VARIOUS GRAPH OPERATIONS ON SEMI SMOOTH GRACEFUL GRAPHS

V J Kaneria

Department of Mathematics, Saurashtra University, Rajkot-360005, India. E-mail: kaneria_vinodray_j@yahoo.co.in

H M Makadia

Govt. Engineering College, Rajkot-360005, India. E-mail: makadia.hardik@yahoo.com

R V Viradia

A D Patel Institute of Technology, V V Nagar-388121, India. E-mail: rajiv.viradia@gmail.com

Abstract

In this paper we have done some graph operations on smooth graceful and semi smooth graceful graphs. By applying path union of graphs, star of a graph and cycle of a graph we have generated new graceful families. We have proved that star of a semi smooth graceful graph is graceful. We also proved that $K_{m,n}$, $P(t \cdot H)$ are semi smooth graceful, where H is a semi smooth graceful graph, step grid graph and cycle graph $C(t \cdot H)$ are smooth graceful, when $t \equiv (\text{mod } 4)$, H is as above, every semi smooth graceful graph is odd graceful and $C^t(m \cdot C_n)$, $P^t(k \cdot T)$, $< C_{n_1}, P_{n_2}, C_{n_3}, \ldots, P_{n_{2t}}, C_{n_{2t+1}} >, < K_{m_1,n_1}, P_{r_1}, K_{m_2,n_2}, P_{r_2}, \ldots, P_{r_{t-1}}, K_{m_t,n_t} >,$ $< P_{n_1} \times P_{m_1}, P_{r_1}, P_{n_2} \times P_{m_2}, \ldots, P_{r_{t-1}}, P_{n_t} \times P_{m_t} >$ are graceful, when T is semi smooth graceful tree. **Key words :** Graceful graph, smooth graceful graph, odd graceful graph, step grid graph and consecutive graph operations on a graph. AMS **subject classification number :** 05C78.

1 INTRODUCTION :

In 1966 Rosa [1] defined α -labeling as a graceful labeling with an additional property. A graph which admits α -labeling is necessarily bipartite. A natural generalization of graceful graph is the notion of k-graceful graph. Obviously 1-graceful is graceful and a graph which admits α -labeling is always k-graceful graph, $\forall k \in N$. Ng [2] has identified some graphs that are k-graceful, $\forall k \in N$, but do not have α -labeling.

Kaneria and Jariya [3,4] define smooth graceful labeling and semi smooth graceful labeling. Every smooth graceful graph is also a semi smooth graceful graph. They proved cycle C_n ($n \equiv 0 \pmod{4}$), path P_n , grid graph $P_n \times P_m$ and complete bipartite graph $K_{2,n}$ are smooth graceful graphs.

For a comprehensive bibliography of papers on various graph labelings are given in Gallian [5]. The present paper is focused on various graph operations on semi smooth graceful graph to generate new families of graceful graph.

We will consider a simple undirected finite graph G = (V, E) on |V| = p vertices and |E| = q edges. For all terminology and standard notations we follows Harary [6]. Here we will recall some definitions which are used in this paper.

Definition-1.1 : A function f is called *graceful labeling* of a graph G = (V, E) if $f: V(G) \longrightarrow \{0, 1, \ldots, q\}$ is injective and the induced function $f^*: E(G) \longrightarrow \{1, 2, \ldots, q\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = (u, v) \in E(G)$. A graph G is called *graceful graph* if it admits a graceful labeling.

Definition-1.2 : A function f is called k-graceful labeling of a graph G = (V, E) if $f: V(G) \longrightarrow \{0, 1, \ldots, k + q - 1\}$ is injective and the induced function $f^*: E(G) \longrightarrow \{k, k + 1, k + 2, \ldots, k + q - 1\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective, for every edge $e = (u, v) \in E(G)$. A graph G is called k-graceful graph if it admits a k-graceful labeling.

Definition-1.3 : A function f is called *odd graceful labeling* of a graph G = (V, E)if $f : V(G) \longrightarrow \{0, 1, \dots, 2q - 1\}$ is injective and the induced function $f^* : E(G) \longrightarrow \{1, 3, 5, \dots, 2q - 1\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = (u, v) \in E(G)$. A graph G is called *odd graceful graph* if it admits an odd graceful labeling.

Definition-1.4 : A smooth graceful graph G, we mean it is a bipartite graph with |E(G)| = q and the property that for all non-negative integer l, there is a function $g: V(G) \longrightarrow \{0, 1, \ldots, \lfloor \frac{q-1}{2} \rfloor, \lfloor \frac{q+1}{2} \rfloor + l, \lfloor \frac{q+3}{2} \rfloor + l, \ldots, q+l\}$ such that the induced edge labeling function $g^*: E(G) \longrightarrow \{1+l, 2+l, \ldots, q+l\}$ defined as $f^*(e) = |f(u) - f(v)|$ is a bijection for every edge $e = (u, v) \in E(G)$.

Example-1.5: A cycle C_{16} with twin chords and its smooth graceful labeling shown in *figure*-1.

Figure -1 Smooth graceful labeling for a cycle C_{16} with twin chords.

Definition-1.6 : A semi smooth graceful graph G, we mean it is a bipartite graph with |E(G)| = q and the property that for all non-negative integer l, there is an integer t $(0 \le t < q)$ and an injective function $g: V(G) \longrightarrow \{0, 1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$ such that the induced edge labeling function $g^*: E(G) \longrightarrow \{1+l, 2+l, \ldots, q+l\}$ defined as $f^*(e) = |f(u) - f(v)|$ is a bijection for every edge $e = (u, v) \in E(G)$.

If we take l = 0 in above both definitions -1.4, 1.6 the labeling functions g will become graceful labeling for the graph G. Every smooth graceful graph is also a semi smooth graceful graph by taking $t = \lfloor \frac{g+1}{2} \rfloor$.

Example-1.7: A tree on 12 edges and its semi smooth graceful labeling shown in *figure*-2.

Figure -2 Semi smooth graceful labeling for a tree with |E(T)| = 12.

