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Abstract

In this paper we have done some graph operations on smooth graceful and semi

smooth graceful graphs. By applying path union of graphs, star of a graph and

cycle of a graph we have generated new graceful families. We have proved that star

of a semi smooth graceful graph is graceful. We also proved that Km,n, P (t · H)

are semi smooth graceful, where H is a semi smooth graceful graph, step grid

graph and cycle graph C(t · H) are smooth graceful, when t ≡ (mod 4), H is as

above, every semi smooth graceful graph is odd graceful and Ct(m ·Cn), P
t(k · T ),

< Cn1 , Pn2 , Cn3 , . . . , Pn2t , Cn2t+1 >, < Km1,n1 , Pr1 ,Km2,n2 , Pr2 , . . . , Prt−1 ,Kmt,nt >,

< Pn1 × Pm1 , Pr1 , Pn2 × Pm2 , . . . , Prt−1 , Pnt × Pmt > are graceful, when T is semi

smooth graceful tree.

————————————————————————————————————
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1 Introduction :

In 1966 Rosa [1] defined α-labeling as a graceful labeling with an additional property.

A graph which admits α-labeling is necessarily bipartite. A natural generalization of

graceful graph is the notion of k-graceful graph. Obviously 1-graceful is graceful and a

graph which admits α-labeling is always k-graceful graph, ∀ k ∈ N . Ng [2] has identified

some graphs that are k-graceful, ∀ k ∈ N , but do not have α-labeling.

Kaneria and Jariya [3,4] define smooth graceful labeling and semi smooth graceful

labeling. Every smooth graceful graph is also a semi smooth graceful graph. They proved

cycle Cn (n ≡ 0 (mod 4)), path Pn, grid graph Pn × Pm and complete bipartite graph

K2,n are smooth graceful graphs.

For a comprehensive bibliography of papers on various graph labelings are given in

Gallian [5]. The present paper is focused on various graph operations on semi smooth

graceful graph to generate new families of graceful graph.

We will consider a simple undirected finite graph G = (V,E) on |V | = p vertices and

|E| = q edges. For all terminology and standard notations we follows Harary [6]. Here

we will recall some definitions which are used in this paper.

Definition−1.1 : A function f is called graceful labeling of a graph G = (V,E) if

f : V (G) −→ {0, 1, . . . , q} is injective and the induced function f ? : E(G) −→ {1, 2, . . . , q}

defined as f ?(e) = |f(u)− f(v)| is bijective for every edge e = (u, v) ∈ E(G). A graph G

is called graceful graph if it admits a graceful labeling.

Definition−1.2 : A function f is called k-graceful labeling of a graph G = (V,E) if

f : V (G) −→ {0, 1, . . . , k + q − 1} is injective and the induced function f ? : E(G) −→

{k, k+ 1, k+ 2, . . . , k+ q− 1} defined as f ?(e) = |f(u)− f(v)| is bijective, for every edge

e = (u, v) ∈ E(G). A graph G is called k-graceful graph if it admits a k-graceful labeling.
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Definition−1.3 : A function f is called odd graceful labeling of a graph G = (V,E)

if f : V (G) −→ {0, 1, . . . , 2q − 1} is injective and the induced function f ? : E(G) −→

{1, 3, 5, . . . , 2q−1} defined as f ?(e) = |f(u)−f(v)| is bijective for every edge e = (u, v) ∈

E(G). A graph G is called odd graceful graph if it admits an odd graceful labeling.

Definition−1.4 : A smooth graceful graph G, we mean it is a bipartite graph with

|E(G)| = q and the property that for all non-negative integer l, there is a function

g : V (G) −→ {0, 1, . . . , b q−1
2
c, b q+1

2
c + l, b q+3

2
c + l, . . . , q + l} such that the induced edge

labeling function g? : E(G) −→ {1 + l, 2 + l, . . . , q + l} defined as f ?(e) = |f(u) − f(v)|

is a bijection for every edge e = (u, v) ∈ E(G).

Example−1.5 : A cycle C16 with twin chords and its smooth graceful labeling shown

in figure−1.

018+l

10+l

12+l13+l

14+l

17+l

11+l

9+l
1

2

3

5 6

7

8

Figure−1 Smooth graceful labeling for a cycle C16 with twin chords.

Definition−1.6 : A semi smooth graceful graph G, we mean it is a bipartite graph

with |E(G)| = q and the property that for all non-negative integer l, there is an integer t

(0 ≤ t < q) and an injective function g : V (G) −→ {0, 1, . . . , t−1, t+ l, t+ l+1, . . . , q+ l}

such that the induced edge labeling function g? : E(G) −→ {1 + l, 2 + l, . . . , q+ l} defined

as f ?(e) = |f(u)− f(v)| is a bijection for every edge e = (u, v) ∈ E(G).

If we take l = 0 in above both definitions−1.4, 1.6 the labeling functions g will become

graceful labeling for the graph G. Every smooth graceful graph is also a semi smooth

graceful graph by taking t = b q+1
2
c.
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Example−1.7 : A tree on 12 edges and its semi smooth graceful labeling shown in

figure−2.

5+l

0
3

2

1
4

12+l
11+l

10+l
9+l

8+l

7+l

6+l

Figure−2 Semi smooth graceful labeling for a tree with |E(T )| = 12.

Definition−1.8 : Let G be a graph and G1, G2, . . . , Gn (n ≥ 2) be n copies of G. Then

the graph obtained by an edge from Gi to Gi+1 (for i = 1, 2, . . . , n − 1) is called path

union of G and we will denote it by P (G1, G2, . . . , Gn).

Definition−1.9 : A graph obtained by replacing each vertex of the star K1,n by a

connected graph G of n vertices is called star of G and we will denote it by G?. The

graph G which replaced at the center of K1,n we will call it as central copy of G?.

Definition−1.10 : For a cycle Cn, each vertices of Cn are replaced by connected

graphs G1, G2, . . . , Gn is known as cycle of graphs and we will denote such graph by

C(G1, G2, . . . , Gn). If we replace each vertices of Cn by a connected graph G (i.e. G1 =

G = G2 = . . . = Gn), such cycle of graph G we will denote it by C(n ·G).

If we replace each vertices of Cn by C(n ·G), such cycle graph C(n · (n ·G)), we will

denote it by C2(n ·G). In general for any t ≥ 2 Ct(n ·G) = C(n · Ct−1(n ·G)).

