International Journal of Mathematics and Soft Computing Vol.6, No.1 (2016), 107 - 120.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

Some Properties of Operations on $\alpha O(X)$

Alias B. Khalaf¹, Hariwan Z. Ibrahim²

¹ Department of Mathematics Faculty of Science, University of Duhok Kurdistan-Region, Iraq. aliasbkhalaf@gmail.com

² Department of Mathematics Faculty of Science, University of Zakho Kurdistan-Region, Iraq. hariwan_math@yahoo.com

Abstract

In this paper, we introduce the notions of α_{γ} -interior, α_{γ} -neighbourhood, α_{γ} -derived, α_{γ} boundary, α_{γ} -kernel and α - γ -g.closed set defined by γ -operation on $\alpha O(X)$ and investigate some of their properties.

Keywords: operation, α -open set, α_{γ} -open set. AMS Subject Classification(2010): Primary: 54A05, 54A10; Secondary: 54C05.

1 Introduction

The notion of α -open sets was introduced by Nj*a*stad [6] and he denoted the family of all α -open sets in a topological space (X, τ) by $\alpha O(X, \tau)$ or $\alpha O(X)$. Ibrahim [1] defined the concept of an operation on $\alpha O(X)$ and introduced the notion of α_{γ} -open sets. Kasahara [2] defined the concept of an operation on topological spaces and introduced α -closed graphs of an operation. Ogata [7] called the operation α as γ operation and introduced the notion of τ_{γ} which is the collection of all γ -open sets in a topological space (X, τ) . The aim of this paper is to continue the study of topological properties by means of operations on $\alpha O(X)$.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be α -open [6] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is said to be α -closed. The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha Cl(A)$. An operation $\gamma : \alpha O(X, \tau) \to P(X)$ [1] is a mapping satisfying the condition, $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X, \tau)$. A subset A of X is called an α_{γ} -open set [1] if for each point $x \in A$, there exists an α -open set U of X containing xsuch that $U^{\gamma} \subseteq A$. The complement of an α_{γ} -open set is said to be α_{γ} -closed. We denote the set of all α_{γ} -open (resp., α_{γ} -closed) sets of (X, τ) by $\alpha O(X, \tau)_{\gamma}$ (resp., $\alpha C(X, \tau)_{\gamma}$). The α_{γ} -closure [1] of a subset A of X with an operation γ on $\alpha O(X)$ is denoted by $\alpha_{\gamma} Cl(A)$ and is defined to be the intersection of all α_{γ} -closed sets containing A. A point $x \in X$ is in αCl_{γ} -closure [1] of a set $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$ for each α -open set U containing x. The αCl_{γ} -closure of A is denoted by $\alpha Cl_{\gamma}(A)$. An operation γ on $\alpha O(X, \tau)$ is said to be α -open [1] if for every α -open set U of X containing $x \in X$, there exists an α_{γ} -open set V of X such that $x \in V$ and $V \subseteq U^{\gamma}$.

3 Some Properties of γ -operations on $\alpha O(X)$

Definition 3.1. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. A point $a \in A \subseteq X$ is said to be α_{γ} -interior point of A if there exists an α -open set N of X containing a such that $N^{\gamma} \subseteq A$. We denote the set of all such points by $\alpha Int_{\gamma}(A)$. Thus $\alpha Int_{\gamma}(A) = \{x \in A : x \in N \in \alpha O(X) \text{ and } N^{\gamma} \subseteq A\} \subseteq A$.

Theorem 3.2. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If A and B are two subsets of X, then the following statements are true:

- 1. If $A \subseteq B$, then $\alpha Int_{\gamma}(A) \subseteq \alpha Int_{\gamma}(B)$.
- 2. $\alpha Int_{\gamma}(A) \cup \alpha Int_{\gamma}(B) \subseteq \alpha Int_{\gamma}(A \cup B).$
- 3. If γ is α -regular, then $\alpha Int_{\gamma}(A) \cap \alpha Int_{\gamma}(B) = \alpha Int_{\gamma}(A \cap B)$.

Proof: Follows from Definition 3.1 and 2.14 [1].

Theorem 3.3. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If A is a subset of X, then

- 1. $\alpha Int_{\gamma}(X \setminus A) = X \setminus \alpha Cl_{\gamma}(A).$
- 2. $\alpha Cl_{\gamma}(X \setminus A) = X \setminus \alpha Int_{\gamma}(A).$
- 3. $\alpha Int_{\gamma}(A) = X \setminus \alpha Cl_{\gamma}(X \setminus A).$
- 4. $\alpha Cl_{\gamma}(A) = X \setminus \alpha Int_{\gamma}(X \setminus A).$

Proof: We prove (1) only and the other parts can be proved similarly.

Let $x \in \alpha Int_{\gamma}(X \setminus A)$, then there exists an α -open sets U containing x such that $U^{\gamma} \subseteq X \setminus A$. This implies that $U^{\gamma} \cap A = \phi$. This gives that $x \notin \alpha Cl_{\gamma}(A)$ and so $x \in X \setminus \alpha Cl_{\gamma}(A)$.

Conversely, let $x \in X \setminus \alpha Cl_{\gamma}(A)$ implies that $x \notin \alpha Cl_{\gamma}(A)$, then there exists an α -open sets V containing x such that $V^{\gamma} \cap A = \phi$ implies that $x \in V \subseteq V^{\gamma} \subseteq X \setminus A$. It follows that $x \in \alpha Int_{\gamma}(X \setminus A)$.

The proof of the following theorem is obvious and hence omitted.

108

Theorem 3.4. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then for $A \subseteq X$, we have

- 1. $\alpha Int_{\gamma}(A)$ is an α -open set.
- 2. A is α_{γ} -open if and only if $\alpha Int_{\gamma}(A) = A$.

