VARIOUS GRAPH OPERATIONS ON SEMI SMOOTH GRACEFUL GRAPHS

V J Kaneria
Department of Mathematics, Saurashtra University, Rajkot-360005, India.
E-mail: kaneria_vinodray_j@yahoo.co.in
H M Makadia
Govt. Engineering College, Rajkot-360005, India.
E-mail: makadia.hardik@yahoo.com
R V Viradia
A D Patel Institute of Technology, V V Nagar-388121, India.
E-mail: rajiv.viradia@gmail.com

Abstract

In this paper we have done some graph operations on smooth graceful and semi smooth graceful graphs. By applying path union of graphs, star of a graph and cycle of a graph we have generated new graceful families. We have proved that star of a semi smooth graceful graph is graceful. We also proved that $K_{m, n}, P(t \cdot H)$ are semi smooth graceful, where H is a semi smooth graceful graph, step grid graph and cycle graph $C(t \cdot H)$ are smooth graceful, when $t \equiv(\bmod 4), H$ is as above, every semi smooth graceful graph is odd graceful and $C^{t}\left(m \cdot C_{n}\right), P^{t}(k \cdot T)$, $<C_{n_{1}}, P_{n_{2}}, C_{n_{3}}, \ldots, P_{n_{2 t}}, C_{n_{2 t+1}}>,<K_{m_{1}, n_{1}}, P_{r_{1}}, K_{m_{2}, n_{2}}, P_{r_{2}}, \ldots, P_{r_{t-1}}, K_{m_{t}, n_{t}}>$, $<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, P_{n_{2}} \times P_{m_{2}}, \ldots, P_{r_{t-1}}, P_{n_{t}} \times P_{m_{t}}>$ are graceful, when T is semi smooth graceful tree.

Key words : Graceful graph, smooth graceful graph, odd graceful graph, step grid graph and consecutive graph operations on a graph.

AMS subject classification number : 05C78.

1 Introduction :

In 1966 Rosa [1] defined α-labeling as a graceful labeling with an additional property. A graph which admits α-labeling is necessarily bipartite. A natural generalization of graceful graph is the notion of k-graceful graph. Obviously 1-graceful is graceful and a graph which admits α-labeling is always k-graceful graph, $\forall k \in N . \operatorname{Ng}[2]$ has identified some graphs that are k-graceful, $\forall k \in N$, but do not have α-labeling.

Kaneria and Jariya [3,4] define smooth graceful labeling and semi smooth graceful labeling. Every smooth graceful graph is also a semi smooth graceful graph. They proved cycle $C_{n}(n \equiv 0(\bmod 4))$, path P_{n}, grid graph $P_{n} \times P_{m}$ and complete bipartite graph $K_{2, n}$ are smooth graceful graphs.

For a comprehensive bibliography of papers on various graph labelings are given in Gallian [5]. The present paper is focused on various graph operations on semi smooth graceful graph to generate new families of graceful graph.

We will consider a simple undirected finite graph $G=(V, E)$ on $|V|=p$ vertices and $|E|=q$ edges. For all terminology and standard notations we follows Harary [6]. Here we will recall some definitions which are used in this paper.

Definition-1.1 : A function f is called graceful labeling of a graph $G=(V, E)$ if $f: V(G) \longrightarrow\{0,1, \ldots, q\}$ is injective and the induced function $f^{\star}: E(G) \longrightarrow\{1,2, \ldots, q\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is bijective for every edge $e=(u, v) \in E(G)$. A graph G is called graceful graph if it admits a graceful labeling.
Definition-1.2: A function f is called k-graceful labeling of a graph $G=(V, E)$ if $f: V(G) \longrightarrow\{0,1, \ldots, k+q-1\}$ is injective and the induced function $f^{\star}: E(G) \longrightarrow$ $\{k, k+1, k+2, \ldots, k+q-1\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is bijective, for every edge $e=(u, v) \in E(G)$. A graph G is called k-graceful graph if it admits a k-graceful labeling.

Definition-1.3: A function f is called odd graceful labeling of a graph $G=(V, E)$ if $f: V(G) \longrightarrow\{0,1, \ldots, 2 q-1\}$ is injective and the induced function $f^{\star}: E(G) \longrightarrow$ $\{1,3,5, \ldots, 2 q-1\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is bijective for every edge $e=(u, v) \in$ $E(G)$. A graph G is called odd graceful graph if it admits an odd graceful labeling.

Definition-1.4 : A smooth graceful graph G, we mean it is a bipartite graph with $|E(G)|=q$ and the property that for all non-negative integer l, there is a function $g: V(G) \longrightarrow\left\{0,1, \ldots,\left\lfloor\frac{q-1}{2}\right\rfloor,\left\lfloor\frac{q+1}{2}\right\rfloor+l,\left\lfloor\frac{q+3}{2}\right\rfloor+l, \ldots, q+l\right\}$ such that the induced edge labeling function $g^{\star}: E(G) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is a bijection for every edge $e=(u, v) \in E(G)$.

Example-1.5 : A cycle C_{16} with twin chords and its smooth graceful labeling shown in figure-1.

Figure-1 Smooth graceful labeling for a cycle C_{16} with twin chords.
Definition-1.6: A semi smooth graceful graph G, we mean it is a bipartite graph with $|E(G)|=q$ and the property that for all non-negative integer l, there is an integer t $(0 \leq t<q)$ and an injective function $g: V(G) \longrightarrow\{0,1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$ such that the induced edge labeling function $g^{\star}: E(G) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ defined as $f^{\star}(e)=|f(u)-f(v)|$ is a bijection for every edge $e=(u, v) \in E(G)$.

If we take $l=0$ in above both definitions-1.4, 1.6 the labeling functions g will become graceful labeling for the graph G. Every smooth graceful graph is also a semi smooth graceful graph by taking $t=\left\lfloor\frac{q+1}{2}\right\rfloor$.

Example-1.7: A tree on 12 edges and its semi smooth graceful labeling shown in figure-2.

Figure-2 Semi smooth graceful labeling for a tree with $|E(T)|=12$.
Definition-1.8: Let G be a graph and $G_{1}, G_{2}, \ldots, G_{n}(n \geq 2)$ be n copies of G. Then the graph obtained by an edge from G_{i} to G_{i+1} (for $i=1,2, \ldots, n-1$) is called path union of G and we will denote it by $P\left(G_{1}, G_{2}, \ldots, G_{n}\right)$.
Definition-1.9: A graph obtained by replacing each vertex of the star $K_{1, n}$ by a connected graph G of n vertices is called star of G and we will denote it by G^{\star}. The graph G which replaced at the center of $K_{1, n}$ we will call it as central copy of G^{\star}.

Definition-1.10 : For a cycle C_{n}, each vertices of C_{n} are replaced by connected graphs $G_{1}, G_{2}, \ldots, G_{n}$ is known as cycle of graphs and we will denote such graph by $C\left(G_{1}, G_{2}, \ldots, G_{n}\right)$. If we replace each vertices of C_{n} by a connected graph G (i.e. $G_{1}=$ $G=G_{2}=\ldots=G_{n}$), such cycle of graph G we will denote it by $C(n \cdot G)$.

If we replace each vertices of C_{n} by $C(n \cdot G)$, such cycle graph $C(n \cdot(n \cdot G))$, we will denote it by $C^{2}(n \cdot G)$. In general for any $t \geq 2 C^{t}(n \cdot G)=C\left(n \cdot C^{t-1}(n \cdot G)\right)$.

Definition-1.11: Take $P_{n}, P_{n}, P_{n-1}, P_{n-2}, \ldots, P_{3}, P_{2}$ paths on $n, n, n-1, n-2, \ldots, 3,2$ vertices and arranged them vertically. A graph obtained by joining horizontal vertices of given successive paths is known as a step grid graph of size $n(n \geq 3)$ and we will denote it by $S t_{n}$.

Obviously $\left|V\left(S t_{n}\right)\right|=\frac{1}{2}\left(n^{2}+3 n-2\right)$ and $\left|E\left(S t_{n}\right)\right|=n^{2}+n-2$. Above definition was introduced by Kaneria and Makadia [7].

Definition-1.12: Let $G_{1}, G_{2}, \ldots, G_{t}$ be any connected graphs. The graph $<G_{1}, P_{n_{1}}$, $G_{2}, P_{n_{2}}, \ldots, G_{t-1}, P_{n_{t-1}}, G_{t}>$ obtained by joining two consecutive graphs G_{i} and G_{i+1} by $P_{n_{i}}$, a path of of length n_{i} and $n_{i} \in N, \forall i=1,2, \ldots, t-1$ is called arbitrary path union of graphs $G_{1}, G_{2}, \ldots, G_{t}$ join by arbitrary paths $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t-1}}$. In other words consecutive graphs $G_{1}, G_{2}, \ldots, G_{t}$ join by arbitrary paths $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t-1}}$ is known as arbitrary path union of graphs $G_{i}(1 \leq i \leq t)$.