Definition−1.11 : Take Pn, Pn, Pn−1, Pn−2, . . . , P3, P2 paths on n, n, n−1, n−2, . . . , 3, 2

vertices and arranged them vertically. A graph obtained by joining horizontal vertices of

given successive paths is known as a step grid graph of size n (n ≥ 3) and we will denote

it by Stn.

Obviously |V (Stn)| = 1
2
(n2 + 3n− 2) and |E(Stn)| = n2 +n− 2. Above definition was

introduced by Kaneria and Makadia [7].
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Definition−1.12 : Let G1, G2, . . . , Gt be any connected graphs. The graph < G1, Pn1 ,

G2, Pn2 , . . . , Gt−1, Pnt−1 , Gt > obtained by joining two consecutive graphs Gi and Gi+1

by Pni
, a path of of length ni and ni ∈ N , ∀ i = 1, 2, . . . , t − 1 is called arbitrary path

union of graphs G1, G2, . . . , Gt join by arbitrary paths Pn1 , Pn2 , . . . , Pnt−1 . In other words

consecutive graphs G1, G2, . . . , Gt join by arbitrary paths Pn1 , Pn2 , . . . , Pnt−1 is known as

arbitrary path union of graphs Gi (1 ≤ i ≤ t).

If we replace each Pn1 , Pn2 , . . . , Pnt−1 by a path Pn of length n such path union of

graphs, we will denote by Pn(G1, G2 . . . , Gt) and if we take Gi = G (1 ≤ i ≤ t),where

G is a connected graph, we will denote such graph (arbitrary path union of a graph G)

by Pn(t · G). Obviously P1(G1, G2, . . . , Gn) = P (G1, G2, . . . , Gn), simple path union of

G1, G2, . . . , Gn and P1(t ·G) = P (t ·G) = P (G1, G2, . . . , Gn), where G1 = G = . . . = Gn.

If we replace G = P (t ·H) in P (t ·G), such graph P (t · P (t ·H)), we will denote it by

P 2(t ·H). In general for any s ≥ 2 P s(t ·G) = P (t · P s−1(t ·G)) or P s−1(t · P (t ·G)).

2 Main Results :

Theorem−2.1 : Km,n is a semi smooth graceful graph.

Proof : Let v1, v2, . . . , vm, u1, u2, . . . , un be vertices of the complete bipartite graph

Km,n. Obviously Km,n is a bipartite graph with the vertex graceful labeling function

f : V (Km,n) −→ {0, 1, . . . , q = mn} defined by

f(vi) = m− i or i− 1, ∀ i = 1, 2, . . . ,m;

f(uj) = q −m(j − 1), ∀ j = 1, 2, . . . , n.

Let l be any non-negative integer. Define the vertex labeling function g : V (Km,n) −→

{0, 1, . . . ,m− 1,m+ l,m+ 1 + l, . . . ,mn+ l} such that its induced edge labeling function

g? : E(Km,n) −→ {1+l, 2+l, . . . ,mn+l} with g?(e) = |g(u)−g(v)|, ∀ e = (u, v) ∈ E(Km,n)

defined by

g(w) = f(w), when w ∈ {v1, v2, . . . , vm}

= f(w) + l, when w ∈ {u1, u2, . . . , un}.
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Now for each e = (u, v) ∈ E(Km,n), we see that

g?(e) = g?((u, v))

= |g(u)− g(v)|

= |f(u) + l − f(v)|

= |f(u)− f(v)|+ l

= f ?(e) + l

Therefore g? is a bijection as f ? and g?(E) = {1 + l, 2 + l, . . . , q + l}. Hence Km,n is

semi smooth graceful.

Theorem−2.2 : Step grid graph Stn is a smooth graceful graph.

Proof : Let G = Stn be a step grid graph of size n. Where mention each vertices of nth

column like u1,j (1 ≤ j ≤ n), (n − 1)th column like u2,j (1 ≤ j ≤ n), (n − 2)th column

like u3,j (1 ≤ j ≤ n − 1), (n − 3)th column like u4,j (1 ≤ j ≤ n − 2), similarly the

first column like un,j (j = 1, 2). Here we recall that p = |V (G)| = 1
2
(n2 + 3n − 2) and

q = |E(G)| = n2 + n− 2. Moreover Stn is a bipartite graceful graph (proved by Kaneria

and Makadia [7]) with vertex labeling function f : V (Stn) −→ {0, 1, . . . , q} defined by

f(u1,j) = q
2
− 1

8
+ (−1)j+1 [j

2

4 −
1
8 ], ∀ j = 1, 2, . . . , n;

f(ui,j) = f(ui−1,j−1) + (−1)j, ∀ i = 2, 3, . . . , bn
2
c,

∀ j = 1, 2, . . . , n+ i− 1;

f(ui,1) = (n− i+ 1)2 + 1, ∀ i = n, n− 1, . . . , dn
2
e;

f(ui,2) = q − (n− i+ 1)(n− i), ∀ i = n, n− 1, . . . , dn
2
e;

f(ui,j) = f(ui+1,j−2) + (−1)j−1, ∀ i = n− 1, n− 2, . . . , 2,

∀ j = 3, 4, . . . , n+ 2− i.

Let l be any non-negative integer. Define the vertex labeling function g : V (Stn) −→

{0, 1, . . . , q
2
− 1, q

2
+ l, q

2
+ 1 + l, . . . , q + l} such that its induced edge labeling function

g? : E(Stn) −→ {1 + l, 2 + l, . . . , q + l} with g?(e) = |g(u)− g(v)|, ∀ e = (u, v) ∈ E(Stn)

defined by

g(w) = f(w), when f(w) < q
2

= f(w) + l, when f(w) ≥ q
2
.
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Now for each e = (u, v) ∈ E(Stn), we see that

g?(e) = g?((u, v))

= |g(u)− g(v)|

= |f(u)− f(v)|+ l, as for any e = (u, v) ∈ E(Stn) one of {f(u), f(v)} is

less than q
2

and another is greater than or equal to q
2
.

⇒ g?(e) = f ?(e) + l, ∀ e ∈ E(Stn).

Therefore g? is a bijection as f ? and g?(E) = {1 + l, 2 + l, . . . , q + l}. Thus Stn is

smooth graceful.

Theorem−2.3 : Path union of t copies of a semi smooth graceful graph H is graceful.