Theorem 3.5. If a subset A of X is α_{γ} -open, then there exists an α -open set O such that $O \subseteq A \subseteq O^{\gamma}$.

Proof: If A is an α_{γ} -open set, then $\alpha Int_{\gamma}(A) = A$. By taking $O = \alpha Int_{\gamma}(A)$, we obtain that $O \subseteq A \subseteq O^{\gamma}$.

Definition 3.6. [3] A topological space (X, τ) is said to be α_{γ} -regular if for each $x \in X$ and for each α -open set V in X containing x, there exists an α -open set U in X containing x such that $U^{\gamma} \subseteq V$.

Theorem 3.7. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then the following statements are equivalent.

- 1. $\alpha O(X, \tau) = \alpha O(X, \tau)_{\gamma}$.
- 2. (X, τ) is an α_{γ} -regular space.
- 3. For every $x \in X$ and every α -open set U of X containing x there exists an α_{γ} -open set W of X such that $x \in W$ and $W \subseteq U$.

Proof: (1) \Rightarrow (2): Let $x \in X$ and V be an α -open set containing x. Then by assumption, V is an α_{γ} -open set. This implies that for each $x \in V$, there exists an α -open set U such that $U^{\gamma} \subseteq V$. Therefore (X, τ) is an α_{γ} -regular space.

(2) \Rightarrow (3): Let $x \in X$ and U be an α -open set containing x. Then by (2), there is an α -open set W containing x and $W \subseteq W^{\gamma} \subseteq U$. Applying (2) to set W shows that W is α_{γ} -open. Hence W is an α_{γ} -open set containing x such that $W \subseteq U$.

 $(3) \Rightarrow (1)$: By (3) and [[1], Proposition 2.13], it follows that every α -open set is α_{γ} -open, that is, $\alpha O(X, \tau) \subseteq \alpha O(X, \tau)_{\gamma}$. Also from [[1], Remark 2.6], $\alpha O(X, \tau)_{\gamma} \subseteq \alpha O(X, \tau)$. Hence we have the result.

Remark 3.8. For any topological space (X, τ) , we have

- 1. If $\alpha O(X)$ is indiscrete, then $\alpha O(X)_{\gamma}$ is also indiscrete.
- 2. If $\alpha O(X)_{\gamma}$ is discrete, then $\alpha O(X)$ is discrete.

Remark 3.9. Let (X, τ) be a topological space and $x \in X$. If $\{x\} \in \alpha O(X)_{\gamma}$, then $\{x\}^{\gamma} = \{x\}$.

Definition 3.10. Let (X, τ) be a topological space and $x \in X$, then a subset N of X is said to be α_{γ} -neighbourhood (resp., α -neighbourhood [4]) of x, if there exists an α_{γ} -open (resp., α -open) set U in X such that $x \in U \subseteq N$.

Proposition 3.11. In a topological space (X, τ) , a subset A of X is α_{γ} -open if and only if it is an α_{γ} -neighbourhood of each of its points.

Proof: Let $A \subseteq X$ be an α_{γ} -open set, since for every $x \in A$, $x \in A \subseteq A$ and A is α_{γ} -open. This shows A is an α_{γ} -neighbourhood of each of its points.

Conversely, suppose that A is an α_{γ} -neighbourhood of each of its points. Then for each $x \in A$, there exists $B_x \in \alpha O(X)_{\gamma}$ such that $B_x \subseteq A$. Then $A = \bigcup \{B_x : x \in A\}$. Since each B_x is α_{γ} -open. It follows that A is α_{γ} -open set.

Proposition 3.12. If $A \subseteq B$ in a topological space (X, τ) and A is an α_{γ} -neighbourhood of a point $x \in X$, then B is also α_{γ} -neighbourhood of the same point x.

Proof: Obvious.

Remark 3.13. Since every α_{γ} -open set is α -open, then every α_{γ} -neighbourhood of a point is an α -neighbourhood of the same point.

Definition 3.14. Let A be a subset of a topological space (X, τ) and γ be an operation on $\alpha O(X)$. The union of all α_{γ} -open sets contained in A is called the α_{γ} -interior of A and denoted by $\alpha_{\gamma} Int(A)$.

Theorem 3.15. Let (X, τ) be a topological space and γ be an operation on $\alpha O(X)$. For any subsets A, B of X we have the following:

- 1. $\alpha_{\gamma} Int(A)$ is an α_{γ} -open set in X.
- 2. A is α_{γ} -open if and only if $A = \alpha_{\gamma} Int(A)$.
- 3. $\alpha_{\gamma}Int(\alpha_{\gamma}Int(A)) = \alpha_{\gamma}Int(A).$
- 4. $\alpha_{\gamma}Int(\phi) = \phi$ and $\alpha_{\gamma}Int(X) = X$.
- 5. $\alpha_{\gamma}Int(A) \subseteq A$.
- 6. If $A \subseteq B$, then $\alpha_{\gamma} Int(A) \subseteq \alpha_{\gamma} Int(B)$.
- 7. $\alpha_{\gamma}Int(A \cup B) \supseteq \alpha_{\gamma}Int(A) \cup \alpha_{\gamma}Int(B).$
- 8. $\alpha_{\gamma}Int(A \cap B) \subseteq \alpha_{\gamma}Int(A) \cap \alpha_{\gamma}Int(B).$

Proof: Straight forward.

Definition 3.16. Let (X, τ) be a topological space with an operation γ on $\alpha O(X)$. A point $x \in X$ is said to be α_{γ} -limit point of a set A if for each α_{γ} -open set U containing x, then $U \cap (A \setminus \{x\}) \neq \phi$. The set of all α_{γ} -limit points of A is called an α_{γ} -derived set of A and is denoted by $\alpha_{\gamma}D(A)$.