Definition-1.8: Let G be a graph and G_1, G_2, \ldots, G_n $(n \ge 2)$ be n copies of G. Then the graph obtained by an edge from G_i to G_{i+1} (for $i = 1, 2, \ldots, n-1$) is called path union of G and we will denote it by $P(G_1, G_2, \ldots, G_n)$.

Definition-1.9 : A graph obtained by replacing each vertex of the star $K_{1,n}$ by a connected graph G of n vertices is called star of G and we will denote it by G^* . The graph G which replaced at the center of $K_{1,n}$ we will call it as central copy of G^* .

Definition-1.10 : For a cycle C_n , each vertices of C_n are replaced by connected graphs G_1, G_2, \ldots, G_n is known as *cycle of graphs* and we will denote such graph by $C(G_1, G_2, \ldots, G_n)$. If we replace each vertices of C_n by a connected graph G (i.e. $G_1 = G = G_2 = \ldots = G_n$), such cycle of graph G we will denote it by $C(n \cdot G)$.

If we replace each vertices of C_n by $C(n \cdot G)$, such cycle graph $C(n \cdot (n \cdot G))$, we will denote it by $C^2(n \cdot G)$. In general for any $t \ge 2 C^t(n \cdot G) = C(n \cdot C^{t-1}(n \cdot G))$.

Definition-1.11: Take $P_n, P_n, P_{n-1}, P_{n-2}, \ldots, P_3, P_2$ paths on $n, n, n-1, n-2, \ldots, 3, 2$ vertices and arranged them vertically. A graph obtained by joining horizontal vertices of given successive paths is known as a *step grid graph* of size $n \ (n \ge 3)$ and we will denote it by St_n .

Obviously $|V(St_n)| = \frac{1}{2}(n^2 + 3n - 2)$ and $|E(St_n)| = n^2 + n - 2$. Above definition was introduced by Kaneria and Makadia [7].

Definition-1.12: Let G_1, G_2, \ldots, G_t be any connected graphs. The graph $\langle G_1, P_{n_1}, G_2, P_{n_2}, \ldots, G_{t-1}, P_{n_{t-1}}, G_t \rangle$ obtained by joining two consecutive graphs G_i and G_{i+1} by P_{n_i} , a path of of length n_i and $n_i \in N, \forall i = 1, 2, \ldots, t-1$ is called arbitrary path union of graphs G_1, G_2, \ldots, G_t join by arbitrary paths $P_{n_1}, P_{n_2}, \ldots, P_{n_{t-1}}$. In other words consecutive graphs G_1, G_2, \ldots, G_t join by arbitrary paths $P_{n_1}, P_{n_2}, \ldots, P_{n_{t-1}}$ is known as arbitrary path union of graphs G_i $(1 \leq i \leq t)$.

If we replace each $P_{n_1}, P_{n_2}, \ldots, P_{n_{t-1}}$ by a path P_n of length n such path union of graphs, we will denote by $P_n(G_1, G_2, \ldots, G_t)$ and if we take $G_i = G$ $(1 \le i \le t)$, where G is a connected graph, we will denote such graph (arbitrary path union of a graph G) by $P_n(t \cdot G)$. Obviously $P_1(G_1, G_2, \ldots, G_n) = P(G_1, G_2, \ldots, G_n)$, simple path union of G_1, G_2, \ldots, G_n and $P_1(t \cdot G) = P(t \cdot G) = P(G_1, G_2, \ldots, G_n)$, where $G_1 = G = \ldots = G_n$.

If we replace $G = P(t \cdot H)$ in $P(t \cdot G)$, such graph $P(t \cdot P(t \cdot H))$, we will denote it by $P^2(t \cdot H)$. In general for any $s \ge 2 P^s(t \cdot G) = P(t \cdot P^{s-1}(t \cdot G))$ or $P^{s-1}(t \cdot P(t \cdot G))$.

2 MAIN RESULTS :

Theorem-2.1: $K_{m,n}$ is a semi smooth graceful graph.

Proof: Let $v_1, v_2, \ldots, v_m, u_1, u_2, \ldots, u_n$ be vertices of the complete bipartite graph $K_{m,n}$. Obviously $K_{m,n}$ is a bipartite graph with the vertex graceful labeling function $f: V(K_{m,n}) \longrightarrow \{0, 1, \ldots, q = mn\}$ defined by

$$f(v_i) = m - i \text{ or } i - 1,$$
 $\forall i = 1, 2, \dots, m;$
 $f(u_j) = q - m(j - 1),$ $\forall j = 1, 2, \dots, n.$

Let l be any non-negative integer. Define the vertex labeling function $g: V(K_{m,n}) \longrightarrow$ $\{0, 1, \ldots, m-1, m+l, m+1+l, \ldots, mn+l\}$ such that its induced edge labeling function $g^*: E(K_{m,n}) \longrightarrow \{1+l, 2+l, \ldots, mn+l\}$ with $g^*(e) = |g(u)-g(v)|, \forall e = (u, v) \in E(K_{m,n})$ defined by

$$g(w) = f(w), \qquad \text{when } w \in \{v_1, v_2, \dots, v_m\}$$
$$= f(w) + l, \qquad \text{when } w \in \{u_1, u_2, \dots, u_n\}.$$

Now for each $e = (u, v) \in E(K_{m,n})$, we see that

$$g^{\star}(e) = g^{\star}((u, v))$$

= $|g(u) - g(v)|$
= $|f(u) + l - f(v)|$
= $|f(u) - f(v)| + l$
= $f^{\star}(e) + l$

Therefore g^* is a bijection as f^* and $g^*(E) = \{1 + l, 2 + l, \dots, q + l\}$. Hence $K_{m,n}$ is semi-smooth graceful.

Theorem-2.2: Step grid graph St_n is a smooth graceful graph.