Proof : Let G be a path union of t copies of a semi smooth graceful graph H with

p = |V (H)| and q = |E(H)|. Let l be an arbitrary non-negative integer and f : V (H) −→

{0, 1, . . . , t− 1, t+ l, t+ l + 1, . . . , q + l} be a semi smooth graceful labeling for some t ∈

{0, 1, . . . , q}. Then its induced edge labeling function f ? : E(H) −→ {1+ l, 2+ l, . . . , q+ l}

with f ?(e) = |f(u)− f(v)|, ∀ e = (u, v) ∈ E(H) is a bijection.

Let V (H) = {v1, v2, . . . , vp} and take vi,1, vi,2, . . . , vi,p as vertices for ith copy of H in

G, ∀ i = 1, 2, . . . , t with v1,j = vj, ∀ j = 1, 2, . . . , p in first copy of H in G. Obviously

P = |V (G)| = tp and Q = |E(G)| = tq + t− 1.

Define the vertex labeling function g : V (G) −→ {0, 1, . . . , Q} as follows

g(v1,j) = f(vj), if f(vj) < t

= f(vj) + (Q− q)− l, if f(vj) ≥ t, ∀ j = 1, 2, . . . , p;

g(v2,j) = g(v1,j) + (Q− q), if g(v1,j) <
Q
2

= g(v1,j)− (Q− q), if g(v1,j) >
Q
2

, ∀ j = 1, 2, . . . , p;

g(vi,j) = g(vi−2,j) + (q + 1), if g(vi−2,j) <
Q
2

= g(vi−1,j)− (q + 1), if g(vi−2,j) >
Q
2

, ∀ i = 3, 4, . . . , t, ∀ j = 1, 2, . . . , p.

Now choose a vertex v of H(i) and each corresponding vertex to v in each copy H(i+1)

join by an edge to form path union G, ∀ i = 1, 2, . . . , t − 1. The above edge labeling

function g give rise graceful labeling for G. Thus G is graceful.

Illustration−2.4 : Semi smooth graceful labeling for St5 and graceful labeling for path

union of 5 copies of St5 are shown in figure−3 and figure−4 respectively.
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Figure−3 Smooth graceful labeling for St5.
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Figure−4 Graceful labeling for path union of 5 copies of St5.
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Theorem−2.5 : Star of a semi smooth graceful graph is graceful.

Proof : Let H be a semi smooth graceful graph and G = H?, where p = |V (H)|,

q = |E(H)|. Let l be an arbitrary non-negative integer and f : V (H) −→ {0, 1, . . . , t− 1,

t+l, t+l+1, . . . , q+l} be a semi smooth graceful labeling for for H, where t ∈ {0, 1, . . . , q}.

Let V (H) = {v1, v2, . . . , vp}.

Let v0,1 = v1, v0,2 = v2, . . . , v0,p = vp be vertices of the central copy H in G. Take vi,j

(1 ≤ j ≤ p) as vertices for ith copy H(i) in G, ∀ i = 1, 2 . . . , p. Define the vertex labeling

function g : V (G) −→ {0, 1, . . . , Q}, where Q = pq + p+ q as follows

g(v0,j) = f(vj), if f(vj) < t

= f(vj) + (Q− q)− l, if f(vj) ≥ t, ∀ j = 1, 2, . . . , p;

g(v1,j) = g(v0,j) + (Q− q), if g(v0,j) <
Q
2

= g(v0,j)− (Q− q), if g(v0,j) >
Q
2

, ∀ j = 1, 2, . . . , p;

g(vi,j) = g(vi−2,j) + (q + 1), if g(vi−2,j) <
Q
2

= g(vi−2,j)− (q + 1), if g(vi−2,j) >
Q
2

,

∀ i = 2, 3, . . . , p, ∀ j = 1, 2, . . . , p.

Now join each vertex of central copy H(0) with its corresponding vertex of other copies

H(i) by an edge, ∀ i = 1, 2, . . . , p. Above labeling pattern give rise graceful labeling to

the graph G and so it is graceful.

Illustration−2.6 : Semi smooth graceful labeling for H = C12 with twin chords and

graceful labeling for the star of H are shown in figure−5 and figure−6 respectively.

1

4

6 7

8

0

14+l13+l
12+l

11+l
10+l

9+l

Figure−5 Semi smooth graceful labeling for H = C12 with twin chords.
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Figure−6 Graceful labeling for H?, where H is a cycle C12 with twin chords.

Theorem−2.7 : C(t · H) is graceful, where H is a semi smooth graceful graph and

t ≡ 0, 3 (mod 4).

Proof : Let G be a cycle graph formed by t copies of a semi smooth graceful graph H,

t ≡ 0, 3 (mod 4). Let p = |V (H)|, q = |E(H)|, V (H) = {v1, v2, . . . , vp}. For an arbitrary

non-negative integer l, let f : V (H) −→ {0, 1, . . . , t− 1, t+ l, t+ l+ 1, . . . , q+ l} be a semi

smooth graceful labeling for some t ∈ {0, 1, . . . , q}.

Obviously P = |V (G)| = pt and Q = |E(G)| = t(q + 1). Let ui,j (1 ≤ j ≤ p) be

vertices of ith copy of H(i) in G, ∀ i = 1, 2, . . . , t with u1,j = vj, ∀ j = 1, 2, . . . , p. Join ui,k

with ui+1,k by an edge, ∀ i = 1, 2, . . . , t−1 and ut,k with u1,k to form cycle graph C(t ·H),

for some k ∈ {1, 2, . . . , p}. Define vertex labeling function g : V (G) −→ {0, 1, . . . , Q} as

follows
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g(u1,j) = f(vj), if f(vj) < t

= f(vj) + (Q− q)− l, if f(vj) ≥ t, ∀ j = 1, 2, . . . , p;

g(u2,j) = g(u1,j) + (Q− q), if g(u1,j) <
Q
2

= g(u1,j)− (Q− q), if g(u1,j) >
Q
2

, ∀ j = 1, 2, . . . , p;

g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2

,

∀ i = 3, 4, . . . , d t
2
e, ∀ j = 1, 2, . . . , p;

g(ud t
2
e+1,j) = g(ud t

2
e−1,j) + (q + 2), if g(ud t

2
e−1,j) <

Q
2

= g(ud t
2
e−1,j)− (q + 1), if g(ud t

2
e−1,j) >

Q
2

, ∀ j = 1, 2, . . . , p;

g(ud t
2
e+2,j) = g(ud t

2
e,j) + (q + 2), if g(ud t

2
e,j) <

Q
2

= g(ud t
2
e,j)− (q + 1), if g(ud t

2
e,j) >

Q
2

, ∀ j = 1, 2, . . . , p;

g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2

,

∀ i = d t
2
e+ 3, d t

2
e+ 4, . . . , t, ∀ j = 1, 2, . . . , p.