If we replace each $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t-1}}$ by a path P_{n} of length n such path union of graphs, we will denote by $P_{n}\left(G_{1}, G_{2} \ldots, G_{t}\right)$ and if we take $G_{i}=G(1 \leq i \leq t)$, where G is a connected graph, we will denote such graph (arbitrary path union of a graph G) by $P_{n}(t \cdot G)$. Obviously $P_{1}\left(G_{1}, G_{2}, \ldots, G_{n}\right)=P\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, simple path union of $G_{1}, G_{2}, \ldots, G_{n}$ and $P_{1}(t \cdot G)=P(t \cdot G)=P\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, where $G_{1}=G=\ldots=G_{n}$.

If we replace $G=P(t \cdot H)$ in $P(t \cdot G)$, such graph $P(t \cdot P(t \cdot H)$), we will denote it by $P^{2}(t \cdot H)$. In general for any $s \geq 2 P^{s}(t \cdot G)=P\left(t \cdot P^{s-1}(t \cdot G)\right)$ or $P^{s-1}(t \cdot P(t \cdot G))$.

2 Main Results :

Theorem-2.1: $\quad K_{m, n}$ is a semi smooth graceful graph.
Proof : Let $v_{1}, v_{2}, \ldots, v_{m}, u_{1}, u_{2}, \ldots, u_{n}$ be vertices of the complete bipartite graph $K_{m, n}$. Obviously $K_{m, n}$ is a bipartite graph with the vertex graceful labeling function $f: V\left(K_{m, n}\right) \longrightarrow\{0,1, \ldots, q=m n\}$ defined by

$$
\begin{array}{ll}
f\left(v_{i}\right)=m-i \text { or } i-1, & \forall i=1,2, \ldots, m ; \\
f\left(u_{j}\right)=q-m(j-1), & \forall j=1,2, \ldots, n .
\end{array}
$$

Let l be any non-negative integer. Define the vertex labeling function $g: V\left(K_{m, n}\right) \longrightarrow$ $\{0,1, \ldots, m-1, m+l, m+1+l, \ldots, m n+l\}$ such that its induced edge labeling function $g^{\star}: E\left(K_{m, n}\right) \longrightarrow\{1+l, 2+l, \ldots, m n+l\}$ with $g^{\star}(e)=|g(u)-g(v)|, \forall e=(u, v) \in E\left(K_{m, n}\right)$ defined by

$$
\begin{aligned}
g(w) & =f(w), & & \text { when } w \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \\
& =f(w)+l, & & \text { when } w \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} .
\end{aligned}
$$

Now for each $e=(u, v) \in E\left(K_{m, n}\right)$, we see that

$$
\begin{aligned}
g^{\star}(e) & =g^{\star}((u, v)) \\
& =|g(u)-g(v)| \\
& =|f(u)+l-f(v)| \\
& =|f(u)-f(v)|+l \\
& =f^{\star}(e)+l
\end{aligned}
$$

Therefore g^{\star} is a bijection as f^{\star} and $g^{\star}(E)=\{1+l, 2+l, \ldots, q+l\}$. Hence $K_{m, n}$ is semi smooth graceful.

Theorem-2.2: Step grid graph $S t_{n}$ is a smooth graceful graph.
Proof : Let $G=S t_{n}$ be a step grid graph of size n. Where mention each vertices of $n^{t h}$ column like $u_{1, j}(1 \leq j \leq n)$, $(n-1)^{\text {th }}$ column like $u_{2, j}(1 \leq j \leq n),(n-2)^{\text {th }}$ column like $u_{3, j}(1 \leq j \leq n-1),(n-3)^{t h}$ column like $u_{4, j}(1 \leq j \leq n-2)$, similarly the first column like $u_{n, j}(j=1,2)$. Here we recall that $p=|V(G)|=\frac{1}{2}\left(n^{2}+3 n-2\right)$ and $q=|E(G)|=n^{2}+n-2$. Moreover $S t_{n}$ is a bipartite graceful graph (proved by Kaneria and Makadia [7]) with vertex labeling function $f: V\left(S t_{n}\right) \longrightarrow\{0,1, \ldots, q\}$ defined by

$$
\begin{array}{ll}
f\left(u_{1, j}\right)=\frac{q}{2}-\frac{1}{8}+(-1)^{j+1}\left[\frac{j^{2}}{4}-\frac{1}{8}\right], & \forall j=1,2, \ldots, n ; \\
f\left(u_{i, j}\right)=f\left(u_{i-1, j-1}\right)+(-1)^{j}, & \forall i=2,3, \ldots,\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{i, 1}\right)=(n-i+1)^{2}+1, & \forall j=1,2, \ldots, n+i-1 ; \\
f\left(u_{i, 2}\right)=q-(n-i+1)(n-i), & \forall i=n, n-1, \ldots,\left\lceil\frac{n}{2}\right\rceil ; \\
f\left(u_{i, j}\right)=f\left(u_{i+1, j-2}\right)+(-1)^{j-1}, & \forall i=n, n-1, \ldots,\left\lceil\frac{n}{2}\right\rceil ; \\
& \forall i=n-1, n-2, \ldots, 2, \\
& \forall j=3,4, \ldots, n+2-i
\end{array}
$$

Let l be any non-negative integer. Define the vertex labeling function $g: V\left(S t_{n}\right) \longrightarrow$ $\left\{0,1, \ldots, \frac{q}{2}-1, \frac{q}{2}+l, \frac{q}{2}+1+l, \ldots, q+l\right\}$ such that its induced edge labeling function $g^{\star}: E\left(S t_{n}\right) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ with $g^{\star}(e)=|g(u)-g(v)|, \forall e=(u, v) \in E\left(S t_{n}\right)$ defined by

$$
\begin{aligned}
g(w) & =f(w), & & \text { when } f(w)<\frac{q}{2} \\
& =f(w)+l, & & \text { when } f(w) \geq \frac{q}{2} .
\end{aligned}
$$

Now for each $e=(u, v) \in E\left(S t_{n}\right)$, we see that

$$
\begin{aligned}
& g^{\star}(e)=g^{\star}((u, v)) \\
&=|g(u)-g(v)| \\
&=|f(u)-f(v)|+l, \quad \text { as for any } e=(u, v) \in E\left(S t_{n}\right) \text { one of }\{f(u), f(v)\} \text { is } \\
& \quad \text { less than } \frac{q}{2} \text { and another is greater than or equal to } \frac{q}{2} . \\
& \Rightarrow g^{\star}(e)=f^{\star}(e)+l, \forall e \in E\left(S t_{n}\right) .
\end{aligned}
$$

Therefore g^{\star} is a bijection as f^{\star} and $g^{\star}(E)=\{1+l, 2+l, \ldots, q+l\}$. Thus $S t_{n}$ is smooth graceful.

Theorem-2.3: Path union of t copies of a semi smooth graceful graph H is graceful. Proof : Let G be a path union of t copies of a semi smooth graceful graph H with $p=|V(H)|$ and $q=|E(H)|$. Let l be an arbitrary non-negative integer and $f: V(H) \longrightarrow$ $\{0,1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$ be a semi smooth graceful labeling for some $t \in$ $\{0,1, \ldots, q\}$. Then its induced edge labeling function $f^{\star}: E(H) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ with $f^{\star}(e)=|f(u)-f(v)|, \forall e=(u, v) \in E(H)$ is a bijection.

Let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and take $v_{i, 1}, v_{i, 2}, \ldots, v_{i, p}$ as vertices for $i^{t h}$ copy of H in $G, \forall i=1,2, \ldots, t$ with $v_{1, j}=v_{j}, \forall j=1,2, \ldots, p$ in first copy of H in G. Obviously $P=|V(G)|=t p$ and $Q=|E(G)|=t q+t-1$.

Define the vertex labeling function $g: V(G) \longrightarrow\{0,1, \ldots, Q\}$ as follows

$$
\begin{aligned}
g\left(v_{1, j}\right) & =f\left(v_{j}\right), & & \text { if } f\left(v_{j}\right)<t \\
& =f\left(v_{j}\right)+(Q-q)-l, & & \text { if } f\left(v_{j}\right) \geq t, \forall j=1,2, \ldots, p ; \\
g\left(v_{2, j}\right) & =g\left(v_{1, j}\right)+(Q-q), & & \text { if } g\left(v_{1, j}\right)<\frac{Q}{2} \\
& =g\left(v_{1, j}\right)-(Q-q), & & \text { if } g\left(v_{1, j}\right)>\frac{Q}{2}, \forall j=1,2, \ldots, p ; \\
g\left(v_{i, j}\right) & =g\left(v_{i-2, j}\right)+(q+1), & & \text { if } g\left(v_{i-2, j}\right)<\frac{Q}{2} \\
& =g\left(v_{i-1, j}\right)-(q+1), & & \text { if } g\left(v_{i-2, j}\right)>\frac{Q}{2}, \forall i=3,4, \ldots, t, \forall j=1,2, \ldots, p .
\end{aligned}
$$

Now choose a vertex v of $H^{(i)}$ and each corresponding vertex to v in each copy $H^{(i+1)}$ join by an edge to form path union $G, \forall i=1,2, \ldots, t-1$. The above edge labeling function g give rise graceful labeling for G. Thus G is graceful.

Illustration-2.4: Semi smooth graceful labeling for $S t_{5}$ and graceful labeling for path union of 5 copies of $S t_{5}$ are shown in figure -3 and figure -4 respectively.

