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Abstract

The concept of edge rotations and distance between graphs was introduced by Gary
Chartrand et al. A graph G can be transformed into a graph H by an edge rotation if G

contains distinct vertices u,v and w such that uv ∈ E(G), uw /∈ E(G) and H ∼= G−uv+uw.
In this paper we consider rotations on some snake related graphs followed by some general
results.
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1 Introduction

Unless mentioned otherwise, for terminology and notation the reader may refer Buckley
and Harary [2] and Chartrand and Zhang [5], new ones will be introduced as and when found
necessary.

In this paper, by a graph G, we mean a simple, undirected, connected graph without self-
loops. The order and size are respectively the number of vertices denoted by n and the number
of edges denoted by m.

The distance d(u, v) between any two vertices u and v, of G, is the length of a shortest path
between u and v. The eccentricity e(u) of a vertex u is the distance to a farthest vertex from u.
The maximum and the minimum eccentricity amongst the vertices of G are respectively called
the diameter diam(G) and radius rad(G). If d(u, v) = e(u), (v 6= u) then we say that v is an
eccentric vertex of u.

The distance between isomorphism classes of graphs was introduced by Zelinka in [14] which
was also studied for trees by Zelinka in [15].‘Edge Rotations’ or the concept of rotation between
edges of the graphs and the distance between such graphs was introduced by Chartrand et al.
[3] which were based on [14] and [15]. A graph G can be transformed into a graph H by an
edge rotation given by H ∼= G− uv + uw where u, v and w are distinct vertices of G such that
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uv ∈ E(G) and uw /∈ E(G). Later, Zelinka [16] gave a comparison of various distances for the
isomorphism classes of graphs and trees, which was based on the concept of edge rotations.

Zelinka studied various aspects by using the concept of distance between graphs and edge
rotations in [17], [18] and [19].

The rotation distance between graphs G and H is denoted by dr(G, H), if there exists a
sequence of graphs G1, G2, . . . , Gk−1 such that G1 is obtained by an edge rotation on G, and
for each 1 ≤ i ≤ k, Gi+1 is obtained by an edge rotation on Gi, with H obtained from Gk−1 by
one edge rotation. In this case we denote the rotation distance from G to H as dr(G, H) and
it is equal to k.

Definition 1.1. [3] Let S = { G1, G2, . . ., Gk } be a set of graphs all of the same order and
the same size. Then the rotation distance graph D(S) of S has S as its vertex set and vertices
(graphs) Gi and Gj are adjacent if dr(Gi,Gj) = 1, where dr(Gi, Gj) is the rotation distance
between Gi and Gj .
A graph G is an edge rotation distance graph(ERDG) (or r - distance graph) if G ∼= D(S) for
some set S of graphs.

In 1990, Chartrand et al. [4] showed that the cycles, the complete bipartite graphs K3,3,
and K2,p (p ≥ 1) are edge rotation distance graphs. In 1997, Jarrett [10] gave a proof using
different technique and showed complete graphs, trees, wheel (W1,n) and the complete bipartite
graph Km,n (3 ≤ m ≤ n) are edge rotation distance graphs. In [8], Huilgol et al. showed that
the generalized Petersen graph, Gp(n, 1), the generalized star, K(1,n) are edge rotation distance
graphs.

In this paper we consider the edge rotations on ladder graph, triangular snake, quadrilateral
snake, double triangular snake, double quadrilateral snake, alternate triangular snake, alternate
quadrilateral snake. A triangular snake is a connected graph in which all blocks are triangles
and the block cut point graph is a path[12]. Since these graphs contain cycles as subgraphs,
to generate them we use the method used by Jarrett [10] with slight modifications to prove all
of the above specified graphs are Edge Rotation Distance Graphs(ERDG). Here the number of
vertices and edges are denoted by n′ and m′, in order to avoid confusion.

Definition 1.2. [13] A triangular snake Tn is obtained from a path u1, u2, u3, . . ., un by joining
ui and ui+1 to a new vertex vi for 1 ≤ i ≤ n− 1.

Definition 1.3. [13] A double triangular snake D(Tn) consists of two triangular snakes that
have a common path.

Definition 1.4. [13] An alternate triangular snake ATn is obtained from a path u1, u2, u3, . . .,
un by joining ui and ui+1 (alternatively) to a new vertex vi.
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Definition 1.5. [13] An alternate double triangular snake ADTn consists of two alternate
triangular snakes that have a common path.

Definition 1.6. [13] A quadrilateral snake Qn is obtained from a path u1, u2, u3, . . ., un by
joining ui and ui+1 to new vertices vi and wi respectively and then joining vi and wi.