Some properties of α_{γ} -derived sets are stated in the following proposition.

Proposition 3.17. Let A, B be any two subsets of a space X, and γ be an operation on $\alpha O(X)$. Then we have the folloing properties:

- 1. $\alpha_{\gamma} D(\phi) = \phi$.
- 2. If $x \in \alpha_{\gamma} D(A)$, then $x \in \alpha_{\gamma} D(A \setminus \{x\})$.
- 3. $\alpha_{\gamma}D(A \cup B) \supseteq \alpha_{\gamma}D(A) \cup \alpha_{\gamma}D(B).$
- 4. $\alpha_{\gamma}D(A \cap B) \subseteq \alpha_{\gamma}D(A) \cap \alpha_{\gamma}D(B).$
- 5. $\alpha_{\gamma} D(\alpha_{\gamma} D(A)) \setminus A \subseteq \alpha_{\gamma} D(A).$
- 6. $\alpha_{\gamma} D(A \cup \alpha_{\gamma} D(A)) \subseteq A \cup \alpha_{\gamma} D(A).$

Proof: Obvious.

The proofs of Propositions 3.18 and 3.19 are clear.

Proposition 3.18. A subset A of a topological space X is α_{γ} -closed if and only if it contains the set of its α_{γ} -limit points.

Proposition 3.19. Let A be any subset of a topological space (X, τ) and γ be an operation on $\alpha O(X)$, then $\alpha_{\gamma} Cl(A) = A \cup \alpha_{\gamma} D(A)$.

Proposition 3.20. Let A be any subset of a topological space (X, τ) and γ be an operation on $\alpha O(X)$. Then $\alpha_{\gamma} Int(A) = A \setminus \alpha_{\gamma} D(X \setminus A)$.

Proof: If $x \in A \setminus \alpha_{\gamma} D(X \setminus A)$, then $x \notin \alpha_{\gamma} D(X \setminus A)$ and so there exists an α_{γ} -open set U containing x such that $U \cap (X \setminus A) = \phi$. Then $x \in U \subseteq A$ and hence $x \in \alpha_{\gamma} Int(A)$, that is $A \setminus \alpha_{\gamma} D(X \setminus A) \subseteq \alpha_{\gamma} Int(A)$. On the other hand, if $x \in \alpha_{\gamma} Int(A)$, then $x \notin \alpha_{\gamma} D(X \setminus A)$ since $\alpha_{\gamma} Int(A)$ is α_{γ} -open and $\alpha_{\gamma} Int(A) \cap (X \setminus A) = \phi$. Hence $\alpha_{\gamma} Int(A) = A \setminus \alpha_{\gamma} D(X \setminus A)$.

Proposition 3.21. Let A be any subset of a topological space (X, τ) and γ be an operation on $\alpha O(X)$. Then the following statements are true:

- 1. $X \setminus \alpha_{\gamma} Int(A) = \alpha_{\gamma} Cl(X \setminus A).$
- 2. $X \setminus \alpha_{\gamma} Cl(A) = \alpha_{\gamma} Int(X \setminus A).$

- 3. $\alpha_{\gamma}Int(A) = X \setminus \alpha_{\gamma}Cl(X \setminus A).$
- 4. $\alpha_{\gamma}Cl(A) = X \setminus \alpha_{\gamma}Int(X \setminus A).$

Proof: We only prove (1), the other parts can be proved similarly.

 $X \setminus \alpha_{\gamma} Int(A) = X \setminus (A \setminus \alpha_{\gamma} D(X \setminus A)) = (X \setminus A) \cup \alpha_{\gamma} D(X \setminus A) = \alpha_{\gamma} Cl(X \setminus A).$

Definition 3.22. Let A be a subset of a space X, then the α_{γ} -boundary of A is defined as $\alpha_{\gamma}Cl(A) \setminus \alpha_{\gamma}Int(A)$ and is denoted by $\alpha_{\gamma}Bd(A)$.

Some properties of α_{γ} -boundary sets are stated in the following proposition.

Proposition 3.23. Let A be any subset of a topological space (X, τ) and γ be an operation on $\alpha O(X)$. Then the following statements hold:

- 1. $\alpha_{\gamma}Cl(A) = \alpha_{\gamma}Int(A) \cup \alpha_{\gamma}Bd(A).$
- 2. $\alpha_{\gamma}Int(A) \cap \alpha_{\gamma}Bd(A) = \phi$.
- 3. $\alpha_{\gamma}Bd(A) = \alpha_{\gamma}Cl(A) \cap \alpha_{\gamma}Cl(X \setminus A).$
- 4. $\alpha_{\gamma}Bd(A) = \alpha_{\gamma}Bd(X \setminus A).$
- 5. $\alpha_{\gamma}Bd(A)$ is an α_{γ} -closed set.

Proof: Obvious.

Definition 3.24. Let (X, τ) be a topological space. A mapping $\gamma : \alpha O(X) \to P(X)$ is said to be:

- 1. α -monotone on $\alpha O(X)$ if for all $A, B \in \alpha O(X), A \subseteq B$ implies $A^{\gamma} \subseteq B^{\gamma}$.
- 2. α -idempotent on $\alpha O(X)$ if $A^{\gamma\gamma} = A^{\gamma}$ for all $A \in \alpha O(X)$.
- 3. α -additive on $\alpha O(X)$ if $(A \cup B)^{\gamma} = A^{\gamma} \cup B^{\gamma}$ for all $A, B \in \alpha O(X)$.

If $\bigcup_{i \in I} A_i^{\gamma} \subseteq (\bigcup_{i \in I} A_i)^{\gamma}$ for any collection $\{A_i\}_{i \in I} \subseteq \alpha O(X)$, then γ is said to be α -subadditive on $\alpha O(X)$.