Proof: Let $G = St_n$ be a step grid graph of size n. Where mention each vertices of n^{th} column like $u_{1,j}$ $(1 \le j \le n)$, $(n-1)^{th}$ column like $u_{2,j}$ $(1 \le j \le n)$, $(n-2)^{th}$ column like $u_{3,j}$ $(1 \le j \le n-1)$, $(n-3)^{th}$ column like $u_{4,j}$ $(1 \le j \le n-2)$, similarly the first column like $u_{n,j}$ (j = 1, 2). Here we recall that $p = |V(G)| = \frac{1}{2}(n^2 + 3n - 2)$ and $q = |E(G)| = n^2 + n - 2$. Moreover St_n is a bipartite graceful graph (proved by Kaneria and Makadia [7]) with vertex labeling function $f: V(St_n) \longrightarrow \{0, 1, \ldots, q\}$ defined by

$$\begin{split} f(u_{1,j}) &= \frac{q}{2} - \frac{1}{8} + (-1)^{j+1} \left[\frac{j^2}{4} - \frac{1}{8} \right], & \forall \ j = 1, 2, \dots, n; \\ f(u_{i,j}) &= f(u_{i-1,j-1}) + (-1)^j, & \forall \ i = 2, 3, \dots, \lfloor \frac{n}{2} \rfloor, \\ & \forall \ j = 1, 2, \dots, n+i-1; \\ f(u_{i,1}) &= (n-i+1)^2 + 1, & \forall \ i = n, n-1, \dots, \lceil \frac{n}{2} \rceil; \\ f(u_{i,2}) &= q - (n-i+1)(n-i), & \forall \ i = n, n-1, \dots, \lceil \frac{n}{2} \rceil; \\ f(u_{i,j}) &= f(u_{i+1,j-2}) + (-1)^{j-1}, & \forall \ i = n-1, n-2, \dots, 2, \\ & \forall \ j = 3, 4, \dots, n+2-i. \end{split}$$

Let l be any non-negative integer. Define the vertex labeling function $g: V(St_n) \longrightarrow \{0, 1, \ldots, \frac{q}{2} - 1, \frac{q}{2} + l, \frac{q}{2} + 1 + l, \ldots, q + l\}$ such that its induced edge labeling function $g^*: E(St_n) \longrightarrow \{1 + l, 2 + l, \ldots, q + l\}$ with $g^*(e) = |g(u) - g(v)|, \forall e = (u, v) \in E(St_n)$ defined by

$$g(w) = f(w), \qquad \text{when } f(w) < \frac{q}{2}$$
$$= f(w) + l, \qquad \text{when } f(w) \ge \frac{q}{2}$$

Now for each $e = (u, v) \in E(St_n)$, we see that

$$g^{\star}(e) = g^{\star}((u, v))$$

= $|g(u) - g(v)|$
= $|f(u) - f(v)| + l$, as for any $e = (u, v) \in E(St_n)$ one of $\{f(u), f(v)\}$ is
less than $\frac{q}{2}$ and another is greater than or equal to $\frac{q}{2}$

$$\Rightarrow g^{\star}(e) = f^{\star}(e) + l, \,\forall e \in E(St_n).$$

Therefore g^* is a bijection as f^* and $g^*(E) = \{1 + l, 2 + l, \dots, q + l\}$. Thus St_n is smooth graceful.

Theorem-2.3: Path union of t copies of a semi smooth graceful graph H is graceful. **Proof**: Let G be a path union of t copies of a semi smooth graceful graph H with p = |V(H)| and q = |E(H)|. Let l be an arbitrary non-negative integer and $f: V(H) \longrightarrow \{0, 1, \ldots, t - 1, t + l, t + l + 1, \ldots, q + l\}$ be a semi smooth graceful labeling for some $t \in \{0, 1, \ldots, q\}$. Then its induced edge labeling function $f^*: E(H) \longrightarrow \{1+l, 2+l, \ldots, q+l\}$ with $f^*(e) = |f(u) - f(v)|, \forall e = (u, v) \in E(H)$ is a bijection.

Let $V(H) = \{v_1, v_2, \dots, v_p\}$ and take $v_{i,1}, v_{i,2}, \dots, v_{i,p}$ as vertices for i^{th} copy of H in $G, \forall i = 1, 2, \dots, t$ with $v_{1,j} = v_j, \forall j = 1, 2, \dots, p$ in first copy of H in G. Obviously P = |V(G)| = tp and Q = |E(G)| = tq + t - 1.

Define the vertex labeling function $g: V(G) \longrightarrow \{0, 1, \dots, Q\}$ as follows

$$\begin{split} g(v_{1,j}) &= f(v_j), & \text{if } f(v_j) < t \\ &= f(v_j) + (Q - q) - l, & \text{if } f(v_j) \ge t, \,\forall \, j = 1, 2, \dots, p; \\ g(v_{2,j}) &= g(v_{1,j}) + (Q - q), & \text{if } g(v_{1,j}) < \frac{Q}{2} \\ &= g(v_{1,j}) - (Q - q), & \text{if } g(v_{1,j}) > \frac{Q}{2}, \,\forall \, j = 1, 2, \dots, p; \\ g(v_{i,j}) &= g(v_{i-2,j}) + (q + 1), & \text{if } g(v_{i-2,j}) < \frac{Q}{2} \\ &= g(v_{i-1,j}) - (q + 1), & \text{if } g(v_{i-2,j}) > \frac{Q}{2}, \,\forall \, i = 3, 4, \dots, t, \,\forall \, j = 1, 2, \dots, p. \end{split}$$

Now choose a vertex v of $H^{(i)}$ and each corresponding vertex to v in each copy $H^{(i+1)}$ join by an edge to form path union $G, \forall i = 1, 2, ..., t - 1$. The above edge labeling function g give rise graceful labeling for G. Thus G is graceful.

Illustration-2.4: Semi smooth graceful labeling for St_5 and graceful labeling for path union of 5 copies of St_5 are shown in *figure*-3 and *figure*-4 respectively.

Figure-3 Smooth graceful labeling for St5.

Figure-4 Graceful labeling for path union of 5 copies of St5.

Theorem-2.5 : Star of a semi smooth graceful graph is graceful.