Above labeling pattern give rise a graceful labeling to the graph C(t ·H) and so it is

graceful.

Illustration−2.8 : Cycle of a tree on 13 vertices with 7 copies and its graceful labeling

shown in figure−7.
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Figure−7 Graceful labeling for C(7 ·H), where H is a tree on 13 vertices and take l = (Q− q) = 79.
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Theorem−2.9 : Every semi smooth graceful graph is odd graceful.

Proof : Let G be a semi smooth graceful graph with semi smooth vertex labeling function

g : V (G) −→ {0, 1, . . . , t−1, t+ l, t+ l+1, . . . , q+ l}, whose induced edge labeling function

g? : E(G) −→ {1+ l, 2+ l, . . . , q+ l} defined by g?(e) = |g(u)−g(v)|, ∀ e = (u, v) ∈ E(G),

for some t ∈ {1, 2, . . . , q} and an arbitrary non-negative integer l.

Since G is a bipartite graph, we will take V (G) = V1 ∪ V2 (where V1 6= φ, V2 6= φ and

V1 ∩ V2 = φ) and there is no edge e ∈ E(G) whose both end vertices lies in V1 or V2.

Moreover

{g(u) / u ∈ V1} ⊆ {1, 2, . . . , t− 1}

{g(u) / u ∈ V2} ⊆ {t+ l, t+ l + 1, . . . , q + l}.

Otherwise by taking l sufficiently large, the induced edge function g? produce edge

label which is less than l, gives a contradiction that G admits a semi smooth graceful

labeling g.

Now define h : V (G) −→ {0, 1, 2, . . . , 2q − 1} as follows

h(u) = 2 · g(u), ∀ u ∈ V1 and

h(v) = 2 · g(v)− 1− 2l, ∀ v ∈ V2.

Above labeling function h give rise odd graceful labeling to the graph G. Because

for any edge e = (u, v) ∈ E(G) [where u ∈ V1 and v ∈ V2], g
?(e) = i + l, for some

i ∈ {1, 2, . . . , q}.

Also for any e = (u, v) ∈ E(G) h?(e) = h(v)− h(u)

= 2g(v)− (1 + 2l)− 2g(u)

= 2(g(v)− g(u))− (1 + 2l)

= 2|g(v)− g(u)| − (1 + 2l)

= 2g?(e)− (1 + 2l)

= 2(i+ l)− (1 + 2l)

= 2i− 1.

Thus G is an odd graceful graph.

Illustration−2.10 : Semi smooth graceful labeling and odd graceful labeling for St6

are shown in figure−8.
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Figure−8 Semi smooth graceful labeling and odd graceful labeling for St6.

Theorem−2.11 : Cycle graph C(t ·H) is smooth graceful, when t ≡ 0 (mod 4) and H

is a semi smooth graceful graph.

Proof : It is obvious that if we join two bipartite graphs by a path then the resultant

graph is also bipartite graph. So P (k ·H) are bipartite graphs, ∀ k = 2, 3, . . . , t, as H is

a bipartite graph. To get C(t · H), we have to add one more edge in P (t · H) between

first and last copy of H in P (t · H). Thus we have to add t edge in
⋃t

i=1 H
(i) for the

construction of C(t · H). If these added edges does not form a cycle of odd length then

C(t ·H) is also a bipartite graph.

Here we will add t edges to
⋃t

i=1 H
(i) between corresponding vertices in each copy to

a vertex v from H to form the cycle graph C(t ·H), where t ≡ 0 (mod 4). Thus C(·H) is

a bipartite graph.

In Theorem−2.7 we proved that C(t ·H) is a graceful graph with the vertex labeling

function g : V (G) −→ {0, 1, . . . , Q} defined as follows

g(u1,j) = f(vj), if f(vj) < t

= f(vj) + (Q− q)− l, if f(vj) ≥ t, ∀ j = 1, 2, . . . , p;

g(u2,j) = g(u1,j) + (Q− q), if g(u1,j) <
Q
2

= g(u1,j)− (Q− q), if g(u1,j) ≥ Q
2

, ∀ j = 1, 2, . . . , p;

13



g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2

,

∀ i = 3, 4, . . . , t
2
, ∀ j = 1, 2, . . . , p;

g(u t
2
+1,j) = g(u t

2
−1,j) + (q + 2), if g(u t

2
−1,j) <

Q
2

= g(u t
2
−1,j)− (q + 1), if g(u t

2
−1,j) >

Q
2

, ∀ j = 1, 2, . . . , p;

g(u t
2
+2,j) = g(u t

2
,j) + (q + 2), if g(u t

2
,j) <

Q
2

= g(u t
2
,j)− (q + 1), if g(u t

2
,j) >

Q
2

, ∀ j = 1, 2, . . . , p;

g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2

,

∀ i = t
2

+ 3, t
2

+ 4, . . . , t, ∀ j = 1, 2, . . . , p.

Where Q = t(q + 1), q = |E(H)|, p = |V (H)| and f : V (H) −→ {0, 1, . . . , t − 1, t + l,

t+ l+ 1, . . . , q+ l} (t ∈ {1, 2, . . . , q} and l be an arbitrary non-negative integer) be a semi

smooth graceful labeling for the semi smooth graceful graph H.

From above defined labeling patter g on C(t ·H), we can see that for any e = (u, v) ∈

E(C(t ·H)), either g(u) < Q
2

and g(v) ≥ Q
2

or g(u) ≥ Q
2

and g(v) < Q
2

. Thus if we define

h : V (C(t ·H)) −→ {0, 1, . . . , Q
2
− 1, Q

2
+ l, Q

2
+ l + 1, . . . , Q+ l} as follows.

h(v) = g(v), when g(v) < Q
2

= g(v) + l, when g(v) ≥ Q
2

, for any arbitrary non-negative integer l, we can

observe that the induced edge labeling function h? : E(C(t·H)) −→ {1+l, 2+l, . . . , Q+l}

defined by h?(e = (u, v)) = |h(u)−h(v)| = |g(u)−g(v)|+l = g?(e)+l, becomes a bijection,

as h?(E(C(t ·H))) = {1 + l, 2 + l, . . . , Q+ l} and so h is a smooth graceful labeling to the

graph C(t ·H) and hence C(t ·H) is a smooth graceful graph.