Proposition 3.25. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then, γ is α -monotone on $\alpha O(X)$ if and only if γ is α -subadditive on $\alpha O(X)$.

Proof: Let γ be α -monotone on $\alpha O(X)$ and $\{A_i\}_{i \in I} \subseteq \alpha O(X)$. Then for each $i \in I$, $A_i^{\gamma} \subseteq (\bigcup_{i \in I} A_i)^{\gamma}$ and thus $\bigcup_{i \in I} A_i^{\gamma} \subseteq (\bigcup_{i \in I} A_i)^{\gamma}$.

Conversely, if γ is α -subadditive on $\alpha O(X)$ and $A, B \in \alpha O(X)$ with $A \subseteq B$, then $A^{\gamma} \subseteq A^{\gamma} \cup B^{\gamma} \subseteq (A \cup B)^{\gamma} = B^{\gamma}$. Thus γ is α -monotone on $\alpha O(X)$.

Remark 3.26. The α -regularity of operation γ in [1] follows from the α -monotonicity of operation γ .

Remark 3.27. It is easy to verify that if γ is α -additive on $\alpha O(X)$ then γ is α -monotone on $\alpha O(X)$.

The following result shows that the family of α_{γ} -open sets may be a topology on X.

Theorem 3.28. Let (X, τ) be a topological space. If γ is an α -monotone operation on $\alpha O(X)$, then the family of α_{γ} -open is a topology on X.

Proof: Clearly $\phi, X \in \alpha O(X)_{\gamma}$ and by [[1], Theorem 2.11], the union of any family of α_{γ} -open sets is α_{γ} -open. To complete the proof it is enough to show that the finite intersection of α_{γ} -open sets is α_{γ} -open. Let A and B be two α_{γ} -open sets and let $x \in A \cap B$, then $x \in A$ and $x \in B$, so there exist α -open sets U and V such that $x \in U \subseteq U^{\gamma} \subseteq A$ and $x \in V \subseteq V^{\gamma} \subseteq B$, since γ is an α -monotone operation and $U \cap V$ is α -open set such that $U \cap V \subseteq U$ and $U \cap V \subseteq V$, this implies that $(U \cap V)^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma} \subseteq A \cap B$. Thus $A \cap B$ is α_{γ} -open set. This completes the proof.

Theorem 3.29. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If $(\bigcup_{i \in I} W_i)^{\gamma} \subseteq \bigcup_{i \in I} W_i^{\gamma}$ for any collection $\{W_i\}_{i \in I} \subseteq \alpha O(X)$, then for every α_{γ} -open set U we have $U^{\gamma} = U$.

Proof: Let U be an α_{γ} -open set. Then for every $x \in U$ there exists an α -open set W containing x such that $W \subseteq W^{\gamma} \subseteq U$. Therefore $\bigcup_{x \in U} W \subseteq \bigcup_{x \in U} W^{\gamma} \subseteq U$, so $\bigcup_{x \in U} W \subseteq (\bigcup_{x \in U} W)^{\gamma} \subseteq U$. Therefore, $U \subseteq U^{\gamma} \subseteq U$ and so $U^{\gamma} = U$.

Theorem 3.30. For any operation γ on $\alpha O(X)$, the map $\alpha_{\gamma}Cl : \alpha O(X) \to P(X)$ is an operation on $\alpha O(X)$ satisfying (1) and (2) of Definition 3.24, but not (3).

Proof: By [[1], Theorem 2.22 (5)], $\alpha_{\gamma}Cl$ is an α -monotone on $\alpha O(X)$. We show that $\alpha_{\gamma}Cl$ is α -idempotent on $\alpha O(X)$. Given $A \in \alpha O(X)$, it is obvious that $\alpha_{\gamma}Cl(A) \subseteq \alpha_{\gamma}Cl(\alpha_{\gamma}Cl(A))$. Let $x \in \alpha_{\gamma}Cl(\alpha_{\gamma}Cl(A))$ and V be any α_{γ} -open set containing x, then by [[1], Theorem 2.23], there is $z \in V \cap \alpha_{\gamma}Cl(A)$. Since $z \in \alpha_{\gamma}Cl(A)$ and V is an α_{γ} -open set containing z, we have that $V \cap A \neq \phi$, thus $x \in \alpha_{\gamma}Cl(A)$. Therefore $\alpha_{\gamma}Cl(\alpha_{\gamma}Cl(A)) \subseteq \alpha_{\gamma}Cl(A)$ and hence $\alpha_{\gamma}Cl(\alpha_{\gamma}Cl(A)) = \alpha_{\gamma}Cl(A)$.

In general, $\alpha_{\gamma}Cl$ is not an α -additive operation on $\alpha O(X)$ as shown in the following example.

Example 3.31. let $X = \{a, b, c\}$ equipped with the discrete topology on X. We define an operation γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \\ X & \text{otherwise.} \end{cases}$$

Then, the α_{γ} -open subsets of (X, τ) are ϕ , $\{a, b\}$, $\{a, c\}$ and X. Now, if we let $A = \{b\}$ and $B = \{c\}$, then $\alpha_{\gamma}Cl(A) = A$, $\alpha_{\gamma}Cl(B) = B$ and $\alpha_{\gamma}Cl(A \cup B) = X$, where $A \cup B = \{b, c\}$, this implies that $\alpha_{\gamma}Cl(A \cup B) = X \neq \{b, c\} = \alpha_{\gamma}Cl(A) \cup \alpha_{\gamma}Cl(B)$.