Proof: Let H be a semi smooth graceful graph and $G = H^*$, where p = |V(H)|, q = |E(H)|. Let l be an arbitrary non-negative integer and $f: V(H) \longrightarrow \{0, 1, \ldots, t-1, t+l, t+l+1, \ldots, q+l\}$ be a semi smooth graceful labeling for for H, where $t \in \{0, 1, \ldots, q\}$. Let $V(H) = \{v_1, v_2, \ldots, v_p\}$.

Let $v_{0,1} = v_1, v_{0,2} = v_2, \ldots, v_{0,p} = v_p$ be vertices of the central copy H in G. Take $v_{i,j}$ $(1 \le j \le p)$ as vertices for i^{th} copy $H^{(i)}$ in $G, \forall i = 1, 2, \ldots, p$. Define the vertex labeling function $g: V(G) \longrightarrow \{0, 1, \ldots, Q\}$, where Q = pq + p + q as follows

$$\begin{split} g(v_{0,j}) &= f(v_j), & \text{if } f(v_j) < t \\ &= f(v_j) + (Q - q) - l, & \text{if } f(v_j) \ge t, & \forall \ j = 1, 2, \dots, p; \\ g(v_{1,j}) &= g(v_{0,j}) + (Q - q), & \text{if } g(v_{0,j}) < \frac{Q}{2} \\ &= g(v_{0,j}) - (Q - q), & \text{if } g(v_{0,j}) > \frac{Q}{2}, & \forall \ j = 1, 2, \dots, p; \\ g(v_{i,j}) &= g(v_{i-2,j}) + (q + 1), & \text{if } g(v_{i-2,j}) < \frac{Q}{2} \\ &= g(v_{i-2,j}) - (q + 1), & \text{if } g(v_{i-2,j}) > \frac{Q}{2}, \\ &\forall \ i = 2, 3, \dots, p, \ \forall \ j = 1, 2, \dots, p. \end{split}$$

Now join each vertex of central copy $H^{(0)}$ with its corresponding vertex of other copies $H^{(i)}$ by an edge, $\forall i = 1, 2, ..., p$. Above labeling pattern give rise graceful labeling to the graph G and so it is graceful.

Illustration-2.6 : Semi smooth graceful labeling for $H = C_{12}$ with twin chords and graceful labeling for the star of H are shown in *figure*-5 and *figure*-6 respectively.

Figure -5 Semi smooth graceful labeling for $H = C_{12}$ with twin chords.

Figure -6 Graceful labeling for H^* , where H is a cycle C_{12} with twin chords.

Theorem-2.7 : $C(t \cdot H)$ is graceful, where H is a semi-smooth graceful graph and $t \equiv 0, 3 \pmod{4}$.

Proof: Let G be a cycle graph formed by t copies of a semi smooth graceful graph H, $t \equiv 0,3 \pmod{4}$. Let $p = |V(H)|, q = |E(H)|, V(H) = \{v_1, v_2, \dots, v_p\}$. For an arbitrary non-negative integer l, let $f: V(H) \longrightarrow \{0, 1, \dots, t-1, t+l, t+l+1, \dots, q+l\}$ be a semi smooth graceful labeling for some $t \in \{0, 1, \dots, q\}$.

Obviously P = |V(G)| = pt and Q = |E(G)| = t(q+1). Let $u_{i,j}$ $(1 \le j \le p)$ be vertices of i^{th} copy of $H^{(i)}$ in $G, \forall i = 1, 2, ..., t$ with $u_{1,j} = v_j, \forall j = 1, 2, ..., p$. Join $u_{i,k}$ with $u_{i+1,k}$ by an edge, $\forall i = 1, 2, ..., t-1$ and $u_{t,k}$ with $u_{1,k}$ to form cycle graph $C(t \cdot H)$, for some $k \in \{1, 2, ..., p\}$. Define vertex labeling function $g: V(G) \longrightarrow \{0, 1, ..., Q\}$ as follows

$$\begin{array}{ll} g(u_{1,j}) = f(v_j), & \text{if } f(v_j) < t \\ = f(v_j) + (Q - q) - l, & \text{if } f(v_j) \geq t, & \forall \ j = 1, 2, \dots, p; \\ g(u_{2,j}) = g(u_{1,j}) + (Q - q), & \text{if } g(u_{1,j}) > \frac{Q}{2} \\ = g(u_{1,j}) - (Q - q), & \text{if } g(u_{1,j}) > \frac{Q}{2}, & \forall \ j = 1, 2, \dots, p; \\ g(u_{i,j}) = g(u_{i-2,j}) - (q + 1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ = g(u_{i-2,j}) + (q + 1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2}, \\ & \forall \ i = 3, 4, \dots, \lceil \frac{t}{2} \rceil, \forall \ j = 1, 2, \dots, p; \\ g(u_{\lceil \frac{t}{2} \rceil + 1, j}) = g(u_{\lceil \frac{t}{2} \rceil - 1, j}) + (q + 2), & \text{if } g(u_{\lceil \frac{t}{2} \rceil - 1, j}) < \frac{Q}{2} \\ = g(u_{\lceil \frac{t}{2} \rceil + 1, j}) - (q + 1), & \text{if } g(u_{\lceil \frac{t}{2} \rceil - 1, j}) > \frac{Q}{2}, & \forall \ j = 1, 2, \dots, p; \\ g(u_{\lceil \frac{t}{2} \rceil + 2, j}) = g(u_{\lceil \frac{t}{2} \rceil, j}) + (q + 2), & \text{if } g(u_{\lceil \frac{t}{2} \rceil, j}) < \frac{Q}{2} \\ = g(u_{\lceil \frac{t}{2} \rceil, j}) - (q + 1), & \text{if } g(u_{\lceil \frac{t}{2} \rceil, j}) < \frac{Q}{2} \\ = g(u_{\lceil \frac{t}{2} \rceil, j}) - (q + 1), & \text{if } g(u_{\lceil \frac{t}{2} \rceil, j}) > \frac{Q}{2} \\ g(u_{i,j}) = g(u_{i-2,j}) - (q + 1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ = g(u_{i-2,j}) + (q + 1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ = g(u_{i-2,j}) + (q + 1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2} \\ \forall \ i = \left\lceil \frac{t}{2} \right\rceil + 3, \left\lceil \frac{t}{2} \right\rceil + 4, \dots, t, \forall \ j = 1, 2, \dots, p. \end{array}$$

Above labeling pattern give rise a graceful labeling to the graph $C(t \cdot H)$ and so it is graceful.