Figure-3 smooth graceful labeling for $S t_{5}$.

Figure-4 Graceful labeling for path union of 5 copies of $S t_{5}$.

Theorem-2.5 : Star of a semi smooth graceful graph is graceful.
Proof : Let H be a semi smooth graceful graph and $G=H^{\star}$, where $p=|V(H)|$, $q=|E(H)|$. Let l be an arbitrary non-negative integer and $f: V(H) \longrightarrow\{0,1, \ldots, t-1$, $t+l, t+l+1, \ldots, q+l\}$ be a semi smooth graceful labeling for for H, where $t \in\{0,1, \ldots, q\}$. Let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$.

Let $v_{0,1}=v_{1}, v_{0,2}=v_{2}, \ldots, v_{0, p}=v_{p}$ be vertices of the central copy H in G. Take $v_{i, j}$ $(1 \leq j \leq p)$ as vertices for $i^{\text {th }}$ copy $H^{(i)}$ in $G, \forall i=1,2 \ldots, p$. Define the vertex labeling function $g: V(G) \longrightarrow\{0,1, \ldots, Q\}$, where $Q=p q+p+q$ as follows

$$
\begin{array}{rlrl}
g\left(v_{0, j}\right) & =f\left(v_{j}\right), & & \text { if } f\left(v_{j}\right)<t \\
& =f\left(v_{j}\right)+(Q-q)-l, & & \text { if } f\left(v_{j}\right) \geq t, \quad \forall j=1,2, \ldots, p ; \\
g\left(v_{1, j}\right)=g\left(v_{0, j}\right)+(Q-q), & & \text { if } g\left(v_{0, j}\right)<\frac{Q}{2} \\
& =g\left(v_{0, j}\right)-(Q-q), & & \text { if } g\left(v_{0, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
g\left(v_{i, j}\right)=g\left(v_{i-2, j}\right)+(q+1), & & \text { if } g\left(v_{i-2, j}\right)<\frac{Q}{2} \\
& =g\left(v_{i-2, j}\right)-(q+1), & & \text { if } g\left(v_{i-2, j}\right)>\frac{Q}{2}, \\
& \forall i=2,3, \ldots, p, \forall j=1,2, \ldots, p .
\end{array}
$$

Now join each vertex of central copy $H^{(0)}$ with its corresponding vertex of other copies $H^{(i)}$ by an edge, $\forall i=1,2, \ldots, p$. Above labeling pattern give rise graceful labeling to the graph G and so it is graceful.
Illustration-2.6 : Semi smooth graceful labeling for $H=C_{12}$ with twin chords and graceful labeling for the star of H are shown in figure -5 and figure -6 respectively.

Figure-5

[^0]

Figure-6 Graceful labeling for H^{\star}, where H is a cycle C_{12} with twin chords.
Theorem-2.7: $\quad C(t \cdot H)$ is graceful, where H is a semi smooth graceful graph and $t \equiv 0,3(\bmod 4)$.

Proof : Let G be a cycle graph formed by t copies of a semi smooth graceful graph H, $t \equiv 0,3(\bmod 4)$. Let $p=|V(H)|, q=|E(H)|, V(H)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. For an arbitrary non-negative integer l, let $f: V(H) \longrightarrow\{0,1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$ be a semi smooth graceful labeling for some $t \in\{0,1, \ldots, q\}$.

Obviously $P=|V(G)|=p t$ and $Q=|E(G)|=t(q+1)$. Let $u_{i, j}(1 \leq j \leq p)$ be vertices of $i^{\text {th }}$ copy of $H^{(i)}$ in $G, \forall i=1,2, \ldots, t$ with $u_{1, j}=v_{j}, \forall j=1,2, \ldots, p$. Join $u_{i, k}$ with $u_{i+1, k}$ by an edge, $\forall i=1,2, \ldots, t-1$ and $u_{t, k}$ with $u_{1, k}$ to form cycle graph $C(t \cdot H)$, for some $k \in\{1,2, \ldots, p\}$. Define vertex labeling function $g: V(G) \longrightarrow\{0,1, \ldots, Q\}$ as follows

$$
\begin{array}{rlrl}
g\left(u_{1, j}\right)=f\left(v_{j}\right), & & \text { if } f\left(v_{j}\right)<t \\
=f\left(v_{j}\right)+(Q-q)-l, & & \text { if } f\left(v_{j}\right) \geq t, & \forall j=1,2, \ldots, p ; \\
g\left(u_{2, j}\right)=g\left(u_{1, j}\right)+(Q-q), & & \text { if } g\left(u_{1, j}\right)<\frac{Q}{2} \\
=g\left(u_{1, j}\right)-(Q-q), & & \text { if } g\left(u_{1, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
g\left(u_{i, j}\right)=g\left(u_{i-2, j}\right)-(q+1), & & \text { if } g\left(u_{i-2, j}\right)>\frac{Q}{2} \\
=g\left(u_{i-2, j}\right)+(q+1), & & \text { if } g\left(u_{i-2, j}\right)<\frac{Q}{2}, \\
& \forall i=3,4, \ldots,\left\lceil\frac{t}{2}\right\rceil, \forall j=1,2, \ldots, p ; \\
g\left(u_{\left\lceil\frac{t}{2}\right\rceil+1, j}\right)=g\left(u_{\left\lceil\frac{t}{2}\right\rceil-1, j}\right)+(q+2), & & \text { if } g\left(u_{\left\lceil\frac{t}{2}\right\rceil-1, j}\right)<\frac{Q}{2} \\
=g\left(u_{\left\lceil\frac{t}{2}\right\rceil-1, j}\right)-(q+1), & & \text { if } g\left(u_{\left\lceil\frac{t}{2}\right\rceil-1, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
g\left(u_{\left\lceil\frac{t}{2}\right\rceil+2, j}\right)=g\left(u_{\left\lceil\frac{t}{2}\right\rceil, j}\right)+(q+2), & & \text { if } g\left(u_{\left\lceil\frac{t}{2}\right\rceil, j}\right)<\frac{Q}{2} \\
=g\left(u_{\left\lceil\frac{t}{2}, j\right.}\right)-(q+1), & & \text { if } g\left(u_{\left\lceil\frac{t}{2}\right\rceil, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
g\left(u_{i, j}\right)=g\left(u_{i-2, j}\right)-(q+1), & & \text { if } g\left(u_{i-2, j}\right)>\frac{Q}{2} \\
=g\left(u_{i-2, j}\right)+(q+1), & & \text { if } g\left(u_{i-2, j}\right)<\frac{Q}{2}, & \\
& \forall i= & \left\lceil\frac{t}{2}\right\rceil+3,\left\lceil\frac{t}{2}\right\rceil+4, \ldots, t, \forall j=1,2, \ldots, p .
\end{array}
$$

Above labeling pattern give rise a graceful labeling to the graph $C(t \cdot H)$ and so it is graceful.

Illustration-2.8: Cycle of a tree on 13 vertices with 7 copies and its graceful labeling shown in figure -7 .

Figure-7 Graceful labeling for $C(7 \cdot H)$, where H is a tree on 13 vertices and take $l=(Q-q)=79$.

Theorem-2.9 : Every semi smooth graceful graph is odd graceful.
Proof : Let G be a semi smooth graceful graph with semi smooth vertex labeling function $g: V(G) \longrightarrow\{0,1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$, whose induced edge labeling function $g^{\star}: E(G) \longrightarrow\{1+l, 2+l, \ldots, q+l\}$ defined by $g^{\star}(e)=|g(u)-g(v)|, \forall e=(u, v) \in E(G)$, for some $t \in\{1,2, \ldots, q\}$ and an arbitrary non-negative integer l.

Since G is a bipartite graph, we will take $V(G)=V_{1} \cup V_{2}$ (where $V_{1} \neq \phi, V_{2} \neq \phi$ and $\left.V_{1} \cap V_{2}=\phi\right)$ and there is no edge $e \in E(G)$ whose both end vertices lies in V_{1} or V_{2}. Moreover

$$
\begin{aligned}
& \left\{g(u) / u \in V_{1}\right\} \subseteq\{1,2, \ldots, t-1\} \\
& \left\{g(u) / u \in V_{2}\right\} \subseteq\{t+l, t+l+1, \ldots, q+l\}
\end{aligned}
$$

Otherwise by taking l sufficiently large, the induced edge function g^{\star} produce edge label which is less than l, gives a contradiction that G admits a semi smooth graceful labeling g.

Now define $h: V(G) \longrightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows

$$
\begin{array}{ll}
h(u)=2 \cdot g(u), & \forall u \in V_{1} \text { and } \\
h(v)=2 \cdot g(v)-1-2 l, & \forall v \in V_{2} .
\end{array}
$$

Above labeling function h give rise odd graceful labeling to the graph G. Because for any edge $e=(u, v) \in E(G)$ [where $u \in V_{1}$ and $\left.v \in V_{2}\right], g^{\star}(e)=i+l$, for some $i \in\{1,2, \ldots, q\}$.
Also for any $e=(u, v) \in E(G) \quad h^{\star}(e)=h(v)-h(u)$

$$
\begin{aligned}
& =2 g(v)-(1+2 l)-2 g(u) \\
& =2(g(v)-g(u))-(1+2 l) \\
& =2|g(v)-g(u)|-(1+2 l) \\
& =2 g^{\star}(e)-(1+2 l) \\
& =2(i+l)-(1+2 l) \\
& =2 i-1 .
\end{aligned}
$$

Thus G is an odd graceful graph.
Illustration-2.10 : Semi smooth graceful labeling and odd graceful labeling for $S t_{6}$ are shown in figure-8.