Suppose that A is a subset of a topological space (X, τ) , then we have the following properties:

Theorem 3.32. Let $\gamma : \alpha O(X) \to P(X)$ be an operation on $\alpha O(X)$, A and B subsets of a topological space (X, τ) . Then, we have the following properties:

- 1. $A \subseteq \alpha Cl_{\gamma}(A)$.
- 2. $\alpha Cl_{\gamma}(\phi) = \phi$ and $\alpha Cl_{\gamma}(X) = X$.
- 3. A is α_{γ} -closed (that is, $X \setminus A$ is α_{γ} -open) in (X, τ) if and only if $\alpha Cl_{\gamma}(A) = A$ holds.
- 4. If $A \subseteq B$, then $\alpha Cl_{\gamma}(A) \subseteq \alpha Cl_{\gamma}(B)$.
- 5. $\alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B) \subseteq \alpha Cl_{\gamma}(A \cup B)$ holds.
- 6. If γ is α -regular, then $\alpha Cl_{\gamma}(A \cup B) = \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$ holds.
- 7. $\alpha Cl_{\gamma}(A \cap B) \subseteq \alpha Cl_{\gamma}(A) \cap \alpha Cl_{\gamma}(B)$ holds.

Proof: (1), (2), (4): Obviously, by [[1], Definition 2.20], we have $A \subseteq \alpha Cl_{\gamma}(A)$.

(3): Suppose that $X \setminus A$ is α_{γ} -open in (X, τ) . We claim that $\alpha Cl_{\gamma}(A) \subseteq A$. Let $x \notin A$. There exists an α -open set U containing x such that $U^{\gamma} \subseteq X \setminus A$, that is, $U^{\gamma} \cap A = \phi$. Hence, using [[1], Definition 2.20], we have $x \notin \alpha Cl_{\gamma}(A)$ and so $\alpha Cl_{\gamma}(A) \subseteq A$. By (1), it is proved that $A = \alpha Cl_{\gamma}(A)$.

Conversely, suppose that $A = \alpha Cl_{\gamma}(A)$. Let $x \in X \setminus A$. Since $x \notin \alpha Cl_{\gamma}(A)$, there exists an α -open set U containing x such that $U^{\gamma} \cap A = \phi$, that is, $U^{\gamma} \subseteq X \setminus A$. Namely, $X \setminus A$ is α_{γ} -open in (X, τ) and so A is α_{γ} -closed.

(5), (7): Followed from (4).

(6): Let $x \notin \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$. Then, there exist two α -open sets U and V containing x such that $U^{\gamma} \cap A = \phi$ and $V^{\gamma} \cap B = \phi$. By [[1], Definition 2.14], there exists an α -open set W containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. Thus, we have that $W^{\gamma} \cap (A \cup B) \subseteq (U^{\gamma} \cap V^{\gamma}) \cap (A \cup B) \subseteq [U^{\gamma} \cap A] \cup [V^{\gamma} \cap B] = \phi$, that is, $W^{\gamma} \cap (A \cup B) = \phi$. Namely, we have $x \notin \alpha Cl_{\gamma}(A \cup B)$ and so $\alpha Cl_{\gamma}(A \cup B) \subseteq \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$. We can obtain (6) by using (5).

Theorem 3.33. Let (X, τ) be a topological space and γ an α -monotone operation on $\alpha O(X)$. If A is a subset of X, then

1. For every α_{γ} -open set G of X, we have that $\alpha Cl_{\gamma}(A) \cap G \subseteq \alpha Cl_{\gamma}(A \cap G)$.

2. For every α_{γ} -closed set F of X, we have that $\alpha Int_{\gamma}(A \cup F) \subseteq \alpha Int_{\gamma}(A) \cup F$.

Proof: (1) Let $x \in \alpha Cl_{\gamma}(A) \cap G$ and let U be an α -open set containing x. Since $x \in \alpha Cl_{\gamma}(A)$, implies that $U^{\gamma} \cap A \neq \phi$. Since G is an α_{γ} -open set, there exists an α -open set V of X containing x such that $V^{\gamma} \subseteq G$. Thus $(U \cap V)^{\gamma} \cap A \neq \phi$, this implies that $U^{\gamma} \cap (A \cap G) \neq \phi$ by α -monotone and hence $x \in \alpha Cl_{\gamma}(A \cap G)$. Therefore $\alpha Cl_{\gamma}(A) \cap G \subseteq \alpha Cl_{\gamma}(A \cap G)$.

(2) Follows from (1) and Theorem 3.3 (3).

The following example shows that the condition γ is α -monotone is necessary for the above theorem.

Example 3.34. Consider $X = \{a, b, c\}$ with the discrete topology on X. We define an operation γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\} \\ X & \text{otherwise.} \end{cases}$$

Since γ is not α -monotone, so if we let $A = \{a, c\}$ and $G = \{b, c\}$, then $\alpha Cl_{\gamma}(A) = X$ and $\alpha Cl_{\gamma}(A) \cap G = \{b, c\}$, this implies that $\alpha Cl_{\gamma}(A) \cap G = \{b, c\} \not\subseteq \alpha Cl_{\gamma}(A \cap G) = \alpha Cl_{\gamma}(\{c\}) = \{c\}$.

Remark 3.35. Let (X, τ) be a topological space and γ an α -regular operation on $\alpha O(X)$. If A is a subset of X, then

- 1. For every α_{γ} -open set G of X, we have $\alpha_{\gamma}Cl(A) \cap G \subseteq \alpha_{\gamma}Cl(A \cap G)$.
- 2. For every α_{γ} -closed set F of X, we have $\alpha_{\gamma}Int(A \cup F) \subseteq \alpha_{\gamma}Int(A) \cup F$.