Definition 1.7. [13] An alternate quadrilateral snake AQn is obtained from a path u1, u2, u3,
. . ., un by joining ui and ui+1 (alternatively) to new vertices vi and wi respectively and then
joining vi and wi.

Definition 1.8. [13] An alternate double quadrilateral snake A(D(Qn)) consists of two alter-
nate quadrilateral snakes that have a common path.

Definition 1.9. [13] A polygonal chain Gm,n is a connected graph all of whose m blocks are
polygons on n sides.

Definition 1.10. A ladder, Ln is defined as the cartesian product of a path and K2, that is,
Ln = Pn × K2.

2 Edge Rotations on Snakes

We use the method by Jarrett [10] with some modifications to prove the following snake related
theorems.

Theorem 2.1. Every triangular snake is an ERDG.

Proof: We first generate a T2. Since the same pattern is repeated we just change the labeling
and thus generate a Tn. Since a T2 is nothing but a triangle, the construction is as follows.

Figure 1: The triangular snake graph - T2.

Let S = {G1, G2, G3}. Consider the graphs G1, G2 and G3 as shown in Figure 2. We first show
that the dr(G1, G2) = dr(G2, G3) = dr(G3, G1) = 1.
We see that the edge xu2 is rotated to xu6, thus resulting in one rotation between the graphs
G1 and G2. Similarly, we observe the edge yu4 rotated to yu2 between the graphs G2 and G3

to show one rotation. Also, the edge yu2 in G3 is rotated to yu4 in G1. Thus, the rotation
distance between each of these graphs is equal to one resulting in a T2. Thus D(S) ∼= T2.
To generate a T3 , we use graph(vertex), i.e., G3, by just changing the labels of the vertices.
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Figure 2: Rotations on a triangular snake graph.

That is we perform the rotations in the reverse directions, viz., G3 to G2, G2 to G1 and then
finally G3 to G1, thus forming one more C3.
In a similar way a Tn is generated using 2n−1 graphs. Hence, a Tn is an edge rotation distance
graph.

Theorem 2.2. Every double triangular snake is an ERDG.

Proof: We first prove D(T2) is an ERDG by fixing the value of n′ = 4. We generate a cycle
of length 4 and then show that the rotation distance between the first and third vertex is one
thus forming a D(T2). Let S = {G1, G2, G3, G4}. Consider the graphs G1, G2, G3 and G4 as
shown in Figure 4.

Figure 3: A double triangular snake - D(T2).

We first show that the dr(G1, G2) = dr(G2, G3) = dr(G3, G4) = dr(G4, G1) = 1. Also, we show
that dr(G1, G3) = 1.
We see that the edge xu2 is rotated to xu6, thus resulting in one rotation between the graphs
G1 and G2. Similarly, we observe the edge yu4 rotated to yu8 between the graphs G2 and G3

to show one rotation. The edge xu6 in G3 is rotated to xu2 in G4 and yu8 in G4 is rotated to
yu4 in G1 to show one rotation between G4 and G1. Also, u1u3 is rotated to u1u4 between the
graphs G1 and G3 to show one rotation between them. In order to equalize the size between
the remaining graphs G2 and G4 we add an edge u2u4. Thus, the rotation distance between
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Figure 4: Rotations on a double triangular snake.

each of these graphs is equal to one resulting in a D(T2). Thus D(S) ∼= D(T2).
In a similar way a D(Tn) is generated. Hence, a D(Tn) is an edge rotation distance graph.

Theorem 2.3. Every alternating double triangular snake is an ERDG.

Proof: The alternating double triangular snake is denoted by ADTn. Here we will generate
an ADT2 followed by a path. To generate this through edge rotations we shall first generate
a C4 and then from the third vertex( i.e., G3) we use edge rotation between graphs G3 and a
new graph G1 and thus generate a path of length 1. Let S = {G1, G2, G3, G4, G1}. Consider
the graphs G1, G2, G3 and G4 as shown in Figure 6.

Figure 5: An alternate double triangular snake - ADT3.