Figure-8 Semi smooth graceful labeling and odd graceful labeling for $S t_{6}$.
Theorem-2.11: Cycle graph $C(t \cdot H)$ is smooth graceful, when $t \equiv 0(\bmod 4)$ and H is a semi smooth graceful graph.

Proof : It is obvious that if we join two bipartite graphs by a path then the resultant graph is also bipartite graph. So $P(k \cdot H)$ are bipartite graphs, $\forall k=2,3, \ldots, t$, as H is a bipartite graph. To get $C(t \cdot H)$, we have to add one more edge in $P(t \cdot H)$ between first and last copy of H in $P(t \cdot H)$. Thus we have to add t edge in $\bigcup_{i=1}^{t} H^{(i)}$ for the construction of $C(t \cdot H)$. If these added edges does not form a cycle of odd length then $C(t \cdot H)$ is also a bipartite graph.

Here we will add t edges to $\bigcup_{i=1}^{t} H^{(i)}$ between corresponding vertices in each copy to a vertex v from H to form the cycle graph $C(t \cdot H)$, where $t \equiv 0(\bmod 4)$. Thus $C(\cdot H)$ is a bipartite graph.

In Theorem -2.7 we proved that $C(t \cdot H)$ is a graceful graph with the vertex labeling function $g: V(G) \longrightarrow\{0,1, \ldots, Q\}$ defined as follows

$$
\begin{aligned}
g\left(u_{1, j}\right) & =f\left(v_{j}\right), & & \text { if } f\left(v_{j}\right)<t \\
& =f\left(v_{j}\right)+(Q-q)-l, & & \text { if } f\left(v_{j}\right) \geq t,
\end{aligned} \quad \forall j=1,2, \ldots, p ;
$$

$$
\begin{array}{rlr}
g\left(u_{i, j}\right)=g\left(u_{i-2, j}\right)-(q+1), & & \text { if } g\left(u_{i-2, j}\right)>\frac{Q}{2} \\
=g\left(u_{i-2, j}\right)+(q+1), & & \text { if } g\left(u_{i-2, j}\right)<\frac{Q}{2}, \\
g\left(u_{\frac{t}{2}+1, j}\right)=g\left(u_{\frac{t}{2}-1, j}\right)+(q+2), & & \forall i=3,4, \ldots, \frac{t}{2}, \forall j=1,2, \ldots, p ; \\
=g\left(u_{\frac{t}{2}-1, j}\right)-(q+1), & & \text { if } g\left(u_{\frac{t}{2}-1, j}\right)<\frac{Q}{2} \\
g\left(u_{\frac{t}{2}-1, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
\left.u_{\frac{t}{2}+2, j}\right)=g\left(u_{\frac{t}{2}, j}\right)+(q+2), & \text { if } g\left(u_{\frac{t}{2}, j}\right)<\frac{Q}{2} \\
=g\left(u_{\frac{t}{2}, j}\right)-(q+1), & \text { if } g\left(u_{\frac{t}{2}, j}\right)>\frac{Q}{2}, \quad \forall j=1,2, \ldots, p ; \\
g\left(u_{i, j}\right)=g\left(u_{i-2, j}\right)-(q+1), & \text { if } g\left(u_{i-2, j}\right)>\frac{Q}{2} \\
=g\left(u_{i-2, j}\right)+(q+1), & \text { if } g\left(u_{i-2, j}\right)<\frac{Q}{2}, \\
& \forall i=\frac{t}{2}+3, \frac{t}{2}+4, \ldots, t, \forall j=1,2, \ldots, p .
\end{array}
$$

Where $Q=t(q+1), q=|E(H)|, p=|V(H)|$ and $f: V(H) \longrightarrow\{0,1, \ldots, t-1, t+l$, $t+l+1, \ldots, q+l\}(t \in\{1,2, \ldots, q\}$ and l be an arbitrary non-negative integer) be a semi smooth graceful labeling for the semi smooth graceful graph H.

From above defined labeling patter g on $C(t \cdot H)$, we can see that for any $e=(u, v) \in$ $E\left(C(t \cdot H)\right.$), either $g(u)<\frac{Q}{2}$ and $g(v) \geq \frac{Q}{2}$ or $g(u) \geq \frac{Q}{2}$ and $g(v)<\frac{Q}{2}$. Thus if we define $h: V(C(t \cdot H)) \longrightarrow\left\{0,1, \ldots, \frac{Q}{2}-1, \frac{Q}{2}+l, \frac{Q}{2}+l+1, \ldots, Q+l\right\}$ as follows.

$$
\begin{aligned}
h(v) & =g(v), & & \text { when } g(v)<\frac{Q}{2} \\
& =g(v)+l, & & \text { when } g(v) \geq \frac{Q}{2}, \quad \text { for any arbitrary non-negative integer } l, \text { we can }
\end{aligned}
$$ observe that the induced edge labeling function $h^{\star}: E(C(t \cdot H)) \longrightarrow\{1+l, 2+l, \ldots, Q+l\}$ defined by $h^{\star}(e=(u, v))=|h(u)-h(v)|=|g(u)-g(v)|+l=g^{\star}(e)+l$, becomes a bijection, as $h^{\star}(E(C(t \cdot H)))=\{1+l, 2+l, \ldots, Q+l\}$ and so h is a smooth graceful labeling to the graph $C(t \cdot H)$ and hence $C(t \cdot H)$ is a smooth graceful graph.

Theorem-2.12: $\quad C^{t}\left(m \cdot C_{n}\right)$ is graceful, when $m, n \equiv 0(\bmod 4)$ and $t \in N$.
Proof : Since $C_{n}(n \equiv 0(\bmod 4))$ is a smooth graceful graph, by Theorem-2.11 $C\left(m \cdot C_{n}\right)$ is also a smooth graceful graph, where $m, n \equiv 0(\bmod 4)$. By applying same argument $C\left(m \cdot C\left(m \cdot C_{n}\right)\right)=C^{2}\left(m \cdot C_{n}\right)$ is a smooth graceful graph.

Similarly $C\left(m \cdot C^{2}\left(m \cdot C_{n}\right)\right)=C^{3}\left(m \cdot C_{n}\right), \ldots, C\left(m \cdot C^{t-1}\left(m \cdot C_{n}\right)\right)=C^{t}\left(m \cdot C_{n}\right)$ are smooth graceful graphs, where $m, n \equiv 0(\bmod 4)$ and $t \in N$.

Particularly $C^{t}\left(m \cdot C_{n}\right)$ is graceful graph, where $m, n \equiv 0(\bmod 4)$ and $t \in N$.

Illustration-2.13: $\quad C^{3}\left(4 \cdot C_{4}\right)$ and its graceful labeling shown in figure -9 , where $Q=$ $\left|E\left(C^{3}\left(4 \cdot C_{4}\right)\right)\right|=340$ and $P=\left|V\left(C^{3}\left(4 \cdot C_{4}\right)\right)\right|=256$.

Figure-9 $\quad C^{3}\left(4 \cdot C_{4}\right)$ and its graceful labeling.
Theorem-2.14: $\quad P(t \cdot H)$ is a semi smooth graceful graph, where H is a semi smooth graceful graph and $t \in N$.

Proof : It is obvious that $P(t \cdot H)$ is a bipartite graph as H is bipartite. In Theorem-2.3 we proved that path union of t copies of semi smooth graceful graph is also graceful. Let $G=P(t \cdot H)$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ with $p=|V(H)|, q=|E(H)|$.

Since H is a semi smooth graceful graph, it admits a semi smooth graceful labeling say $f: V(H) \longrightarrow\{0,1, \ldots, y-1, y+l, y+l+1, \ldots, q+l\}$ for some $y \in\{1,2, \ldots, q\}$ and an arbitrary non-negative integer $l \in N$.

Let $Q=t q+t-1$ and k be an non-negative integer. Take $w=\frac{t q}{2}$, when t is even or $\left\lfloor\frac{t}{2}\right\rfloor q+y$, when t is odd. Define the vertex labeling function $h: V(G) \longrightarrow\{0,1, \ldots, w-1$, $w+k, w+k+1, \ldots, Q+k\}$ as follows

$$
\begin{array}{rlrl}
h\left(v_{1, j}\right) & =f\left(v_{j}\right), & & \text { if } f\left(v_{j}\right)<y \\
& =f\left(v_{j}\right)+(Q-q)+(k-y), & & \text { if } f\left(v_{j}\right) \geq y, \forall j=1,2, \ldots, p ; \\
h\left(v_{2, j}\right) & =h\left(v_{1, j}\right)+(Q-q)+k, & & \text { if } h\left(v_{1, j}\right)<\frac{Q}{2} \\
& =h\left(v_{1, j}\right)-(Q-q+k), & & \text { if } h\left(v_{1, j}\right)>\frac{Q}{2}, \forall j=1,2, \ldots, p ; \\
h\left(v_{i, j}\right)=h\left(v_{i-2, j}\right)+(q+1+k), & & \text { if } h\left(v_{i-2, j}\right)<\frac{Q}{2} \\
& =h\left(v_{i-2, j}\right)-(q+1+k), & & \text { if } h\left(v_{i-2, j}\right)>\frac{Q}{2}, \\
& & \forall i=3,4, \ldots, t, \forall j=1,2, \ldots, p .
\end{array}
$$

Above labeling pattern give rise semi smooth graceful labeling to the graph $G=$ $P(t \cdot H)$. Thus G is a semi smooth graceful graph.