Theorem 3.36. Let (X, τ) be a topological space, N a subset of X and γ an α -open operation on $\alpha O(X)$. Then, $\alpha Int_{\gamma}(\alpha Cl_{\gamma}(N)) = \phi$ if and only if any one of the following conditions hold:

- 1. $\alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N)) = X.$
- 2. $N \subseteq \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N)).$

Proof: (1) $\alpha Int_{\gamma}(\alpha Cl_{\gamma}(N)) = \phi$ if and only if $X \setminus \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N)) = \phi$ by Theorem 3.3 (3) if and only if $X \subseteq \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$ if and only if $X = \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$.

(2) $N \subseteq X = \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$ by (1). Conversely, $N \subseteq \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$, implies that $\alpha Cl_{\gamma}(N) \subseteq \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$ by [[1], Theorem 2.26 (2)]. Since $X = \alpha Cl_{\gamma}(N) \cup (X \setminus \alpha Cl_{\gamma}(N))$, implies that $X \subseteq \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N)) \cup (X \setminus \alpha Cl_{\gamma}(N)) = \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$. Hence $X = \alpha Cl_{\gamma}(X \setminus \alpha Cl_{\gamma}(N))$.

Theorem 3.37. Let (X, τ) be a topological space, N a subset of X and γ be both α -regular and α -open operation on $\alpha O(X)$. If $\alpha Int_{\gamma}(\alpha Cl_{\gamma}(N)) = \phi$ then every non empty α_{γ} -open set U contains a non empty α_{γ} -open set A disjoint with N. **Proof:** Given $\alpha Int_{\gamma}(\alpha Cl_{\gamma}(N)) = \phi$. This implies that $\alpha Cl_{\gamma}(N)$ does not contain any non empty α_{γ} -open set. Hence for any non empty α_{γ} -open set $U, U \cap (X \setminus \alpha Cl_{\gamma}(N)) \neq \phi$. Thus by [[1], Theorem 2.26 (2) and Proposition 2.18] $A = U \cap (X \setminus \alpha Cl_{\gamma}(N)) = U \setminus \alpha Cl_{\gamma}(N)$ is a non empty α_{γ} -open set contained in U and disjoint with N.

Definition 3.38. Let A be a subset of a topological space (X, τ) and γ an operation on $\alpha O(X)$. The α_{γ} -kernel of A, denoted by $\alpha_{\gamma} Ker(A)$ is defined to be the set $\alpha_{\gamma} Ker(A) = \cap \{V : A \subseteq V, V \in \alpha O(X, \tau)_{\gamma}\}$.

Proposition 3.39. Let (X, τ) be a topological space with an operation γ on $\alpha O(X)$ and $x \in X$. Then $y \in \alpha_{\gamma} ker(\{x\})$ if and only if $x \in \alpha_{\gamma} Cl(\{y\})$.

Proof: Suppose that $y \notin \alpha_{\gamma} ker(\{x\})$. Then there exists an α_{γ} -open set V containing x such that $y \notin V$. Therefore, we have $x \notin \alpha_{\gamma} Cl(\{y\})$. The proof of the converse case can be done similarly.

Proposition 3.40. Let (X, τ) be a topological space with an operation γ on $\alpha O(X)$ and A be a subset of X. Then, $\alpha_{\gamma} ker(A) = \{x \in X : \alpha_{\gamma} Cl(\{x\}) \cap A \neq \phi\}.$

Proof: Let $x \in \alpha_{\gamma} ker(A)$ and suppose $\alpha_{\gamma} Cl(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus \alpha_{\gamma} Cl(\{x\})$ which is an α_{γ} -open set containing A. This is impossible, since $x \in \alpha_{\gamma} ker(A)$. Consequently, $\alpha_{\gamma} Cl(\{x\}) \cap A \neq \phi$. Let $x \in X$ such that $\alpha_{\gamma} Cl(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \alpha_{\gamma} ker(A)$. Then, there exists an α_{γ} -open set V containing A and $x \notin V$. Let $y \in \alpha_{\gamma} Cl(\{x\}) \cap A$. Hence, V is an α_{γ} -open set containing y which does not contain x. By this contradiction $x \in \alpha_{\gamma} ker(A)$ and the claim.

Proposition 3.41. The following properties hold for the subsets A, B of a topological space (X, τ) with an operation γ on $\alpha O(X)$:

- 1. $A \subseteq \alpha_{\gamma} ker(A)$.
- 2. $A \subseteq B$ implies that $\alpha_{\gamma} ker(A) \subseteq \alpha_{\gamma} ker(B)$.
- 3. If A is α_{γ} -open in (X, τ) , then $A = \alpha_{\gamma} ker(A)$.
- 4. $\alpha_{\gamma} ker(\alpha_{\gamma} ker(A)) = \alpha_{\gamma} ker(A).$

Proof: (1), (2) and (3): Immediate consequences of $\alpha_{\gamma} ker(A) = \cap \{U \in \alpha O(X)_{\gamma} : A \subseteq U\}.$

(4): First observe that by (1) and (2), we have $\alpha_{\gamma} ker(A) \subseteq \alpha_{\gamma} ker(\alpha_{\gamma} ker(A))$. If $x \notin \alpha_{\gamma} ker(A)$, then there exists $U \in \alpha O(X, \tau)_{\gamma}$ such that $A \subseteq U$ and $x \notin U$. Hence $\alpha_{\gamma} ker(A) \subseteq U$, and so we have $x \notin \alpha_{\gamma} ker(\alpha_{\gamma} ker(A))$. Thus $\alpha_{\gamma} ker(\alpha_{\gamma} ker(A)) = \alpha_{\gamma} ker(A)$. **Proposition 3.42.** The following statements are equivalent for any points x and y in a topological space (X, τ) with an operation γ on $\alpha O(X)$:

- 1. $\alpha_{\gamma} ker(\{x\}) \neq \alpha_{\gamma} ker(\{y\}).$
- 2. $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\}).$