Illustration-2.8: Cycle of a tree on 13 vertices with 7 copies and its graceful labeling shown in *figure*-7.

Figure –7 Graceful labeling for $C(7 \cdot H)$, where H is a tree on 13 vertices and take l = (Q - q) = 79.

Theorem-2.9: Every semi smooth graceful graph is odd graceful.

Proof: Let G be a semi smooth graceful graph with semi smooth vertex labeling function $g: V(G) \longrightarrow \{0, 1, \dots, t-1, t+l, t+l+1, \dots, q+l\}$, whose induced edge labeling function $g^*: E(G) \longrightarrow \{1+l, 2+l, \dots, q+l\}$ defined by $g^*(e) = |g(u) - g(v)|, \forall e = (u, v) \in E(G)$, for some $t \in \{1, 2, \dots, q\}$ and an arbitrary non-negative integer l.

Since G is a bipartite graph, we will take $V(G) = V_1 \cup V_2$ (where $V_1 \neq \phi$, $V_2 \neq \phi$ and $V_1 \cap V_2 = \phi$) and there is no edge $e \in E(G)$ whose both end vertices lies in V_1 or V_2 . Moreover

$$\{g(u) / u \in V_1\} \subseteq \{1, 2, \dots, t-1\}$$
$$\{g(u) / u \in V_2\} \subseteq \{t+l, t+l+1, \dots, q+l\}.$$

Otherwise by taking l sufficiently large, the induced edge function g^* produce edge label which is less than l, gives a contradiction that G admits a semi smooth graceful labeling g.

Now define $h: V(G) \longrightarrow \{0, 1, 2, \dots, 2q-1\}$ as follows $h(u) = 2 \cdot g(u), \qquad \forall u \in V_1 \text{ and}$ $h(v) = 2 \cdot g(v) - 1 - 2l, \qquad \forall v \in V_2.$

Above labeling function h give rise odd graceful labeling to the graph G. Because for any edge $e = (u, v) \in E(G)$ [where $u \in V_1$ and $v \in V_2$], $g^*(e) = i + l$, for some $i \in \{1, 2, \ldots, q\}$.

Also for any
$$e = (u, v) \in E(G)$$
 $h^*(e) = h(v) - h(u)$
 $= 2g(v) - (1 + 2l) - 2g(u)$
 $= 2(g(v) - g(u)) - (1 + 2l)$
 $= 2|g(v) - g(u)| - (1 + 2l)$
 $= 2g^*(e) - (1 + 2l)$
 $= 2(i + l) - (1 + 2l)$
 $= 2i - 1.$

Thus G is an odd graceful graph.

Illustration-2.10: Semi smooth graceful labeling and odd graceful labeling for St_6 are shown in *figure*-8.

Figure -8 Semi smooth graceful labeling and odd graceful labeling for St_6 .

Theorem-2.11 : Cycle graph $C(t \cdot H)$ is smooth graceful, when $t \equiv 0 \pmod{4}$ and H is a semi smooth graceful graph.

Proof: It is obvious that if we join two bipartite graphs by a path then the resultant graph is also bipartite graph. So $P(k \cdot H)$ are bipartite graphs, $\forall k = 2, 3, \ldots, t$, as H is a bipartite graph. To get $C(t \cdot H)$, we have to add one more edge in $P(t \cdot H)$ between first and last copy of H in $P(t \cdot H)$. Thus we have to add t edge in $\bigcup_{i=1}^{t} H^{(i)}$ for the construction of $C(t \cdot H)$. If these added edges does not form a cycle of odd length then $C(t \cdot H)$ is also a bipartite graph.

Here we will add t edges to $\bigcup_{i=1}^{t} H^{(i)}$ between corresponding vertices in each copy to a vertex v from H to form the cycle graph $C(t \cdot H)$, where $t \equiv 0 \pmod{4}$. Thus $C(\cdot H)$ is a bipartite graph.

In *Theorem*-2.7 we proved that $C(t \cdot H)$ is a graceful graph with the vertex labeling function $g: V(G) \longrightarrow \{0, 1, \dots, Q\}$ defined as follows

$$g(u_{1,j}) = f(v_j), \qquad \text{if } f(v_j) < t$$

= $f(v_j) + (Q - q) - l, \qquad \text{if } f(v_j) \ge t, \qquad \forall \ j = 1, 2, \dots, p;$
$$g(u_{2,j}) = g(u_{1,j}) + (Q - q), \qquad \text{if } g(u_{1,j}) < \frac{Q}{2}$$

= $g(u_{1,j}) - (Q - q), \qquad \text{if } g(u_{1,j}) \ge \frac{Q}{2}, \qquad \forall \ j = 1, 2, \dots, p;$

$$\begin{split} g(u_{i,j}) &= g(u_{i-2,j}) - (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2}, \\ &\forall i = 3, 4, \dots, \frac{t}{2}, \forall j = 1, 2, \dots, p; \\ g(u_{\frac{t}{2}+1,j}) &= g(u_{\frac{t}{2}-1,j}) + (q+2), & \text{if } g(u_{\frac{t}{2}-1,j}) < \frac{Q}{2} \\ &= g(u_{\frac{t}{2}-1,j}) - (q+1), & \text{if } g(u_{\frac{t}{2}-1,j}) > \frac{Q}{2}, & \forall j = 1, 2, \dots, p; \\ g(u_{\frac{t}{2}+2,j}) &= g(u_{\frac{t}{2},j}) + (q+2), & \text{if } g(u_{\frac{t}{2},j}) > \frac{Q}{2} \\ &= g(u_{\frac{t}{2},j}) - (q+1), & \text{if } g(u_{\frac{t}{2},j}) < \frac{Q}{2} \\ g(u_{i,j}) &= g(u_{i-2,j}) - (q+1), & \text{if } g(u_{\frac{t}{2},j}) > \frac{Q}{2}, & \forall j = 1, 2, \dots, p; \\ g(u_{i,j}) &= g(u_{i-2,j}) - (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2}, \\ &\forall i = \frac{t}{2} + 3, \frac{t}{2} + 4, \dots, t, \forall j = 1, 2, \dots, p. \end{split}$$

Where Q = t(q+1), q = |E(H)|, p = |V(H)| and $f : V(H) \longrightarrow \{0, 1, \dots, t-1, t+l, t+l+1, \dots, q+l\}$ ($t \in \{1, 2, \dots, q\}$ and l be an arbitrary non-negative integer) be a semi smooth graceful labeling for the semi smooth graceful graph H.