Theorem-2.15: $\quad P^{t}(k \cdot T)$ is graceful tree, where T is a semi smooth graceful tree and $t, k \in N$.

Proof : We have T is a semi smooth graceful tree. By last Theorem-2.14 $P(k \cdot T)$ is also semi smooth graceful tree, as path union of k copies of a tree is also a tree. Applying similar theory $P^{t}(k \cdot T)$ is semi smooth graceful. Therefore it is a graceful tree.

Illustration-2.16: $\quad P^{3}(2 \cdot T)$ and its graceful labeling shown in figure-10, where $Q=$ $\left|E\left(P^{3}(2 \cdot T)\right)\right|=103$ and $P^{3}(2 \cdot T)$ contains 8 copies of T inside it.

Figure-10 $\quad P^{3}(2 \cdot T)$ and its graceful labeling, where T is a semi smooth graceful tree given in figure-2.

Corollary-2.17: $\quad P\left(k \cdot C\left(t \cdot P_{n} \times P_{m}\right)\right)$ is graceful, where $t \equiv 0(\bmod 4)$ and $m, n, k \in N$. Proof : This follows from Theorem-1.11 and 1.14, as $P_{n} \times P_{m}$ is a smooth graceful graph proved by Kaneria and Jariya[4].
Illustration-2.18: $\quad P\left(3 \cdot C\left(4 \cdot P_{3} \times P_{3}\right)\right)$ and its graceful labeling shown in figure-11, where $\left|E\left(P\left(3 \cdot C\left(4 \cdot P_{3} \times P_{3}\right)\right)\right)\right|=158$ and $\left|V\left(P\left(3 \cdot C\left(4 \cdot P_{3} \times P_{3}\right)\right)\right)\right|=108$.

Figure-11 $\quad P\left(3 \cdot C\left(4 \cdot P_{3} \times P_{3}\right)\right.$) and its graceful labeling.
Theorem-2.19: $\bigcup_{i=1}^{t} P_{n_{i}} \times P_{m_{i}}$ is graceful, where $n_{i}(1 \leq i \leq t), m_{i}(1 \leq i \leq t), t \in N$. Proof : Let $G=\bigcup_{i=1}^{t}\left(P_{n_{i}} \times P_{m_{i}}\right)$, where $P_{n_{i}} \times P_{m_{i}}$ is the grid graph on $n_{i} \times m_{i}$ vertices and $q_{i}=\left|E\left(P_{n_{i}} \times P_{m_{i}}\right)\right|=2 m_{i} n_{i}-\left(m_{i}+n_{i}\right), \forall i=1,2, \ldots, t$.

Let $u_{i, j, k}\left(1 \leq j \leq n_{i}, 1 \leq k \leq m_{i}\right)$ be the vertices of $P_{n_{i}} \times P_{m_{i}}$ (assuming $\left.m_{i} \geq n_{i}\right)$, $\forall i=1,2, \ldots, t$. Obviously $P=|V(G)|=\sum_{i=1}^{t} p_{i}$, where $p_{i}=\left|V\left(P_{n_{i}} \times P_{m_{i}}\right)\right|=m_{i} n_{i}, \forall$ $i=1,2, \ldots, t$ and $Q=|E(G)|=\sum_{i=1}^{t} q_{i}$. Kaneria and Jariya [4] proved that $P_{n_{i}} \times P_{m_{i}}$ ($i \leq i \leq t$) are smooth graceful graphs.

We know that the vertex labeling functions $f_{i}: V\left(P_{n_{i}} \times P_{m_{i}}\right) \longrightarrow\left\{0,1, \ldots, q_{i}\right\}$ defined by

$$
\begin{array}{ll}
f\left(u_{i, j, 1}\right)=q_{i}-\frac{(j-1)^{2}}{2}, & \text { when } j \text { is odd, } \\
=\frac{j(j-2)}{2}, & \text { when } j \text { is even, } \forall j=1,2, \ldots, n_{i} ; \\
f\left(u_{i, j, m_{i}}\right)=\frac{q_{i}}{2}-\frac{1}{4}+(-1)^{m_{i}+j\left[\frac{\left(n_{i}-j\right)^{2}}{2}+\frac{1}{4}\right], \quad \forall j=n_{i}, n_{i}-1, \ldots, 1 ;} \\
f\left(u_{i, j, k}\right)=f\left(u_{i, j-1, k+1}\right)+(-1)^{j+k}, & \forall k=m_{i}-1, m_{i}-2, \ldots, m_{i}+1-n_{i}, \\
& \forall j=n_{i}, n_{i}-1, \ldots, m_{i}+1-k ;
\end{array}
$$

$$
\begin{aligned}
& f\left(u_{i, n_{i}, k}\right)=f\left(u_{i, n_{i}, 1}\right)+(-1)^{n_{i}}\left[\frac{\left(2 n_{i}-1\right)(k-1)}{2}\right], \quad \text { when } k \text { is odd, } \\
& =f\left(u_{i, n_{i}-1,1}\right)-(-1)^{n_{i}}\left[\frac{\left(2 n_{i}-1\right) k}{2}\right], \quad \text { when } k \text { is even, } \\
& \forall k=2,3, \ldots, m_{i}-n_{i} ; \\
& f\left(u_{i, j, k}\right)=f\left(u_{i, j+1, k-1}\right)-(-1)^{j+k}, \quad \forall k=2,3, \ldots, m_{i}-1, \\
& \forall j=1,2, \ldots, \min \left\{n_{i}, m_{i}-k\right\} ; \forall i=1,2, \ldots, t \text { are graceful. }
\end{aligned}
$$

Using these we shall define $g_{i}: V\left(P_{n_{i}} \times P_{m_{i}}\right) \longrightarrow\left\{0,1, \ldots,\left\lceil\frac{q_{i}}{2}\right\rceil-1,\left\lceil\frac{q_{i}}{2}\right\rceil+l,\left\lceil\frac{q_{i}}{2}\right\rceil+1+l\right.$, $\left.\ldots, q_{i}+l\right\}$ by

$$
\begin{array}{rlrl}
g_{i}(u)=f_{i}(u), & & \text { when } f_{i}(u)<\frac{q_{i}}{2}, \\
& =f_{i}(u)+l, & & \text { when } f_{i}(u) \geq \frac{q_{i}}{2}, \forall u \in V\left(P_{n_{i}} \times P_{m_{i}}\right) \\
& & \text { and } \forall i=1,2, \ldots, t,
\end{array}
$$

where l is an arbitrary non negative integer. Which are smooth graceful labeling function $\forall i=1,2, \ldots, t$.

Define for each $k=2,3, \ldots, t, h_{k}: V\left(\bigcup_{i=1}^{k} P_{n_{i}} \times P_{m_{i}}\right) \longrightarrow\left\{0,1, \ldots, \sum_{i=1}^{k} q_{i}\right\}$ as follows, assuming $h_{1}=f_{1}$.

$$
\begin{array}{rlrl}
h_{k}\left(w_{k}\right) & =g_{k}\left(w_{k}\right), & & \text { when } g_{k}\left(w_{k}\right)<\frac{q_{k}}{2}, \\
& =g_{k}\left(w_{k}\right)+\sum_{i=1}^{k-1} q_{i}-l, & & \text { when } g_{k}\left(w_{k}\right) \geq \frac{q_{k}}{2}, \forall w_{k} \in V\left(P_{n_{i}} \times P_{m_{i}}\right) ; \\
h_{k}(w)=h_{k-1}(w)+\left(\frac{q_{k}}{2}+1\right), & & \text { when } q_{k} \text { is even, } \\
& =\sum_{i=1}^{k-1} q_{i}-h_{k-1}(w)+\left(\frac{q_{k}-3}{2}\right), & & \text { when } q_{k} \text { is odd, } \forall w \in V\left(\bigcup_{i=1}^{k-1} P_{n_{i}} \times P_{m_{i}}\right) .
\end{array}
$$

Above defined labeling pattern give rise graceful labeling h_{k} to each disconnected graph $\bigcup_{i=1}^{k} P_{n_{i}} \times P_{m_{i}}, \forall k=2,3, \ldots, t$. Thus $\bigcup_{i=1}^{k} P_{n_{i}} \times P_{m_{i}}$ are disconnected graceful graphs, $\forall k=2,3, \ldots, t$. Particularly $\bigcup_{i=1}^{t} P_{n_{i}} \times P_{m_{i}}$ is graceful.

