,}{} & \text { for } u=x_{p j}^{l_{p}}, \\ \frac{(n+3)+2^{p-2}(n+1)}{2} j, & \text { for } l_{p}=1 \\ \frac{(n+4)+2^{k-2}(n+1)-l_{p}}{2}+\frac{3(n+1)\left(1+2^{p-2}\right)}{2}(j-1), & \text { for } u=x_{p j}^{l_{p}}, \\ & \text { for } 2 \leq l_{p} \leq n_{p}\end{cases}
$$

For even $l_{i}, \quad 1 \leq l_{i} \leq n_{i}$ and $i=1,2,3,4$ and 5 , we define

$$
\lambda(u)= \begin{cases}\frac{3(n+1)+2^{p-1}(n+1)-l_{1}}{2} & \\ +\frac{(n-1)+2^{p-2}(n+1)}{}(j-1), & \text { for } u=x_{1 j}^{l_{1}}, \\ \frac{3(n+1)+2^{p-1}(n+1)+l_{2}}{2} & \text { for } u=x_{2 j}^{l_{2}}, \\ +\frac{(n-1)+2^{p-2}(n+1)}{}(j-1), & \text { for } u=x_{k j}^{l_{k}}, \\ \frac{3(n+3)+\left(2^{p-1}+2^{k-2}\right)(n+1)-l_{k}}{2} & \text { for } 2 \leq l_{k} \leq n_{k}, k=3,4, \ldots, p-1 \\ +\frac{(n-1)+2^{p-2}(n+1)}{2}(j-1), & \text { for } u=x_{p j}^{l_{p}}, \\ \frac{(3 n+7)+\left(2^{p-1}+2^{k-2}\right)(n+1)-l_{p}}{2} & \text { for } 2 \leq l_{p} \leq n_{p} .\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\left\{(n+4)+2^{p-2}(n+1)+1,(n+4)+2^{p-2}(n+1)+2, \ldots,(n+4)+2^{p-2}(n+1)+e\right\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 0$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=5 n+7+2^{p-2} 5(n+1)$. Similarly by Proposition 2.1, λ can be extended to a super ($a, 2$)-edge-antimagic total labeling and we
obtain the magic constant $a=v+1+s=3 n+8+2^{p-2} 3(n+1)$.

Theorem 2.9. Let $G \cong T\left(n+2, n, n+1,2(n+1), 4(n+1), \ldots, n_{p}\right)$ be a graph with order v and $n \equiv 1(\bmod 2)$. Then G admits super $(a, 1)$-edge-antimagic total labeling with $a=2 v+s-1$ and super $(a, 3)$-edge-antimagic total labeling with $a=v+s+1$, where $s=4$.

Proof: We suppose the vertex-set and the edge-set of G, as follows:
$V(G)=\left\{c_{j} \mid 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} \mid 1 \leq i \leq p ; 1 \leq l_{i} \leq n_{i} ; 1 \leq j \leq 2\right\}$,
$E(G)=\left\{c_{j} x_{i j}^{1} \mid 1 \leq i \leq p ; 1 \leq j \leq 2\right\} \cup\left\{x_{i j}^{l_{i}} x_{i j}^{l_{i}+1} \mid 1 \leq i \leq p ; 1 \leq l_{i} \leq n_{i}-1 ; 1 \leq j \leq 2\right\}$.
The order and size of the graph G are $v=2(n+2)+2^{p-1}(n+1)$ and $e=2(n+1)+2^{p-1}(n+1)$.
Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows:

$$
\lambda\left(c_{j}\right)=(2 n+4)+j, j=1,2
$$

For all $l_{i} \quad 1 \leq l_{i} \leq n_{i}$, we define

$$
\lambda(u)= \begin{cases}(2 n+4)+j-2 l_{1}, & \text { for } u=x_{11}^{l_{1}}, \\ (2 n+4)+j+2 l_{2}, & \text { for } u=x_{2 j}^{2}, \\ (6 n+8)+j-2 l_{3}, & \text { for } u=x_{33}^{l_{3}}, \\ (10 n+12)+j-2 l_{4}, & \text { for } u=x_{44}^{4}, \\ (10 n+12)+j+\sum_{m=5}^{i}\left[2^{m-2}(n+1)\right]-2 l_{i}, & \text { for } u=x_{i j}^{l_{i}}, i \geq 5\end{cases}
$$

The set of all edge-sums generated by the above formula forms a consecutive integer sequence $S=\{4,4+2, \ldots, 4+2(e-1)\}$. Let $s=\min (S)$. Therefore, by Proposition 2.1, λ can be extended to a super ($a, 1$)-edge-antimagic total labeling and we obtain the magic constant $a=v+e+s=2(2 n+5)+2^{p}(n+1)$. Similarly by Proposition $2.1, \lambda$ can be extended to a super $(a, 3)$-edge-antimagic total labeling and we obtain the magic constant $a=v+1+s=$ $2 n+9+2^{p-1}(n+1)$.

3 Acknowledgement:

The authors are indebted to the referees for their valuable thoughts and comments to improve the original version of the paper.

References

[1] M. Bača and C. Barrientos, Graceful and edge-antimagic labeling, Ars Combin., 96(2010), 505-513.
[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math., 60 (2001), 229-239.
[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Utilitas Math., 73(2007), 117-128.
[4] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math., 307(2007), 1232-1244.
[5] M. Baca, Y. Lin and F. A. Muntaner-Batle, Edge-antimagic labeling of forests, Utilitas Math., 81(2010), 31-40.
[6] E. T. Baskoro and A. A. G. Ngurah, On super edge-magic total labelings, Bull. Inst. Combin. Appl, 37(2003), 82-87.
[7] E. T. Baskoro, I.W. Sudarsana and Y. M. Cholily, How to construct new super edge-magic graphs from some old ones, J. Indones. Math. Soc. (MIHIM), 11:2 (2005), 155-162.
[8] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringle, Super edge-magic graphs, SUT J. Math., 34 (1980), 105-109.
[9] R. M. Figueroa-Centeno, R. Ichishima, and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, Discrete Math., 231(2001), 153-168.
[10] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge-magic graph, Ars Combin., 64 (2002), 81-95.
[11] J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., 17(2014).
[12] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13(1970), 451-461.
[13] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal, 1972, CRM-175.
[14] S. M. Lee and Q. X. Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale, University Southern Illinois, November, 2002.
[15] A. A. G. Ngurah, R. Simanjuntak and E. T. Baskoro, On (super) edge-magic total labeling of subdivision of $K_{1,3}$, SUT J. Math., 43(2007), 127-136.
[16] A. Raheem, On super (a, d)-edge-antimagic total labeling of a subdivided stars, Ars Combin., in press.
[17] A. Raheem, A. Q. Baig, Edge Antimagic Total Labeling of Subdivision of Caterpillar, Science International Journal, in press.
[18] A. Raheem, M. Javaid and A. Q. Baig, On edge antimagicness of a subdivided stars, Discussion Mathematicae Graph Theory, 35(2015), 663-673.
[19] A. N. M. Salman, A. A. G. Ngurah and N. Izzati, On Super Edge-Magic Total Labeling of a Subdivision of a Star $S_{n},(2007)$ Utilitas Mthematica, 81(2010), 275-284.
[20] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms, 2000, 179-189.
[21] K.A. Sugeng, M. Miller, Slamin, and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lecture Notes Comput. Sci., 3330(2005), 169-180.
[22] D. B. West, An Introduction to Graph Theory, Prentice-Hall, 1996.

[^0]: \ddagger The research contents of this paper is partially supported by COMSATS Institute of Information Technology, Islamabad, Pakistan.