From above defined labeling patter g on $C(t \cdot H)$, we can see that for any $e = (u, v) \in E(C(t \cdot H))$, either $g(u) < \frac{Q}{2}$ and $g(v) \ge \frac{Q}{2}$ or $g(u) \ge \frac{Q}{2}$ and $g(v) < \frac{Q}{2}$. Thus if we define $h: V(C(t \cdot H)) \longrightarrow \{0, 1, \dots, \frac{Q}{2} - 1, \frac{Q}{2} + l, \frac{Q}{2} + l + 1, \dots, Q + l\}$ as follows.

h(v) = g(v), when $g(v) < \frac{Q}{2}$

= g(v) + l, when $g(v) \ge \frac{Q}{2}$, for any arbitrary non-negative integer l, we can observe that the induced edge labeling function $h^* : E(C(t \cdot H)) \longrightarrow \{1+l, 2+l, \ldots, Q+l\}$ defined by $h^*(e = (u, v)) = |h(u) - h(v)| = |g(u) - g(v)| + l = g^*(e) + l$, becomes a bijection, as $h^*(E(C(t \cdot H))) = \{1+l, 2+l, \ldots, Q+l\}$ and so h is a smooth graceful labeling to the graph $C(t \cdot H)$ and hence $C(t \cdot H)$ is a smooth graceful graph.

Theorem-2.12 : $C^t(m \cdot C_n)$ is graceful, when $m, n \equiv 0 \pmod{4}$ and $t \in N$.

Proof: Since C_n $(n \equiv 0 \pmod{4})$ is a smooth graceful graph, by *Theorem*-2.11 $C(m \cdot C_n)$ is also a smooth graceful graph, where $m, n \equiv 0 \pmod{4}$. By applying same argument $C(m \cdot C(m \cdot C_n)) = C^2(m \cdot C_n)$ is a smooth graceful graph.

Similarly $C(m \cdot C^2(m \cdot C_n)) = C^3(m \cdot C_n), \ldots, C(m \cdot C^{t-1}(m \cdot C_n)) = C^t(m \cdot C_n)$ are smooth graceful graphs, where $m, n \equiv 0 \pmod{4}$ and $t \in N$.

Particularly $C^t(m \cdot C_n)$ is graceful graph, where $m, n \equiv 0 \pmod{4}$ and $t \in N$.

Illustration-2.13: $C^3(4 \cdot C_4)$ and its graceful labeling shown in *figure*-9, where $Q = |E(C^3(4 \cdot C_4))| = 340$ and $P = |V(C^3(4 \cdot C_4))| = 256$.

Figure-9 $C^{3}(4 \cdot C_4)$ and its graceful labeling.

Theorem-2.14: $P(t \cdot H)$ is a semi smooth graceful graph, where H is a semi smooth graceful graph and $t \in N$.

Proof: It is obvious that $P(t \cdot H)$ is a bipartite graph as H is bipartite. In *Theorem*-2.3 we proved that path union of t copies of semi smooth graceful graph is also graceful. Let $G = P(t \cdot H)$ and $V(H) = \{v_1, v_2, \ldots, v_p\}$ with p = |V(H)|, q = |E(H)|.

Since *H* is a semi smooth graceful graph, it admits a semi smooth graceful labeling say $f: V(H) \longrightarrow \{0, 1, \dots, y-1, y+l, y+l+1, \dots, q+l\}$ for some $y \in \{1, 2, \dots, q\}$ and an arbitrary non-negative integer $l \in N$. Let Q = tq + t - 1 and k be an non-negative integer. Take $w = \frac{tq}{2}$, when t is even or $\lfloor \frac{t}{2} \rfloor q + y$, when t is odd. Define the vertex labeling function $h : V(G) \longrightarrow \{0, 1, \dots, w - 1, w + k, w + k + 1, \dots, Q + k\}$ as follows

$$\begin{split} h(v_{1,j}) &= f(v_j), & \text{if } f(v_j) < y \\ &= f(v_j) + (Q - q) + (k - y), & \text{if } f(v_j) \ge y, \forall j = 1, 2, \dots, p; \\ h(v_{2,j}) &= h(v_{1,j}) + (Q - q) + k, & \text{if } h(v_{1,j}) < \frac{Q}{2} \\ &= h(v_{1,j}) - (Q - q + k), & \text{if } h(v_{1,j}) > \frac{Q}{2}, \forall j = 1, 2, \dots, p; \\ h(v_{i,j}) &= h(v_{i-2,j}) + (q + 1 + k), & \text{if } h(v_{i-2,j}) < \frac{Q}{2} \\ &= h(v_{i-2,j}) - (q + 1 + k), & \text{if } h(v_{i-2,j}) > \frac{Q}{2}, \\ &\forall i = 3, 4, \dots, t, \forall j = 1, 2, \dots, p. \end{split}$$

Above labeling pattern give rise semi smooth graceful labeling to the graph $G = P(t \cdot H)$. Thus G is a semi smooth graceful graph.

Theorem-2.15 : $P^t(k \cdot T)$ is graceful tree, where T is a semi-smooth graceful tree and $t, k \in N$.

Proof: We have T is a semi smooth graceful tree. By last $Theorem-2.14 \ P(k \cdot T)$ is also semi smooth graceful tree, as path union of k copies of a tree is also a tree. Applying similar theory $P^t(k \cdot T)$ is semi smooth graceful. Therefore it is a graceful tree.