Illustration-2.20: To get graceful labeling for $G=\left(P_{3} \times P_{3}\right) \cup\left(P_{3} \times P_{4}\right) \cup\left(P_{3} \times P_{5}\right) \cup$ $\left(P_{2} \times P_{4}\right)$, we have $Q=12+17+22+10=61, q_{1}=12, q_{2}=17, q_{3}=22, q_{4}=10$, we have computed smooth graceful labelings for $P_{3} \times P_{3}, P_{3} \times P_{4}, P_{3} \times P_{5}$ and $P_{2} \times P_{4}$ in figure-12 by smooth vertex labeling functions $g_{i}(1 \leq i \leq 4)$ respectively, graceful labeling for $\left(P_{3} \times P_{3}\right) \cup\left(P_{3} \times P_{4}\right)$ by h_{2}, in figure -13 , graceful labeling for $\left(P_{3} \times P_{3}\right) \cup\left(P_{3} \times P_{4}\right) \cup\left(P_{3} \times P_{5}\right)$ by h_{3} in figure -14 and graceful labeling for G by h_{4} in figure -15 .

Figure-12 smooth graceful labeling for $P_{3} \times P_{3}, P_{3} \times P_{4}, P_{3} \times P_{5}$, and $P_{2} \times P_{4}$.

Figure-13 Graceful labeling h_{2} for the graph $\left(P_{3} \times P_{3}\right) \cup\left(P_{3} \times P_{4}\right)$.

Figure-14 Graceful labeling h_{3} for the graph $\left(P_{3} \times P_{3}\right) \cup\left(P_{3} \times P_{4}\right) \cup\left(P_{3} \times P_{5}\right)$.

Figure $-15 \quad$ Graceful labeling h_{4} for G.

Theorem-2.21: $\quad<C_{n_{1}}, P_{n_{2}}, C_{n_{3}}, \ldots, P_{n_{2 t}}, C_{n_{2 n+1}}>$ is graceful, when $n_{i} \equiv 0(\bmod 4)$, $\forall i=1,3, \ldots, 2 t+1$ and $n_{i} \in N, \forall i=1,2, \ldots, 2 t+1$.

Proof : Obviously $p_{i}=q_{i}=\left|V\left(C_{n_{i}}\right)\right|=\left|E\left(C_{n_{i}}\right)\right|=n_{i}, \forall i=1,3, \ldots, 2 t+1$ and $p_{j}=\left|V\left(P_{n_{j}}\right)\right|=n_{j}, q_{j}=\left|E\left(P_{n_{j}}\right)\right|=n_{j}-1, \forall j=2,4, \ldots, 2 t$. Let $G=<C_{n_{1}}, P_{n_{2}}, C_{n_{3}}$, $\ldots, P_{n_{2 t}}, C_{n_{2 n+1}}>, V\left(C_{n_{i}}\right)=\left\{u_{i, j} / 1 \leq j \leq n_{i}\right\}, \forall i=1,3, \ldots, 2 t+1$ and $V\left(P_{n_{j}}\right)=\left\{v_{j, k} /\right.$ $\left.1 \leq k \leq n_{j}\right\}, \forall j=2,4, \ldots, 2 t$ with $u_{i, 1}=v_{i+1, n_{i+1}}$ and $v_{i+1,1}=u_{i+2, n_{i+2}}$ for every $i=1,3, \ldots, 2 t-1$ to from the connected graph G. Here $P=|V(G)|=\sum_{i=1}^{2 t+1} p_{i}-2 t$ and $Q=|E(G)|=\sum_{j=1}^{2 t+1} q_{j}$.

Let $f_{2 i}: V\left(P_{n_{2 i}}\right) \longrightarrow\left\{0,1, \ldots, q_{2 i}\right\}$ be graceful labeling for $P_{n_{2 i}}$ defined by

$$
f_{2 i}\left(v_{2 i, k}\right)=q_{2 i}-\left(\frac{k-1}{2}\right), \quad \text { when } k \text { is odd }
$$

$$
=\left(\frac{k-2}{2}\right), \quad \text { when } k \text { is even }
$$

$$
\forall k=1,2, \ldots, p_{2 i}, \forall i=1,2, \ldots, t
$$

Let $f_{2 i+1}: V\left(C_{n_{2 i+1}}\right) \longrightarrow\left\{0,1, \ldots, q_{2 i+1}\right\}$ be graceful labeling for $C_{n_{2 i+1}}$ defined by

$$
\begin{array}{ll}
f_{2 i+1}\left(u_{2 i+1, j}\right)=q_{2 i+1}-\left(\frac{j-1}{2}\right), & \text { when } j \text { is odd, } \\
\quad=\left(\frac{j-2}{2}\right), & \text { when } j \text { is even, and } j \leq \frac{v_{2 i+1}}{2}, \\
=\left(\frac{j}{2}\right), & \text { when } j \text { is even, and } j>\frac{v_{2 i+1}}{2}, \\
& \forall j=1,2, \ldots, p_{2 i+1}, \forall i=0,1, \ldots, t .
\end{array}
$$

Define for each $k=2,4, \ldots, 2 t$ (assuming $\left.g_{1}=f_{1}\right) g_{k}: V\left(<C_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{k}}>\right) \longrightarrow$ $\left\{0,1, \ldots, \sum_{i=1}^{k} q_{i}\right\}$ and $g_{k+1}: V\left(<C_{n_{1}}, P_{n_{2}}, \ldots, C_{n_{k+1}}>\right) \longrightarrow\left\{0,1, \ldots, \sum_{j=1}^{k+1} q_{j}\right\}$ as follows.

$$
\begin{array}{rlrl}
g_{k}(u) & =f_{k}(u), & & \text { when } f_{k}(u)<\frac{q_{k}}{2}, \\
& =f_{k}(u)+\sum_{i=1}^{k-1} q_{i}, & & \text { when } f_{k}(u) \geq \frac{q_{k}}{2} \forall u \in V\left(P_{n_{k}}\right) ; \\
g_{k}(w) & =g_{k-1}(w)+\frac{q_{k}}{2}, & & \text { when } g_{k} \text { is even, } \\
& =\sum_{i=1}^{k-1} q_{i}+\left(\frac{g_{k}-1}{2}\right)-g_{k-1}(w), & & \text { when } g_{k} \text { is odd; } \\
\forall w & \forall V\left(<C_{n_{1}}, P_{n_{2}}, \ldots, C_{n_{k-1}}>\right) ; \\
g_{k+1}(v) & =f_{k+1}(v), & & \text { when } f_{k+1}(v) \leq \frac{q_{k+1}}{2}, \\
& =f_{k+1}(v)+\sum_{j=1}^{k} q_{j}, & & \text { when } f_{k+1}(v)>\frac{q_{k+1}}{2}, \forall v \in V\left(C_{n_{k+1}}\right) ; \\
g_{k+1}(w) & =\sum_{j=1}^{k} q_{j}+\left(\frac{g_{k+1}}{2}\right)-g_{k}(w), & & \forall w \in V\left(<C_{n_{1}}, P_{n_{2}}, \ldots, C_{n_{k-1}}, P_{n_{k}}>\right) .
\end{array}
$$

Above labeling pattern give rise graceful labelings g_{k}, g_{k+1} to the graphs $<C_{n_{1}}, P_{n_{2}}$, $\ldots, P_{n_{k}}>$ and $<C_{n_{1}}, P_{n_{2}}, \ldots, C_{n_{k+1}}>$ respectively and so they are graceful graphs, $\forall k=2,4, \ldots, t$. Particularly $<C_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{2 t}}, C_{n_{2 t+1}}>$ is a graceful graph.

Illustration-2.22: $\quad<C_{8}, P_{10}, C_{4}, P_{7}, C_{12}, P_{3}, C_{8}>$ and its graceful labeling g_{7} shown in figure -20 , for this we have computed graceful labelings $f_{1}, f_{2}, \ldots, f_{7}$ for $C_{8}, P_{10}, C_{4}, P_{7}$, C_{12}, P_{3}, C_{8} respectively in figure $-16,<C_{8}, P_{10}>,<C_{8}, P_{10}, C_{4}>$ and their graceful labelings g_{2}, g_{3} are shown in figure $\left.\left.-17,<C_{8}, P_{10}, C_{4}, P_{7}\right\rangle,<C_{8}, P_{10}, C_{4}, P_{7}, C_{12}\right\rangle$ and their graceful labeling g_{4}, g_{5} are shown in figure-18 and $<C_{8}, P_{10}, C_{4}, P_{7}, C_{12}, P_{3}>$ and its graceful labeling g_{6} shown in figure-19.

Figure-16 $C_{8}, P_{10}, C_{4}, P_{7}, C_{12}, P_{3}, C_{8}$ and its graceful labelings $f_{1}, f_{2}, \ldots, f_{7}$ respectively.

Figure-17 $\left\langle C_{8}, P_{10}\right\rangle,\left\langle C_{8}, P_{10}, C_{4}\right\rangle$ and their graceful labelings g_{2}, g_{3}.