Theorem−2.12 : Ct(m · Cn) is graceful, when m,n ≡ 0 (mod 4) and t ∈ N .

Proof : Since Cn (n ≡ 0 (mod 4)) is a smooth graceful graph, by Theorem−2.11 C(m·Cn)

is also a smooth graceful graph, where m,n ≡ 0 (mod 4). By applying same argument

C(m · C(m · Cn)) = C2(m · Cn) is a smooth graceful graph.

Similarly C(m · C2(m · Cn)) = C3(m · Cn), . . ., C(m · Ct−1(m · Cn)) = Ct(m · Cn) are

smooth graceful graphs, where m,n ≡ 0 (mod 4) and t ∈ N .

Particularly Ct(m · Cn) is graceful graph, where m,n ≡ 0 (mod 4) and t ∈ N .

14



Illustration−2.13 : C3(4 ·C4) and its graceful labeling shown in figure−9, where Q =

|E(C3(4 · C4))| = 340 and P = |V (C3(4 · C4))| = 256.
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Figure−9 C3(4 · C4) and its graceful labeling.

Theorem−2.14 : P (t ·H) is a semi smooth graceful graph, where H is a semi smooth

graceful graph and t ∈ N .

Proof : It is obvious that P (t ·H) is a bipartite graph as H is bipartite. In Theorem−2.3

we proved that path union of t copies of semi smooth graceful graph is also graceful. Let

G = P (t ·H) and V (H) = {v1, v2, . . . , vp} with p = |V (H)|, q = |E(H)|.

Since H is a semi smooth graceful graph, it admits a semi smooth graceful labeling

say f : V (H) −→ {0, 1, . . . , y− 1, y+ l, y+ l+ 1, . . . , q+ l} for some y ∈ {1, 2, . . . , q} and

an arbitrary non-negative integer l ∈ N .
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Let Q = tq + t− 1 and k be an non-negative integer. Take w = tq
2

, when t is even or

b t
2
cq+y, when t is odd. Define the vertex labeling function h : V (G) −→ {0, 1, . . . , w−1,

w + k, w + k + 1, . . . , Q+ k} as follows

h(v1,j) = f(vj), if f(vj) < y

= f(vj) + (Q− q) + (k − y), if f(vj) ≥ y, ∀ j = 1, 2, . . . , p;

h(v2,j) = h(v1,j) + (Q− q) + k, if h(v1,j) <
Q
2

= h(v1,j)− (Q− q + k), if h(v1,j) >
Q
2

, ∀ j = 1, 2, . . . , p;

h(vi,j) = h(vi−2,j) + (q + 1 + k), if h(vi−2,j) <
Q
2

= h(vi−2,j)− (q + 1 + k), if h(vi−2,j) >
Q
2

,

∀ i = 3, 4, . . . , t, ∀ j = 1, 2, . . . , p.

Above labeling pattern give rise semi smooth graceful labeling to the graph G =

P (t ·H). Thus G is a semi smooth graceful graph.

Theorem−2.15 : P t(k ·T ) is graceful tree, where T is a semi smooth graceful tree and

t, k ∈ N .

Proof : We have T is a semi smooth graceful tree. By last Theorem−2.14 P (k · T ) is

also semi smooth graceful tree, as path union of k copies of a tree is also a tree. Applying

similar theory P t(k · T ) is semi smooth graceful. Therefore it is a graceful tree.

Illustration−2.16 : P 3(2 ·T ) and its graceful labeling shown in figure−10, where Q =

|E(P 3(2 · T ))| = 103 and P 3(2 · T ) contains 8 copies of T inside it.
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Figure−10 P3(2 · T ) and its graceful labeling, where T is a semi smooth graceful tree given in figure−2.
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Corollary−2.17 : P (k ·C(t·Pn×Pm)) is graceful, where t ≡ 0 (mod 4) and m,n, k ∈ N .

Proof : This follows from Theorem−1.11 and 1.14, as Pn×Pm is a smooth graceful graph

proved by Kaneria and Jariya[4].

Illustration−2.18 : P (3 ·C(4 · P3 × P3)) and its graceful labeling shown in figure−11,

where |E(P (3 · C(4 · P3 × P3)))| = 158 and |V (P (3 · C(4 · P3 × P3)))| = 108.

Figure−11 P (3 · C(4 · P3 × P3)) and its graceful labeling.

Theorem−2.19 :
⋃t

i=1 Pni
×Pmi

is graceful, where ni(1 ≤ i ≤ t), mi(1 ≤ i ≤ t), t ∈ N .

Proof : Let G =
⋃t

i=1 (Pni
× Pmi

), where Pni
× Pmi

is the grid graph on ni×mi vertices

and qi = |E(Pni
× Pmi

)| = 2mini − (mi + ni), ∀ i = 1, 2, . . . , t.

Let ui,j,k (1 ≤ j ≤ ni, 1 ≤ k ≤ mi) be the vertices of Pni
× Pmi

(assuming mi ≥ ni),

∀ i = 1, 2, . . . , t. Obviously P = |V (G)| =
∑t

i=1 pi, where pi = |V (Pni
× Pmi

)| = mini, ∀

i = 1, 2, . . . , t and Q = |E(G)| =
∑t

i=1 qi. Kaneria and Jariya [4] proved that Pni
× Pmi

(i ≤ i ≤ t) are smooth graceful graphs.

We know that the vertex labeling functions fi : V (Pni
×Pmi

) −→ {0, 1, . . . , qi} defined

by

f(ui,j,1) = qi − (j−1)2
2

, when j is odd,

= j(j−2)
2

, when j is even, ∀ j = 1, 2, . . . , ni;

f(ui,j,mi
) = qi

2
− 1

4
+ (−1)mi+j[ (ni−j)2

2
+ 1

4
], ∀ j = ni, ni − 1, . . . , 1;

f(ui,j,k) = f(ui,j−1,k+1) + (−1)j+k, ∀ k = mi − 1,mi − 2, . . . ,mi + 1− ni,

∀ j = ni, ni − 1, . . . ,mi + 1− k;
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f(ui,ni,k) = f(ui,ni,1) + (−1)ni [ (2ni−1)(k−1)
2

], when k is odd,

= f(ui,ni−1,1)− (−1)ni [ (2ni−1)k
2

], when k is even,

∀ k = 2, 3, . . . ,mi − ni;

f(ui,j,k) = f(ui,j+1,k−1)− (−1)j+k, ∀ k = 2, 3, . . . ,mi − 1,

∀ j = 1, 2, . . . ,min{ni,mi − k}; ∀ i = 1, 2, . . . , t are graceful.