Illustration-2.16: $P^3(2 \cdot T)$ and its graceful labeling shown in *figure*-10, where $Q = |E(P^3(2 \cdot T))| = 103$ and $P^3(2 \cdot T)$ contains 8 copies of T inside it.

Figure -10 $P^{3}(2 \cdot T)$ and its graceful labeling, where T is a semi smooth graceful tree given in *figure* -2.

Corollary-2.17: $P(k \cdot C(t \cdot P_n \times P_m))$ is graceful, where $t \equiv 0 \pmod{4}$ and $m, n, k \in N$. **Proof**: This follows from *Theorem*-1.11 and 1.14, as $P_n \times P_m$ is a smooth graceful graph proved by Kaneria and Jariya[4].

Illustration-2.18 : $P(3 \cdot C(4 \cdot P_3 \times P_3))$ and its graceful labeling shown in *figure*-11, where $|E(P(3 \cdot C(4 \cdot P_3 \times P_3)))| = 158$ and $|V(P(3 \cdot C(4 \cdot P_3 \times P_3)))| = 108$.

Figure-11 $P(3 \cdot C(4 \cdot P_3 \times P_3))$ and its graceful labeling.

Theorem-2.19: $\bigcup_{i=1}^{t} P_{n_i} \times P_{m_i}$ is graceful, where $n_i (1 \le i \le t)$, $m_i (1 \le i \le t)$, $t \in N$. **Proof**: Let $G = \bigcup_{i=1}^{t} (P_{n_i} \times P_{m_i})$, where $P_{n_i} \times P_{m_i}$ is the grid graph on $n_i \times m_i$ vertices and $q_i = |E(P_{n_i} \times P_{m_i})| = 2m_i n_i - (m_i + n_i)$, $\forall i = 1, 2, ..., t$.

Let $u_{i,j,k}$ $(1 \leq j \leq n_i, 1 \leq k \leq m_i)$ be the vertices of $P_{n_i} \times P_{m_i}$ (assuming $m_i \geq n_i$), $\forall i = 1, 2, ..., t$. Obviously $P = |V(G)| = \sum_{i=1}^t p_i$, where $p_i = |V(P_{n_i} \times P_{m_i})| = m_i n_i$, $\forall i = 1, 2, ..., t$ and $Q = |E(G)| = \sum_{i=1}^t q_i$. Kaneria and Jariya [4] proved that $P_{n_i} \times P_{m_i}$ $(i \leq i \leq t)$ are smooth graceful graphs.

We know that the vertex labeling functions $f_i : V(P_{n_i} \times P_{m_i}) \longrightarrow \{0, 1, \dots, q_i\}$ defined by

$$\begin{aligned} f(u_{i,j,1}) &= q_i - \frac{(j-1)^2}{2}, & \text{when } j \text{ is odd,} \\ &= \frac{j(j-2)}{2}, & \text{when } j \text{ is even, } \forall \ j = 1, 2, \dots, n_i; \\ f(u_{i,j,m_i}) &= \frac{q_i}{2} - \frac{1}{4} + (-1)^{m_i+j} [\frac{(n_i-j)^2}{2} + \frac{1}{4}], & \forall \ j = n_i, n_i - 1, \dots, 1; \\ f(u_{i,j,k}) &= f(u_{i,j-1,k+1}) + (-1)^{j+k}, & \forall \ k = m_i - 1, m_i - 2, \dots, m_i + 1 - n_i, \\ &\forall \ i = n_i, n_i - 1, \dots, m_i + 1 - k; \end{aligned}$$

$$\begin{split} f(u_{i,n_i,k}) &= f(u_{i,n_i,1}) + (-1)^{n_i} [\frac{(2n_i-1)(k-1)}{2}], & \text{when } k \text{ is odd,} \\ &= f(u_{i,n_i-1,1}) - (-1)^{n_i} [\frac{(2n_i-1)k}{2}], & \text{when } k \text{ is even,} \\ & \forall k = 2, 3, \dots, m_i - n_i; \\ f(u_{i,j,k}) &= f(u_{i,j+1,k-1}) - (-1)^{j+k}, & \forall k = 2, 3, \dots, m_i - 1, \\ & \forall j = 1, 2, \dots, \min\{n_i, m_i - k\}; \forall i = 1, 2, \dots, t \text{ are graceful.} \end{split}$$

Using these we shall define $g_i: V(P_{n_i} \times P_{m_i}) \longrightarrow \{0, 1, \dots, \lceil \frac{q_i}{2} \rceil - 1, \lceil \frac{q_i}{2} \rceil + l, \lceil \frac{q_i}{2} \rceil + 1 + l, \dots, q_i + l\}$ by

$$g_i(u) = f_i(u), \qquad \text{when } f_i(u) < \frac{q_i}{2},$$
$$= f_i(u) + l, \qquad \text{when } f_i(u) \ge \frac{q_i}{2}, \forall u \in V(P_{n_i} \times P_{m_i})$$
$$\text{and } \forall i = 1, 2, \dots, t,$$

where l is an arbitrary non negative integer. Which are smooth graceful labeling function $\forall i = 1, 2, ..., t$.

Define for each $k = 2, 3, \ldots, t, h_k : V(\bigcup_{i=1}^k P_{n_i} \times P_{m_i}) \longrightarrow \{0, 1, \ldots, \sum_{i=1}^k q_i\}$ as follows, assuming $h_1 = f_1$.