Figure-18 $<C_{8}, P_{10}, C_{4}, P_{7}>,<C_{8}, P_{10}, C_{4}, P_{7}, C_{12}>$ and their graceful labelings g_{4}, g_{5}

Figure-19< $C_{8}, P_{10}, C_{4}, P_{7}, C_{12}, P_{3}>$ and their graceful labeling g_{6}.

Figure $-20 \quad G$ and its graceful labeling g_{7}.

Theorem-2.23: $\quad<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, P_{n_{2}} \times P_{m_{2}}, \ldots, P_{r_{t-1}}, P_{n_{t}} \times P_{m_{t}}>$ is graceful.
Proof : Let $G=<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, P_{n_{2}} \times P_{m_{2}}, \ldots, P_{r_{t-1}}, P_{n_{t}} \times P_{m_{t}}>$. It is obvious that $p_{i}=\left|V\left(P_{n_{i}} \times P_{m_{i}}\right)\right|=m_{i} n_{i}, \forall i=1,2, \ldots, t$ and $\left|V\left(P_{r_{j}}\right)\right|=r_{j}, \forall j=1,2, \ldots, t-1$. Also $q_{i}=\left|E\left(P_{n_{i}} \times P_{m_{i}}\right)\right|=2 p_{j}-\left(m_{i}+n_{i}\right), \forall i=1,2, \ldots, t$ and $\left|E\left(P_{r_{j}}\right)\right|=q_{j}^{\prime}=r_{j}-1$, $\forall j=1,2, \ldots, t-1$.

Let $V\left(P_{n_{i}} \times P_{m_{i}}\right)=\left\{u_{i, j, k} / 1 \leq j \leq n_{i}, 1 \leq k \leq m_{i}\right\}, \forall i=1,2, \ldots, t$ and $V\left(P_{r_{l}}\right)=$ $\left\{u_{l, k} / 1 \leq k \leq r_{l}\right\}, \forall l=1,2, \ldots, t-1$ with $u_{i, 1,1}=v_{i, r_{i}}$ and $v_{i, 1}=u_{i+1, n_{i+1}, m_{i+1}}$ for every $i=$ $1,2, \ldots, t-1$ to from connected graph G. Here we see that $|V(G)|=\sum_{i=1}^{t} p_{i}+\sum_{i=1}^{t-1}\left(r_{i}-2\right)$ and $|E(G)|=\sum_{i=1}^{t} q_{i}+\sum_{i=1}^{t-1}\left(q_{i}^{\prime}\right)$. Let $f_{l}: V\left(P_{n_{l}} \times P_{m_{l}}\right) \longrightarrow\left\{0,1, \ldots, q_{l}\right\}$ be vertex labeling function for $P_{n_{l}} \times P_{m_{l}}$ defined by

$$
\begin{aligned}
& f\left(u_{l, j, 1}\right)=g_{l}-\frac{(j-1)^{2}}{2}, \quad \text { when } j \text { is odd, } \\
& =\frac{j(j-2)}{2}, \quad \text { when } j \text { is even, } \forall j=1,2, \ldots, n_{l} ; \\
& f\left(u_{l, j, m_{l}}\right)=\frac{q_{l}}{2}-\frac{1}{4}+(-1)^{m_{l}+j\left[\frac{\left(n_{l}-j\right)^{2}}{2}+\frac{1}{4}\right], \quad \forall j=n_{l}, n_{l-1}, \ldots, 1 ;} \begin{aligned}
& f\left(u_{l, j, k}\right)=f\left(u_{l, j-1, k+1}\right)+(-1)^{j+k}, \forall k=m_{l}-1, m_{l}-2, \ldots, m_{l}+1-n_{l}, \\
& \forall j=n_{l}, n_{l}-1, \ldots, m_{l}+1-k ; \\
& f\left(u_{l, n_{l}, k}\right)=f\left(u_{l, n_{l}, 1}\right)+(-1)^{n_{l}}\left[\frac{\left(2 n_{l}-1\right)(k-1)}{2}\right], \quad \text { when } k \text { is odd, } \\
&=f\left(u_{l, n_{l}, 1}\right)-(-1)^{n_{l}}\left[\frac{\left(2 n_{l}-1\right)(k)}{2}\right], \text { when } k \text { is even, } \forall k=2,3, \ldots, m_{l}-n_{l} ; \\
& f\left(u_{l, j, k}\right)=f\left(u_{l, j+1, k-1}\right)+(-1)^{j+k}, \forall k=2,3, \ldots, m_{l}-1, \forall j=1,2, \ldots, \min \left\{n_{l}, m_{l}-k\right\}, \\
& \forall l=1,2, \ldots, t .
\end{aligned}
\end{aligned}
$$

which is a graceful labeling function for $P_{n_{l}} \times P_{m_{l}}, \forall l=1,2, \ldots, t$.
Let $f_{l}^{\prime}: V\left(P_{r_{l}}\right) \longrightarrow\left\{0,1, \ldots, q_{l}^{\prime}\right\}$ be vertex labeling function for $P_{r_{l}}$ defined by $f_{l}^{\prime}\left(v_{l, k}\right)=g_{l}-\left(\frac{k-1}{2}\right), \quad$ when k is odd, $=\frac{k-2}{2}, \quad$ when k is even;

$$
\forall k=1,2, \ldots, r_{l}, \forall l=1,2, \ldots, t-1
$$

which is a graceful labeling function for $P_{r_{l}}, \forall l=1,2, \ldots, t-1$.
Define for each $l=2,3, \ldots, t, g_{l-1}^{\prime}: V\left(<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, \ldots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}}>\right)$
$\longrightarrow\left\{0,1, \ldots, \sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right)\right\}$ and $g_{l}: V\left(<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, \ldots, P_{r_{l-1}}, P_{n_{l}} \times P_{m_{l}}>\right) \longrightarrow\{0,1$, $\left.\ldots, q_{l}+\sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right)\right\}$ as follows (assuming $\left.g_{1}=f_{1}\right)$.

$$
\begin{aligned}
& g_{l-1}^{\prime}(u)=f_{l-1}^{\prime}(u), \\
& =f_{l-1}^{\prime}(u)+g_{l-1}+\sum_{i=1}^{l-2}\left(q_{i}+q_{i}^{\prime}\right), \\
& \forall u \in V\left(P_{l-1}\right) ;
\end{aligned}
$$

$$
=f_{l-1}^{\prime}(u)+g_{l-1}+\sum_{i=1}^{l-2}\left(q_{i}+q_{i}^{\prime}\right), \quad \text { when } f_{l-1}^{\prime}(u) \geq \frac{q_{l}^{\prime}}{2}
$$

$$
g_{l-1}^{\prime}(w)=g_{l-1}(w)+\frac{q_{l-1}^{\prime}}{2}, \quad \text { when } g_{l-1}^{\prime} \text { is even }
$$

$$
=q_{l-1}+\sum_{i=1}^{l-2}\left(q_{i}+q_{i}^{\prime}\right)+\left(\frac{q_{l-1}^{\prime}-1}{2}\right)-g_{l-1}(w), \quad \text { when } g_{l-1}^{\prime} \text { is odd, }
$$

$$
\forall w \in V\left(<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, \ldots, P_{n_{l-1}} \times P_{m_{l-1}}>\right)
$$

$$
\begin{aligned}
& g_{l}(v)=f_{l}(v), \quad \text { when } f_{l}(v)<\frac{q_{l}}{2}, \\
& =f_{l}(v)+\sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right), \quad \text { when } f_{l}(v) \geq \frac{q_{l}}{2}, \\
& \forall v \in V\left(P_{n_{l}} \times P_{m_{l}}\right) ; \\
& \begin{array}{ll}
g_{l}(w)=g_{l-1}^{\prime}(w)+\frac{q_{l}}{2}, & \text { when } g_{l} \text { is even, } \\
=\sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right)+\left(\frac{q_{l}-1}{2}\right)-g_{l-1}^{\prime}(w), & \text { when } g_{l} \text { is odd. } \\
\forall w \in V\left(<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, \ldots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}}>\right)
\end{array}
\end{aligned}
$$

Above labeling pattern give rise graceful labeling g_{l-1}^{\prime}, g_{l} to the graphs $<P_{n_{1}} \times$ $P_{m_{1}}, P_{r_{1}}, \ldots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}}>$ and $<P_{n_{1}} \times P_{m_{1}}, P_{r_{1}}, \ldots, P_{r_{l-1}}, P_{n_{l}} \times P_{m_{l}}>$ respectively, $\forall l=2,3, \ldots, t$. So they are graceful graphs. Particularly $G=<P_{n_{1}} \times P_{m_{1}}$, $P_{r_{1}}, \ldots, P_{r_{t-1}}, P_{n_{t}} \times P_{m_{t}}>$ is graceful.