Now we show that the dr(G1, G2) = dr(G2, G3) = dr(G3, G4) = dr(G4, G1) = 1. Also, we show
dr(G1, G3) = 1. To generate a path of length one from the graph G3 we consider one more new
graph G1 and thus show the rotation distance between G3 and G1 is one.
We see that the edge xu2 is rotated to xu6, thus resulting in one rotation between the graphs
G1 and G2. Similarly, we observe the edge yu4 rotated to yu8 between the graphs G2 and G3

to show one rotation. The edge xu6 in G3 is rotated to xu2 in G4 and yu8 in G4 is rotated to
yu4 in G1 to show one rotation between G4 and G1. Also, u1u3 is rotated to u1u4 between the
graphs G1 and G3 to show one rotation between them. In order to equalize the size between
the remaining graphs G2 and G4 we add an edge u2u4. Thus, the rotation distance between
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Figure 6: Rotations on an alternate double triangular snake.

each of these graphs is equal to one resulting in a D(T2). Thus D(S) ∼= D(T2).
Now, to form ADT2 (a path of length 1, from graph G3), we consider the graph G1 once again
and show the rotation distance between G3 and G1 is one. The edge u1u4 in G3 is rotated to
u1u3 in the fifth graph (G1) to form an ADT2.
Thus, in a similar way an AD(Tn) is generated. Hence, an AD(Tn) is an edge rotation distance
graph.

Theorem 2.4. Every quadrilateral snake is an ERDG.

Proof: A quadrilateral snake is denoted by Qn. If n = 2, then it is a C4. Since the same
pattern is repeated, we generate a Q2, and thus by changing the order of labeling we generate
a Qn.

Figure 7: A quadrilateral snake.

Let S = {G1, G2, G3, G4}. Consider the graphs G1, G2, G3 and G4 as shown in Figure 8.

We first show that the dr(G1, G2) = dr(G2, G3) = dr(G3, G4) = dr(G4, G1) = 1. Here in the
above set of graphs, to show the rotation between the graph G1 and G2, the edge xu2 is rotated
to edge xu6. The edge yu4 is rotated to yu8 between the graphs G2 and G3. The edge xu6 is
rotated to xu2 between the graphs G3 and G4. The edge yu8 is rotated to yu4 between the



New results on edge rotation distance graphs 87

Figure 8: Rotations on a quadrilateral snake.

graphs G4 and G1 to show one rotation. Thus, the rotation distance between each of these
graphs is equal to one resulting in a Q2. Thus D(S) ∼= Q2.
Similarly we show that Qn is an edge rotation distance graph.

Theorem 2.5. Every double quadrilateral snake is an ERDG.

Proof: We generate a cycle of length 6 and then show that the rotation distance between the
first and fourth vertex is one and thus forming a D(Q2).

Figure 9: A double quadrilateral snake D(Q2).

Let S = {G1, G2, G3, G4, G5, G6}. Consider the graphs G1, G2, G3, G4, G5 and G6 as shown
in Figure 10. We first show that the dr(G1, G2) = dr(G2, G3) = dr(G3, G4) = dr(G4, G5) =
dr(G5, G6) = dr(G6, G1) = 1. Here in the above set of graphs, to show the rotation between the
graph G1 and G2, the edge xu2 is rotated to edge xu6. The edge yu4 is rotated to yu8 between
the graphs G2 and G3. The edge xu6 is rotated to xu10 between the graphs G3 and G4. The
edge yu8 is rotated to yu12 between the graphs G4 and G5 to show one rotation. Similarly, the
edge xu10 is rotated to xu2 between the graphs G5 and G6. And the edge yu12 is rotated to
yu4 between the graphs G6 and G1 to show one rotation.

To show the rotation distance between G1 and G4 is one we add the edge u1 u3 to G1 and
the edge u1 u4 to G4. Since the size of the graphs G1 and G4 changes we add an extra edge
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Figure 10: Rotations on a double quadrilateral snake.

u2u4 to the remaining graphs namely G2, G3, G5 and G6.
Thus, the rotation distance between each of these graphs is equal to one resulting in a D(Q2).
Thus D(S) ∼= D(Q2). Extending the construction we get a D(Qn) by considering 5n − 4
graphs.

Theorem 2.6. Every alternating double quadrilateral snake is an ERDG.

Proof: To prove this theorem, we use the proof of Theorem 2.5, with a slight change. We first
generate a DQ2 and then show that the rotation distance between the fourth graph (G4,(vertex))
and the new graph(one again G1 to be considered) is one, thus forming a path of length 1.

Figure 11: An alternating double quadrilateral snake.

For this we need to show the rotation distance between the graph G4 and G1 (considered once
again) is one. Since we have already added an edge u1u4 to the graph G4, we add an edge
u1u3 to G1, and thus by performing this rotation shows the distance between them is one, and
forming a path of required length.
Thus, the above mentioned procedure generates an AD(Q2). Since, this pattern is repeated the
basic number of graphs to generate such a snake is 6 + 1. To generate AD(Qn), the number of
graphs required is 6 ∗ (n/2), for n, even and 6 ∗ b(n/2)c+ 1, for n, odd.
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Figure 12: Rotations on an alternating double quadrilateral snake.

Theorem 2.7. A ladder graph, Ln is an ERDG.