Proof: (1) \Rightarrow (2): Suppose that $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$, then there exists a point z in X such that $z \in \alpha_{\gamma}ker(\{x\})$ and $z \notin \alpha_{\gamma}ker(\{y\})$. From $z \in \alpha_{\gamma}ker(\{x\})$ it follows that $\{x\} \cap \alpha_{\gamma}Cl(\{z\}) \neq \phi$ which implies $x \in \alpha_{\gamma}Cl(\{z\})$. By $z \notin \alpha_{\gamma}ker(\{y\})$, we have $\{y\} \cap \alpha_{\gamma}Cl(\{z\}) = \phi$. Since $x \in \alpha_{\gamma}Cl(\{z\}), \alpha_{\gamma}Cl(\{x\}) \subseteq \alpha_{\gamma}Cl(\{z\})$ and $\{y\} \cap \alpha_{\gamma}Cl(\{x\}) = \phi$. Therefore, it follows that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. Now $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$ implies that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$.

(2) \Rightarrow (1): Suppose that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. Then there exists a point z in X such that $z \in \alpha_{\gamma}Cl(\{x\})$ and $z \notin \alpha_{\gamma}Cl(\{y\})$. Then, there exists an α_{γ} -open set containing z and therefore x but not y, namely, $y \notin \alpha_{\gamma}ker(\{x\})$ and thus $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$.

Proposition 3.43. Let (X, τ) be a topological space and γ be an operation on $\alpha O(X)$. Then, $\cap \{\alpha_{\gamma} Cl(\{x\}) : x \in X\} = \phi$ if and only if $\alpha_{\gamma} ker(\{x\}) \neq X$ for every $x \in X$.

Proof: Necessity, suppose that $\cap \{\alpha_{\gamma}Cl(\{x\}) : x \in X\} = \phi$. Assume that there is a point y in X such that $\alpha_{\gamma}ker(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every α_{γ} -open set V containing y and hence $y \in \alpha_{\gamma}Cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{\alpha_{\gamma}Cl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency, assume that $\alpha_{\gamma} ker(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap\{\alpha_{\gamma}Cl(\{x\}) : x \in X\}$, then every α_{γ} -open set containing y must contain every point of X. This implies that the space X is the unique α_{γ} -open set containing y. Hence $\alpha_{\gamma} ker(\{y\}) = X$ which is a contradiction. Therefore, $\cap\{\alpha_{\gamma}Cl(\{x\}) : x \in X\} = \phi$.

Definition 3.44. [1] A subset A of a topological space (X, τ) is called an $\alpha_{\gamma}D$ -set if there are two $U, V \in \alpha O(X, \tau)_{\gamma}$ such that $U \neq X$ and $A = U \setminus V$.

Proposition 3.45. If a singleton $\{x\}$ is an $\alpha_{\gamma}D$ -set of (X, τ) , then $\alpha_{\gamma}ker(\{x\}) \neq X$.

Proof: Since $\{x\}$ is an $\alpha_{\gamma}D$ -set of (X, τ) , then there exist two subsets $U_1, U_2 \in \alpha O(X, \tau)_{\gamma}$ such that $\{x\} = U_1 \setminus U_2, \{x\} \subseteq U_1$ and $U_1 \neq X$. Thus, we have that $\alpha_{\gamma}ker(\{x\}) \subseteq U_1 \neq X$ and so $\alpha_{\gamma}ker(\{x\}) \neq X$.

Definition 3.46. A subset A of a topological space (X, τ) is said to be α - γ -generalized closed $(\alpha$ - γ -g.closed) set if $\alpha Cl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is an α_{γ} -open set of (X, τ) .

Definition 3.47. [1] A subset A of the space (X, τ) is said to be α_{γ} -generalized closed (briefly, α_{γ} -g.closed) if $\alpha_{\gamma}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an α_{γ} -open set in (X, τ) . The complement of an α_{γ} -g.closed set is called an α_{γ} -g.open set.

Definition 3.48. [5] A subset A of a topological space (X, τ) is called an (α, α) -generalized closed set (briefly, (α, α) -g-closed) if $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open.

Theorem 3.49. Let A be a subset of a topological space (X, τ) and γ an operation on $\alpha O(X)$. Then, the following statements are true:

- 1. If A is α - γ -g.closed in X, then A is (α, α) -g-closed.
- 2. If A is α_{γ} -g.closed in X, then A is α - γ -g.closed.

Proof: Follows from Theorem 2.24 [1].

Remark 3.50. By Theorem 3.49, every α_{γ} -g.closed is (α, α) -g-closed.

Remark 3.51. It is clear that every α_{γ} -closed set is α - γ -g.closed, but the converse is not true in general as shown in the following example.

Example 3.52. Let $X = \{1, 2, 3\}$ with the topology $\tau = \{\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, X\}$. We define an operation γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{2\} \text{ or } \{1,3\} \\ X & \text{otherwise.} \end{cases}$$

Now, if we let $A = \{1\}$, since the only α_{γ} -open supersets of A are $\{1,3\}$ and X, then A is α - γ -g.closed. But it is easy to see that A is not α_{γ} -closed.

Theorem 3.53. If A is α_{γ} -open and α - γ -g.closed, then A is α_{γ} -closed.

Proof: Suppose that A is α_{γ} -open and α - γ -g.closed. Since $A \subseteq A$, we have $\alpha Cl_{\gamma}(A) \subseteq A$, also $A \subseteq \alpha Cl_{\gamma}(A)$, therefore $\alpha Cl_{\gamma}(A) = A$. That is, A is α_{γ} -closed.