Using these we shall define gi : V (Pni
× Pmi

) −→ {0, 1, . . ., d qi
2
e − 1, d qi

2
e+ l,d qi

2
e+ 1 + l,

. . . , qi + l} by

gi(u) = fi(u), when fi(u) < qi
2

,

= fi(u) + l, when fi(u) ≥ qi
2

, ∀ u ∈ V (Pni
× Pmi

)

and ∀ i = 1, 2, . . . , t,

where l is an arbitrary non negative integer. Which are smooth graceful labeling

function ∀ i = 1, 2, . . . , t.

Define for each k = 2, 3, . . . , t, hk : V (
⋃k

i=1 Pni
×Pmi

) −→ {0, 1, . . . ,∑k
i=1 qi} as follows,

assuming h1 = f1.

hk(wk) = gk(wk), when gk(wk) < qk
2

,

= gk(wk) +
∑k−1

i=1 qi − l, when gk(wk) ≥ qk
2

, ∀ wk ∈ V (Pni
× Pmi

);

hk(w) = hk−1(w) + ( qk
2

+ 1), when qk is even,

=
∑k−1

i=1 qi − hk−1(w) + ( qk−3
2

), when qk is odd, ∀ w ∈ V (
⋃k−1

i=1 Pni
× Pmi

).

Above defined labeling pattern give rise graceful labeling hk to each disconnected graph⋃k
i=1 Pni

× Pmi
, ∀ k = 2, 3, . . . , t. Thus

⋃k
i=1 Pni

× Pmi
are disconnected graceful graphs,

∀ k = 2, 3, . . . , t. Particularly
⋃t

i=1 Pni
× Pmi

is graceful.

Illustration−2.20 : To get graceful labeling for G = (P3×P3)∪ (P3×P4)∪ (P3×P5)∪

(P2×P4), we have Q = 12 + 17 + 22 + 10 = 61, q1 = 12, q2 = 17, q3 = 22, q4 = 10, we have

computed smooth graceful labelings for P3×P3, P3×P4, P3×P5 and P2×P4 in figure−12

by smooth vertex labeling functions gi(1 ≤ i ≤ 4) respectively, graceful labeling for

(P3×P3)∪(P3×P4) by h2, in figure−13, graceful labeling for (P3×P3)∪(P3×P4)∪(P3×P5)

by h3 in figure−14 and graceful labeling for G by h4 in figure−15.
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Figure−12 smooth graceful labeling for P3 × P3, P3 × P4, P3 × P5, and P2 × P4.

Figure−13 Graceful labeling h2 for the graph (P3 × P3) ∪ (P3 × P4).

Figure−14 Graceful labeling h3 for the graph (P3 × P3) ∪ (P3 × P4) ∪ (P3 × P5).

Figure−15 Graceful labeling h4 for G.
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Theorem−2.21 : < Cn1 , Pn2 , Cn3 , . . . , Pn2t , Cn2n+1 > is graceful, when ni ≡ 0 (mod 4),

∀ i = 1, 3, . . . , 2t+ 1 and ni ∈ N , ∀ i = 1, 2, . . . , 2t+ 1.

Proof : Obviously pi = qi = |V (Cni
)| = |E(Cni

)| = ni, ∀ i = 1, 3, . . . , 2t + 1 and

pj = |V (Pnj
)| = nj, qj = |E(Pnj

)| = nj − 1, ∀ j = 2, 4, . . . , 2t. Let G =< Cn1 , Pn2 , Cn3 ,

. . . , Pn2t , Cn2n+1 >, V (Cni
) = {ui,j/1 ≤ j ≤ ni}, ∀ i = 1, 3, . . . , 2t+ 1 and V (Pnj

) = {vj,k/

1 ≤ k ≤ nj}, ∀ j = 2, 4, . . . , 2t with ui,1 = vi+1,ni+1
and vi+1,1 = ui+2,ni+2

for every

i = 1, 3, . . . , 2t− 1 to from the connected graph G. Here P = |V (G)| = ∑2t+1
i=1 pi− 2t and

Q = |E(G)| = ∑2t+1
j=1 qj.

Let f2i : V (Pn2i
) −→ {0, 1, . . . , q2i} be graceful labeling for Pn2i

defined by

f2i(v2i,k) = q2i − (k−1
2

), when k is odd,

= (k−2
2

), when k is even,

∀ k = 1, 2, . . . , p2i, ∀ i = 1, 2, . . . , t.

Let f2i+1 : V (Cn2i+1
) −→ {0, 1, . . . , q2i+1} be graceful labeling for Cn2i+1

defined by

f2i+1(u2i+1,j) = q2i+1 − ( j−1
2

), when j is odd,

= ( j−2
2

), when j is even, and j ≤ v2i+1

2
,

= ( j
2
), when j is even, and j > v2i+1

2
,

∀ j = 1, 2, . . . , p2i+1, ∀ i = 0, 1, . . . , t.

Define for each k = 2, 4, . . . , 2t (assuming g1 = f1) gk : V (< Cn1 , Pn2 , . . . , Pnk
>) −→

{0, 1, . . . ,∑k
i=1 qi} and gk+1 : V (< Cn1 , Pn2 , . . . , Cnk+1

>) −→ {0, 1, . . . ,∑k+1
j=1 qj} as

follows.

gk(u) = fk(u), when fk(u) < qk
2

,

= fk(u) +
∑k−1

i=1 qi, when fk(u) ≥ qk
2
∀ u ∈ V (Pnk

);

gk(w) = gk−1(w) + qk
2

, when gk is even,

=
∑k−1

i=1 qi + (gk−1
2

)− gk−1(w), when gk is odd;

∀ w ∈ V (< Cn1 , Pn2 , . . . , Cnk−1
>);

gk+1(v) = fk+1(v), when fk+1(v) ≤ qk+1

2
,

= fk+1(v) +
∑k

j=1 qj, when fk+1(v) > qk+1

2
, ∀ v ∈ V (Cnk+1

);

gk+1(w) =
∑k

j=1 qj + (gk+1

2
)− gk(w), ∀ w ∈ V (< Cn1 , Pn2 , . . . , Cnk−1

, Pnk
>).
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Above labeling pattern give rise graceful labelings gk, gk+1 to the graphs < Cn1 , Pn2 ,

. . ., Pnk
> and < Cn1 , Pn2 , . . . , Cnk+1

> respectively and so they are graceful graphs,

∀ k = 2, 4, . . . , t. Particularly < Cn1 , Pn2 , . . . , Pn2t , Cn2t+1 > is a graceful graph.