Proof: Let P : u1, u2, . . ., un+2 be a path and G be a graph obtained by adding two new
vertices un+3, un+4 and three new edges un+2un+3, un+3un+4, un+4un+2. Then, for i = 1, 2,
. . ., n− 1, define Gi to be a graph obtained from G by adding one new vertex x adjacent only
to ui. We also define Gn as the graph obtained from G by adding one new vertex x adjacent
only to u1. For all n, we add a new edge u1 u3 for all Gn. For n = 3, the graphs G1, G2 and
G3 are shown in Figure 14.

Figure 13: A ladder graph.

Every graph Gi has exactly one vertex of degree one, and an edge rotation changes the degrees
of exactly two vertices, dr(Gi, Gj) > 1. On the other hand for i = 1, 2, 3, . . ., n − 2, Gi+1 ∼=
Gi−xui + xui+1 and consequently dr(Gi, Gi+1) = 1 and dr(Gn, Gn−1) = 1, since Gn

∼= Gn−1−
xun−1 + xu1; thus D({G1, G2, . . . , Gn}) ∼= Pn.
Similarly we generate one more path from the set of graphs {H1, H2, . . . , Hn}.
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Figure 14: Rotations on a ladder graph.

Now we show that the rotation distance between each of these graphs Gi and Hi is one. Since
Gi
∼= Hi - u1u3 + u1u4, dr(Gi, Hi) = 1.

Hence, D({G1, G2, . . . , Gn, H1, H2, . . . , Hn}) ∼= Ln.

Remark 2.8. A polygonal chain Gm,n is an ERDG.

References

[1] G. Benade, W. Goddard, T. A. Mckee and P. A. Winter, On distances between isomorphism
classes of graphs, Mathematica Bohemica, 116(2)(1991), 160-169.

[2] F. Buckley and F. Harary, Distance in Graphs, Addison Wesley, 1990.

[3] G. Chartrand, F. Saba and H. B. Zou, Edge rotations and distances in graphs, Casopis

pro pestovani matematiky, 110(1)(1985), 87-91.

[4] G. Chartrand, W. Goddard, M. A. Henning, L. Lesniak, H. Swart and C. E. Wall, Which
graphs are distance graphs?, Ars Combinatoria, 29A(1990), 225-232.

[5] G. Chartrand and Ping Zhang, Introduction to graph theory, Tata McGraw Hill, 2006.

[6] R. J. Faudree, R. H. Schelp, L. Lesniak, A. Gyarfas and J. Lahel, On the rotation distance
of graphs, Discrete Mathematics, 126(1994), 121-135.

[7] W. Goddard and H. C. Swart, Distance between graphs under edge operations, Discrete
Mathematics, 161(1996), 121-132.

[8] Medha Itagi Huilgol, Chitra Ramaprakash, On Edge Rotation Distance graphs, IOSR Jour-
nal of Mathematics, 6(3), (2014), 16-25.

[9] Medha Itagi Huilgol, Chitra Ramaprakash, Edge Jump distance Graphs, Journal of Ad-
vances in Mathematics, 10(7), (2015), 3664-3673.



New results on edge rotation distance graphs 91

[10] E. B. Jarrett, Edge rotation and edge slide distance graphs, Computers Math. Applic.,
34(11)(1997), 81-87.

[11] M. Johnson, An ordering of some metrics defined on the space of graphs, Casopis pro
pestovani matematiky, 37(1)(1987), 75-85.

[12] A. Rosa, Cyclic Steiner Triple Systems and Labelings of Triangular Cacti, Scientia, 5(1967),
87-95.

[13] S. S. Sandhya, S. Somasundaram and S. Anusa, Some More Results on Root Square Mean
Graphs, Journal Of Mathematics Research, 7(1) (2015), 72-81.

[14] B. Zelinka, On a certain distance between isomorphism classes of graphs, Casopis pro
pestovani matematiky, 100(4)(1975), 371-373.

[15] B. Zelinka, A distance between isomorphism classes of graphs, Casopis pro pestovani
matematiky, 33(1)(1983), 126-130.

[16] B. Zelinka, Comparision of various distances between isomorphism classes of graphs, Ca-
sopis pro pestovani matematiky, 110(3)(1985), 289-293.

[17] B. Zelinka, Edge distance between isomorphism classes of graphs, Casopis pro pestovani
matematiky, 112(3)(1987), 233-237.

[18] B. Zelinka, The distance between a graph and its compliment, Casopis pro pestovani matem-
atiky, 37(1)(1987), 120-123.

[19] B. Zelinka, Contraction distance between isomorphism classes of graphs, Casopis pro pesto-
vani matematiky, 115(2)(1990), 211-216.