Theorem 3.54. Let $\gamma : \alpha O(X) \to P(X)$ be an operation on $\alpha O(X)$ and A a subset of a topological space (X, τ) . Then the following statements are equivalent:

- 1. A is α - γ -g.closed in (X, τ) .
- 2. $\alpha_{\gamma}Cl(\{x\}) \cap A \neq \phi$ for every $x \in \alpha Cl_{\gamma}(A)$.
- 3. $\alpha Cl_{\gamma}(A) \subseteq \alpha_{\gamma} Ker(A)$ holds.

Proof: (1) \Rightarrow (2): Let A be an α - γ -g.closed set of (X, τ) . Suppose that there exists a point $x \in \alpha Cl_{\gamma}(A)$ such that $\alpha_{\gamma} Cl(\{x\}) \cap A = \phi$. By [[1], Theorem 2.22 (2)], $\alpha_{\gamma} Cl(\{x\})$ is α_{γ} -closed. Put $U = X \setminus \alpha_{\gamma} Cl(\{x\})$. Then, we have $A \subseteq U, x \notin U$ and U is an α_{γ} -open set of (X, τ) . Since A is an α - γ -g.closed set, $\alpha Cl_{\gamma}(A) \subseteq U$. Thus, we have $x \notin \alpha Cl_{\gamma}(A)$. This is a contradiction. (2) \Rightarrow (3): Follows from Proposition 3.40.

(3) \Rightarrow (1): Let U be any α_{γ} -open set such that $A \subseteq U$. Let x be a point such that $x \in \alpha Cl_{\gamma}(A)$. By (3), $x \in \alpha_{\gamma} Ker(A)$ holds. Namely, we have that $x \in U$, because $A \subseteq U$ and $U \in \alpha O(X, \tau)_{\gamma}$.

Theorem 3.55. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If a subset A of X is α - γ -g.closed, then $\alpha Cl_{\gamma}(A) \setminus A$ does not contain any non-empty α_{γ} -closed set.

Proof: Suppose that there exists a non-empty α_{γ} -closed set F such that $F \subseteq \alpha Cl_{\gamma}(A) \setminus A$. Then we have $A \subseteq X \setminus F$ and $X \setminus F$ is α_{γ} -open. It follows from the assumption that $\alpha Cl_{\gamma}(A) \subseteq X \setminus F$ and so $F \subseteq (\alpha Cl_{\gamma}(A) \setminus A) \cap (X \setminus \alpha Cl_{\gamma}(A))$. Therefore, we have $F = \phi$.

Remark 3.56. In the above theorem, if γ is an α -open operation, then the converse of the above theorem is true.

Proof: Let U be an α_{γ} -open set such that $A \subseteq U$. Since γ is an α -open operation, it follows from [[1], Theorem 2.26] that $\alpha Cl_{\gamma}(A)$ is α_{γ} -closed in (X, τ) . Thus by [[1], Definition 2.2 and Theorem 2.11], we have $\alpha Cl_{\gamma}(A) \cap (X \setminus U) = F$ is α_{γ} -closed in (X, τ) . Since $X \setminus U \subseteq X \setminus A$, $F \subseteq \alpha Cl_{\gamma}(A) \setminus A$. Using the assumptions of the converse of Theorem 3.55 above, $F = \phi$ and hence $\alpha Cl_{\gamma}(A) \subseteq U$.

Theorem 3.57. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then for each $x \in X$, $\{x\}$ is α_{γ} -closed or $X \setminus \{x\}$ is α - γ -g.closed in (X, τ) .

Proof: Suppose that $\{x\}$ is not α_{γ} -closed, then $X \setminus \{x\}$ is not α_{γ} -open. Let U be any α_{γ} -open set such that $X \setminus \{x\} \subseteq U$. Then U = X. Hence, $\alpha Cl_{\gamma}(X \setminus \{x\}) \subseteq U$. Therefore, $X \setminus \{x\}$ is an α - γ -g.closed set.

Proposition 3.58. A subset A of X is α_{γ} -g.open if and only if $F \subseteq \alpha_{\gamma}Int(A)$ whenever $F \subseteq A$ and F is α_{γ} -closed in X.

Proof: Let A be α_{γ} -g.open and $F \subseteq A$ where F is α_{γ} -closed. Since $X \setminus A$ is α_{γ} -g.closed and $X \setminus F$ is an α_{γ} -open set containing $X \setminus A$ implies $\alpha_{\gamma}Cl(X \setminus A) \subseteq X \setminus F$. By Proposition 3.21 (1), $X \setminus \alpha_{\gamma}Int(A) \subseteq X \setminus F$. That is $F \subseteq \alpha_{\gamma}Int(A)$.

Conversely, suppose that F is α_{γ} -closed and $F \subseteq A$ implies $F \subseteq \alpha_{\gamma}Int(A)$. Let $X \setminus A \subseteq U$ where U is α_{γ} -open. Then $X \setminus U \subseteq A$ where $X \setminus U$ is α_{γ} -closed. By hypothesis $X \setminus U \subseteq \alpha_{\gamma}Int(A)$. That is $X \setminus \alpha_{\gamma}Int(A) \subseteq U$. By Proposition 3.21 (1), $\alpha_{\gamma}Cl(X \setminus A) \subseteq U$. This implies $X \setminus A$ is α_{γ} -g.closed and A is α_{γ} -g.open.

References

- [1] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, Acta Scientiarum. Technology, 35 (3) (2013), 539-545.
- [2] S. Kasahara, Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [3] A. B. Khalaf, Saeid Jafari and H. Z. Ibrahim, *Bioperations on* α -open sets in topological spaces, International Journal of Pure and Applied Mathematics, 103 (4) (2015), 653-666.
- [4] S. N. Maheshwari and S. S. Thakur, On α-compact spaces, Bull. Inst. Math. Acad. Sinica, 13 (1985), 341-347.
- [5] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- [6] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [7] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.