Illustration−2.22 : < C8, P10, C4, P7, C12, P3, C8 > and its graceful labeling g7 shown

in figure−20, for this we have computed graceful labelings f1, f2, . . . , f7 for C8, P10, C4, P7,

C12, P3, C8 respectively in figure−16, < C8, P10 >, < C8, P10, C4 > and their graceful

labelings g2, g3 are shown in figure−17, < C8, P10, C4, P7 >, < C8, P10, C4, P7, C12 > and

their graceful labeling g4, g5 are shown in figure−18 and < C8, P10, C4, P7, C12, P3 > and

its graceful labeling g6 shown in figure−19.

Figure−16 C8, P10, C4, P7, C12, P3, C8 and its graceful labelings f1, f2, . . . , f7 respectively.

Figure−17 < C8, P10 >, < C8, P10, C4 > and their graceful labelings g2, g3.
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Figure−18 < C8, P10, C4, P7 >, < C8, P10, C4, P7, C12 > and their graceful labelings g4, g5.

Figure−19 < C8, P10, C4, P7, C12, P3 > and their graceful labeling g6.

Figure−20 G and its graceful labeling g7 .

Theorem−2.23 : < Pn1 × Pm1 , Pr1 , Pn2 × Pm2 , . . . , Prt−1 , Pnt × Pmt > is graceful.

Proof : Let G =< Pn1 × Pm1 , Pr1 , Pn2 × Pm2 , . . . , Prt−1 , Pnt × Pmt >. It is obvious that

pi = |V (Pni
× Pmi

)| = mini, ∀ i = 1, 2, . . . , t and |V (Prj)| = rj, ∀ j = 1, 2, . . . , t− 1. Also

qi = |E(Pni
× Pmi

)| = 2pj − (mi + ni), ∀ i = 1, 2, . . . , t and |E(Prj)| = q
′
j = rj − 1,

∀ j = 1, 2, . . . , t− 1.
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Let V (Pni
× Pmi

) = {ui,j,k/1 ≤ j ≤ ni, 1 ≤ k ≤ mi}, ∀ i = 1, 2, . . . , t and V (Prl) =

{ul,k/1 ≤ k ≤ rl}, ∀ l = 1, 2, . . . , t−1 with ui,1,1 = vi,ri and vi,1 = ui+1,ni+1,mi+1
for every i =

1, 2, . . . , t−1 to from connected graph G. Here we see that |V (G)| = ∑t
i=1 pi+

∑t−1
i=1(ri−2)

and |E(G)| = ∑t
i=1 qi+

∑t−1
i=1(q

′
i). Let fl : V (Pnl

×Pml
) −→ {0, 1, . . . , ql} be vertex labeling

function forPnl
× Pml

defined by

f(ul,j,1) = gl − (j−1)2
2

, when j is odd,

= j(j−2)
2

, when j is even, ∀ j = 1, 2, . . . , nl;

f(ul,j,ml
) = ql

2
− 1

4
+ (−1)ml+j[ (nl−j)2

2
+ 1

4
], ∀ j = nl, nl−1, . . . , 1;

f(ul,j,k) = f(ul,j−1,k+1) + (−1)j+k, ∀ k = ml − 1,ml − 2, . . . ,ml + 1− nl,

∀ j = nl, nl − 1, . . . ,ml + 1− k;

f(ul,nl,k) = f(ul,nl,1) + (−1)nl [ (2nl−1)(k−1)
2

], when k is odd,

= f(ul,nl,1)− (−1)nl [ (2nl−1)(k)
2

], when k is even, ∀ k = 2, 3, . . . ,ml−nl;

f(ul,j,k) = f(ul,j+1,k−1) + (−1)j+k,∀ k = 2, 3, . . . ,ml−1, ∀j = 1, 2, . . . ,min{nl,ml−k},

∀ l = 1, 2, . . . , t.

which is a graceful labeling function for Pnl
× Pml

, ∀ l = 1, 2, . . . , t.

Let f
′
l : V (Prl) −→ {0, 1, . . . , q

′
l} be vertex labeling function forPrl defined by

f
′
l (vl,k) = gl − (k−1

2
), when k is odd,

= k−2
2

, when k is even;

∀ k = 1, 2, . . . , rl, ∀ l = 1, 2, . . . , t− 1.

which is a graceful labeling function for Prl , ∀ l = 1, 2, . . . , t− 1.

Define for each l = 2, 3, . . . , t, g
′
l−1 : V (< Pn1 × Pm1 , Pr1 , . . . , Pnl−1

× Pml−1
, Prl−1

>)

−→ {0, 1, . . . ,∑l−1
i=1(qi +q

′
i)} and gl : V (< Pn1×Pm1 , Pr1 , . . . , Prl−1

, Pnl
×Pml

>) −→ {0, 1,

. . . , ql +
∑l−1

i=1(qi + q
′
i)} as follows (assuming g1 = f1).

g
′
l−1(u) = f

′
l−1(u), when f

′
l−1(u) <

q
′
l

2
,

= f
′
l−1(u) + gl−1 +

∑l−2
i=1(qi + q

′
i), when f

′
l−1(u) ≥ q

′
l

2
,

∀ u ∈ V (Pl−1);

g
′
l−1(w) = gl−1(w) +

q
′
l−1

2
, when g

′
l−1 is even,

= ql−1 +
∑l−2

i=1(qi + q
′
i) + (

q
′
l−1−1
2

)− gl−1(w), when g
′
l−1 is odd,

∀ w ∈ V (< Pn1 × Pm1 , Pr1 , . . . , Pnl−1
× Pml−1

>);
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gl(v) = fl(v), when fl(v) < ql
2

,

= fl(v) +
∑l−1

i=1(qi + q
′
i), when fl(v) ≥ ql

2
,

∀ v ∈ V (Pnl
× Pml

);

gl(w) = g
′
l−1(w) + ql

2
, when gl is even,

=
∑l−1

i=1(qi + q
′
i) + ( ql−1

2
)− g′l−1(w), when gl is odd.