Illustration-2.24: $\quad<P_{3} \times P_{3}, P_{5}, P_{3} \times P_{4}, P_{8}, P_{4} \times P_{4}>$ and its graceful labeling g_{3} shown in figure-24, for this we have computed graceful labelings $f_{1}, f_{2}, f_{3}, f_{1}^{\prime}$ and f_{2}^{\prime} for the graphs $P_{3} \times P_{3}, P_{3} \times P_{4}, P_{4} \times P_{4}, P_{5}$ and P_{8} respectively in figure-21, graceful labeling g_{1}^{\prime} for $<P_{3} \times P_{3}, P_{5}>$, graceful labeling g_{2} for $<P_{3} \times P_{3}, P_{5}, P_{3} \times P_{4}>$ in figure -22, graceful labeling g_{2}^{\prime} for $<P_{3} \times P_{3}, P_{5}, P_{3} \times P_{4}, P_{8}>$ in figure -23 .

Figure-21 Graceful labeling f_{1} for $P_{3} \times P_{3}, f_{2}$ for $P_{3} \times P_{4}, f_{3}$ for $P_{4} \times P_{4}, f_{1}^{\prime}$ for P_{5} and f_{2}^{\prime} for P_{8}.

Figure-22
Graceful labeling g_{1}^{\prime} for $<P_{3} \times P_{3}, P_{5}>$ and g_{2} for $<P_{3} \times P_{3}, P_{5}, P_{3} \times P_{4}>$.

Figure-23 Graceful labeling g_{2}^{\prime} for the graph $\left\langle P_{3} \times P_{3}, P_{5}, P_{3} \times P_{4}, P_{8}\right\rangle$.

Figure-24 Graceful labeling for G.

Theorem-2.25: Arbitrary path union of t complete bipartite graphs $K_{m_{i}, n_{i}}$ $(1 \leq i \leq t)$ by $t-1$ paths of arbitrary length $r_{j}-1(1 \leq j \leq t-1)$ is graceful.

Proof : Let $G=<K_{m_{1}, n_{1}}, P_{r_{1}}, K_{m_{2}, n_{2}}, P_{r_{2}}, \ldots, K_{m_{t}, n_{t}}>$. Obviously $P=|V(G)|=$ $\sum_{i=1}^{t}\left(m_{i}+n_{i}\right)+\sum_{i=1}^{t-1}\left(r_{i}-2\right)$ and $Q=|E(G)|=\sum_{i=1}^{t} q_{i}+\sum_{i=1}^{t-1} q_{i}^{\prime}$, where $q_{i}=\mid E\left(K_{m_{i}, n_{i}} \mid=\right.$ $m_{i} n_{i}$ and $q_{i}^{\prime}=\left|E\left(P_{r_{j}}\right)\right|=r_{j}-1, \forall i=1,2, \ldots, t$ and $\forall j=1,2, \ldots, t-1$.

Let $V\left(K_{m_{i}, n_{i}}\right)=\left\{u_{i, j} / 1 \leq j \leq m_{i}\right\} \bigcup\left\{w_{i, k} / 1 \leq k \leq n_{i}\right\}, \forall i=1,2, \ldots, t$ and $V\left(P_{r_{l}}\right)=\left\{v_{l, t} / 1 \leq t \leq r_{l}\right\}$, with $u_{l, 1}=v_{l, r_{l}}, u_{l+1, m_{l+1}}=v_{l, 1} \forall l=1,2, \ldots, t-1$.
Let $f_{l}: V\left(K_{m_{l}, n_{l}}\right) \longrightarrow\left\{0,1, \ldots, q_{l}\right\}$ be graceful labeling function for $K_{m_{l}, n_{l}}$ defined by

$$
\begin{array}{ll}
f_{l}\left(u_{l, j}\right)=j-1, & \forall j=1,2, \ldots, m_{l} ; \\
f_{l}\left(w_{l, k}\right)=m_{l} \cdot k, & \forall k=1,2, \ldots, n_{l}, \forall l=1,2, \ldots, t
\end{array}
$$

Let $f_{l}^{\prime}: V\left(P_{r_{l}}\right) \longrightarrow\left\{0,1, \ldots, q_{l}^{\prime}\right\}$ be graceful labeling function for $P_{r_{l}}$ defined by

$$
\begin{aligned}
f_{l}^{\prime}\left(v_{l, k}\right) & =q_{l}^{\prime}-\left(\frac{k-1}{2}\right), & & \text { when } k \text { is odd, } \\
& =\left(\frac{k-2}{2}\right), & & \text { when } k \text { is even, } \forall k=1,2, \ldots, r_{l} ;
\end{aligned}
$$

$$
\forall l=1,2, \ldots, t-1
$$

Define for each $\forall l=2,3, \ldots, t$ (assuming $\left.g_{l}=f_{1}\right) g_{l-1}^{\prime}: V\left(<K_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, K_{m_{l-1}, n_{l-1}}\right.$, $\left.P_{r_{l-1}}>\right) \longrightarrow\left\{0,1, \ldots, \sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right)\right\}$ and $g_{l}: V\left(<K_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, P_{r_{l-1}}, K_{m_{l}, n_{l}}>\right)$ $\longrightarrow\left\{0,1, \ldots, \sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right)+q_{l}\right\}$ as follows

$$
\begin{aligned}
& g_{l-1}^{\prime}(u)=f_{l-1}^{\prime}(u), \\
& =f_{l-1}^{\prime}(u)+q_{l-1}+\sum_{i=1}^{l-2}\left(q_{i}+q_{i}^{\prime}\right), \\
& \forall u \in V\left(P_{l-1}\right) ; \\
& g_{l-1}^{\prime}(w)=g_{l-1}(w)+\left(\frac{q_{l-1}^{\prime}-1}{2}\right), \quad \text { when } g_{l-1}^{\prime} \text { is odd, } \\
& =q_{l-1}+\sum_{i=1}^{l-2}\left(q_{i}+q_{i}^{\prime}\right)+\left(\frac{q_{l-1}^{\prime}}{2}\right)-g_{l-1}(w), \quad \text { when } q_{l-1}^{\prime} \text { is even, } \\
& \forall w \in V\left(<k_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, K_{m_{l-1}, n_{l-1}}>\right) ; \\
& g_{l}(v)=f_{l}(v), \quad \text { when } f_{l}(v)<m_{l}, \\
& =f_{l}(v)+\sum_{i=1}^{l-1}\left(q_{i}+q_{i}^{\prime}\right), \quad \text { when } f_{l}(v) \geq m_{l}, \\
& \forall v \in V\left(K_{m_{l}, n_{l}}\right) ; \\
& g_{l}(w)=\sum_{i=1}^{l-1}\left(g_{i}+g_{i}^{\prime}\right)+m_{l}-g_{l-1}^{\prime}(w)-1, \\
& \forall w \in V\left(<k_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, K_{m_{l-1}, n_{l-1}}, P_{r_{l}}>\right) .
\end{aligned}
$$

Above defined labeling pattern give rise graceful labelings g_{l-1}^{\prime}, g_{l} to the graphs $<K_{m_{1}, n_{1}}, P_{r_{1}, \ldots,}, P_{r_{l-1}}>$ and $<K_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, K_{m_{l}, n_{l}}>$ respectively, $\forall l=2,3, \ldots, t$. So these are graceful graphs, $\forall l=2,3, \ldots, t$. Particularly $G=<K_{m_{1}, n_{1}}, P_{r_{1}}, \ldots, K_{m_{t}, n_{t}}>$ is graceful.

Illustration-2.26: $\quad<K_{3,5}, P_{6}, K_{3,3}, P_{5}, K_{3,4}>$ and its graceful labeling g_{3} shown in figure-28, for this we have computed graceful labelings $f_{1}, f_{2}, f_{3}, f_{1}^{\prime}, f_{2}^{\prime}$ for the graphs $K_{3,5}, K_{3,3}, K_{3,4}, P_{6}, P_{5}$ respectively in figure -25 , graceful labeling g_{1}^{\prime} for $<K_{3,5}, P_{6}>, g_{2}$ for $<K_{3,5}, P_{6}, K_{3,3}>$ in figure -26 and graceful labeling g_{2}^{\prime} for $<K_{3,5}, P_{6}, K_{3,3}, P_{5}>$ in figure-27.

Figure-25

Figure-28 Graceful labeling g_{3} for G.

References

[1] A. Rosa, On certain valuation of graph, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris, (1967) pp. $349-355$.
[2] H.K.Ng, α-valuations and k-gracefulness, Notices $A M S, 7,1986$, pp. 247.
[3] V.J. Kaneria and M.M. Jariya, Smooth Graceful Graphs And Its Application To Construct Graceful Graphs, I.J. of Sci. and Research Vol-3 (8), Aug. 2014, pp. 909 912. http://www.ijsr.net/archive/v3i8/MDIwMTU0ODg=.pdf
[4] V.J. Kaneria and M.M. Jariya, Semi smooth graceful graph and construction of new graceful trees, Elixir Applied Mathematics Vol-76, 2014, pp. 28536-28538.
[5] J. A. Gallian, The Electronics Journal of Combinatorics, 17, \#DS6(2014). http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6
[6] F. Harary, Graph theory Addition Wesley, Massachusetts, 1972.
[7] V. J. Kaneria and H. M. Makadia, Graceful Labeling for Step Grid Graph, J. of advance in Maths Vol-9 (5), Nov. 2014, pp. 2647 - 2654. http://cirworld.org/journals/index.php/jam/article/view/3199

[^0]: Semi smooth graceful labeling for $H=C_{12}$ with twin chords.