∀ w ∈ V (< Pn1 × Pm1 , Pr1 , . . . , Pnl−1
× Pml−1

, Prl−1
>)

Above labeling pattern give rise graceful labeling g
′
l−1, gl to the graphs < Pn1 ×

Pm1 , Pr1 , . . . , Pnl−1
× Pml−1

, Prl−1
> and < Pn1 × Pm1 , Pr1 , . . . , Prl−1

, Pnl
× Pml

> respec-

tively, ∀ l = 2, 3, . . . , t. So they are graceful graphs. Particularly G =< Pn1 × Pm1 ,

Pr1 , . . . , Prt−1 , Pnt × Pmt > is graceful.

Illustration−2.24 : < P3 × P3, P5, P3 × P4, P8, P4 × P4 > and its graceful labeling g3

shown in figure−24, for this we have computed graceful labelings f1, f2, f3, f
′
1 and f

′
2 for

the graphs P3×P3, P3×P4, P4×P4, P5 and P8 respectively in figure−21, graceful labeling

g
′
1 for < P3 × P3, P5 >, graceful labeling g2 for < P3 × P3, P5, P3 × P4 > in figure−22,

graceful labeling g
′
2 for < P3 × P3, P5, P3 × P4, P8 > in figure−23.

Figure−21 Graceful labeling f1 for P3 × P3, f2 for P3 × P4, f3 for P4 × P4, f
′
1 for P5 and f

′
2 for P8.

Figure−22 Graceful labeling g
′
1 for < P3 × P3, P5 > and g2 for < P3 × P3, P5, P3 × P4 >.
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Figure−23 Graceful labeling g
′
2 for the graph < P3 × P3, P5, P3 × P4, P8 >.

Figure−24 Graceful labeling for G.

Theorem−2.25 : Arbitrary path union of t complete bipartite graphs Kmi,ni

(1 ≤ i ≤ t) by t− 1 paths of arbitrary length rj − 1 (1 ≤ j ≤ t− 1) is graceful.

Proof : Let G =< Km1,n1 , Pr1 , Km2,n2 , Pr2 , . . . , Kmt,nt >. Obviously P = |V (G)| =∑t
i=1(mi+ni)+

∑t−1
i=1(ri−2) and Q = |E(G)| = ∑t

i=1 qi+
∑t−1

i=1 q
′
i, where qi = |E(Kmi,ni

| =

mini and q
′
i = |E(Prj)| = rj − 1, ∀ i = 1, 2, . . . , t and ∀ j = 1, 2, . . . , t− 1.

Let V (Kmi,ni
) = {ui,j/1 ≤ j ≤ mi}

⋃{wi,k/1 ≤ k ≤ ni}, ∀ i = 1, 2, . . . , t and

V (Prl) = {vl,t/1 ≤ t ≤ rl}, with ul,1 = vl,rl , ul+1,ml+1
= vl,1 ∀ l = 1, 2, . . . , t− 1.

Let fl : V (Kml,nl
) −→ {0, 1, . . . , ql} be graceful labeling function for Kml,nl

defined by

fl(ul,j) = j − 1, ∀ j = 1, 2, . . . ,ml;

fl(wl,k) = ml · k, ∀ k = 1, 2, . . . , nl, ∀ l = 1, 2, . . . , t.

Let f
′
l : V (Prl) −→ {0, 1, . . . , q

′
l} be graceful labeling function for Prl defined by

f
′
l (vl,k) = q

′
l − (k−1

2
), when k is odd,

=(k−2
2

), when k is even, ∀ k = 1, 2, . . . , rl;

∀ l = 1, 2, . . . , t− 1.

Define for each ∀ l = 2, 3, . . . , t (assuming gl = f1) g
′
l−1 : V (< Km1,n1 , Pr1 , . . . , Kml−1,nl−1

,

Prl−1
>) −→ {0, 1, . . . ,∑l−1

i=1(qi + q
′
i)} and gl : V (< Km1,n1 , Pr1 , . . . , Prl−1

, Kml,nl
>)

−→ {0, 1, . . ., ∑l−1
i=1(qi + q

′
i) + ql} as follows

25



g
′
l−1(u) = f

′
l−1(u), when f

′
l−1(u) <

q
′
l

2
,

= f
′
l−1(u) + ql−1 +

∑l−2
i=1(qi + q

′
i), when f

′
l−1(u) ≥ q

′
l

2
,

∀ u ∈ V (Pl−1);

g
′
l−1(w) = gl−1(w) + (

q
′
l−1−1
2

), when g
′
l−1 is odd,

= ql−1 +
∑l−2

i=1(qi + q
′
i) + (

q
′
l−1

2
)− gl−1(w), when q

′
l−1 is even,

∀ w ∈ V (< km1,n1 , Pr1 , . . . , Kml−1,nl−1
>);

gl(v) = fl(v), when fl(v) < ml,

= fl(v) +
∑l−1

i=1(qi + q
′
i), when fl(v) ≥ ml,

∀ v ∈ V (Kml,nl
);

gl(w) =
∑l−1

i=1(gi + g
′
i) +ml − g

′
l−1(w)− 1,

∀ w ∈ V (< km1,n1 , Pr1 , . . . , Kml−1,nl−1
, Prl >).

Above defined labeling pattern give rise graceful labelings g
′
l−1, gl to the graphs

< Km1,n1 , Pr1 ,. . ., Prl−1
> and < Km1,n1 , Pr1 , . . . , Kml,nl

> respectively, ∀ l = 2, 3, . . . , t.

So these are graceful graphs, ∀ l = 2, 3, . . . , t. Particularly G =< Km1,n1 , Pr1 , . . . , Kmt,nt >

is graceful.

Illustration−2.26 : < K3,5, P6, K3,3, P5, K3,4 > and its graceful labeling g3 shown

in figure−28, for this we have computed graceful labelings f1, f2, f3, f
′
1, f

′
2 for the graphs

K3,5, K3,3, K3,4, P6, P5 respectively in figure−25, graceful labeling g
′
1 for < K3,5, P6 >, g2

for < K3,5, P6, K3,3 > in figure−26 and graceful labeling g
′
2 for < K3,5, P6, K3,3, P5 > in

figure−27.

Figure−25 Graceful labeling for k3,5, K3,3, K3,4, P6, P5.
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Figure−26 Graceful labeling g
′
1 for < K3,5, P6 > and g2 for < K3,5, P6, K3,3 >.

Figure−27 Graceful labeling for < K3,5, P6, K3,3, P5 >.

Figure−28 Graceful labeling g3 for G.
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