 $\begin{aligned} h_k(w_k) &= g_k(w_k), & \text{when } g_k(w_k) < \frac{q_k}{2}, \\ &= g_k(w_k) + \sum_{i=1}^{k-1} q_i - l, & \text{when } g_k(w_k) \ge \frac{q_k}{2}, \forall \ w_k \in V(P_{n_i} \times P_{m_i}); \\ h_k(w) &= h_{k-1}(w) + (\frac{q_k}{2} + 1), & \text{when } q_k \text{ is even}, \\ &= \sum_{i=1}^{k-1} q_i - h_{k-1}(w) + (\frac{q_k-3}{2}), & \text{when } q_k \text{ is odd}, \forall \ w \in V(\bigcup_{i=1}^{k-1} P_{n_i} \times P_{m_i}). \end{aligned}$

Above defined labeling pattern give rise graceful labeling h_k to each disconnected graph $\bigcup_{i=1}^k P_{n_i} \times P_{m_i}, \forall k = 2, 3, ..., t$. Thus $\bigcup_{i=1}^k P_{n_i} \times P_{m_i}$ are disconnected graceful graphs, $\forall k = 2, 3, ..., t$. Particularly $\bigcup_{i=1}^t P_{n_i} \times P_{m_i}$ is graceful.

Illustration-2.20: To get graceful labeling for $G = (P_3 \times P_3) \cup (P_3 \times P_4) \cup (P_3 \times P_5) \cup (P_2 \times P_4)$, we have Q = 12 + 17 + 22 + 10 = 61, $q_1 = 12$, $q_2 = 17$, $q_3 = 22$, $q_4 = 10$, we have computed smooth graceful labelings for $P_3 \times P_3$, $P_3 \times P_4$, $P_3 \times P_5$ and $P_2 \times P_4$ in figure-12 by smooth vertex labeling functions $g_i(1 \le i \le 4)$ respectively, graceful labeling for $(P_3 \times P_3) \cup (P_3 \times P_4)$ by h_2 , in figure-13, graceful labeling for $(P_3 \times P_3) \cup (P_3 \times P_4) \cup (P_3 \times P_5)$ by h_3 in figure-14 and graceful labeling for G by h_4 in figure-15.

Figure -12 smooth graceful labeling for $P_3 \times P_3$, $P_3 \times P_4$, $P_3 \times P_5$, and $P_2 \times P_4$.

Figure-13 Graceful labeling h_2 for the graph $(P_3 \times P_3) \cup (P_3 \times P_4)$. **e** 20

 $\label{eq:Figure-14} Figure-14 \qquad \text{Graceful labeling h_3 for the graph $(P_3 \times P_3) \cup (P_3 \times P_4) \cup (P_3 \times P_5)$.}$

Figure-15 Graceful labeling h4 for G.

Theorem-2.21 : $\langle C_{n_1}, P_{n_2}, C_{n_3}, \dots, P_{n_{2t}}, C_{n_{2n+1}} \rangle$ is graceful, when $n_i \equiv 0 \pmod{4}$, $\forall i = 1, 3, \dots, 2t + 1$ and $n_i \in N, \forall i = 1, 2, \dots, 2t + 1$.

Proof: Obviously $p_i = q_i = |V(C_{n_i})| = |E(C_{n_i})| = n_i, \forall i = 1, 3, ..., 2t + 1$ and $p_j = |V(P_{n_j})| = n_j, q_j = |E(P_{n_j})| = n_j - 1, \forall j = 2, 4, ..., 2t$. Let $G = \langle C_{n_1}, P_{n_2}, C_{n_3}, ..., P_{n_{2t}}, C_{n_{2n+1}} \rangle, V(C_{n_i}) = \{u_{i,j}/1 \leq j \leq n_i\}, \forall i = 1, 3, ..., 2t + 1$ and $V(P_{n_j}) = \{v_{j,k}/1 \leq k \leq n_j\}, \forall j = 2, 4, ..., 2t$ with $u_{i,1} = v_{i+1,n_{i+1}}$ and $v_{i+1,1} = u_{i+2,n_{i+2}}$ for every i = 1, 3, ..., 2t - 1 to from the connected graph G. Here $P = |V(G)| = \sum_{i=1}^{2t+1} p_i - 2t$ and $Q = |E(G)| = \sum_{j=1}^{2t+1} q_j$.

Let $f_{2i}: V(P_{n_{2i}}) \longrightarrow \{0, 1, \dots, q_{2i}\}$ be graceful labeling for $P_{n_{2i}}$ defined by $f_{2i}(v_{2i,k}) = q_{2i} - \left(\frac{k-1}{2}\right),$ when k is odd, $= \left(\frac{k-2}{2}\right),$ when k is even, $\forall k = 1, 2, \dots, p_{2i}, \forall i = 1, 2, \dots, t.$

Let
$$f_{2i+1}: V(C_{n_{2i+1}}) \longrightarrow \{0, 1, \dots, q_{2i+1}\}$$
 be graceful labeling for $C_{n_{2i+1}}$ defined by
 $f_{2i+1}(u_{2i+1,j}) = q_{2i+1} - \left(\frac{j-1}{2}\right),$ when j is odd,
 $= \left(\frac{j-2}{2}\right),$ when j is even, and $j \le \frac{v_{2i+1}}{2},$
 $= \left(\frac{j}{2}\right),$ when j is even, and $j > \frac{v_{2i+1}}{2},$
 $\forall j = 1, 2, \dots, p_{2i+1}, \forall i = 0, 1, \dots, t.$

Define for each k = 2, 4, ..., 2t (assuming $g_1 = f_1$) $g_k : V(\langle C_{n_1}, P_{n_2}, ..., P_{n_k} \rangle) \longrightarrow$ $\{0, 1, ..., \sum_{i=1}^k q_i\}$ and $g_{k+1} : V(\langle C_{n_1}, P_{n_2}, ..., C_{n_{k+1}} \rangle) \longrightarrow \{0, 1, ..., \sum_{j=1}^{k+1} q_j\}$ as follows.

$$\begin{split} g_k(u) &= f_k(u), & \text{when } f_k(u) < \frac{q_k}{2}, \\ &= f_k(u) + \sum_{i=1}^{k-1} q_i, & \text{when } f_k(u) \ge \frac{q_k}{2} \forall \ u \in V(P_{n_k}); \\ g_k(w) &= g_{k-1}(w) + \frac{q_k}{2}, & \text{when } g_k \text{ is even}, \\ &= \sum_{i=1}^{k-1} q_i + \left(\frac{g_{k-1}}{2}\right) - g_{k-1}(w), & \text{when } g_k \text{ is odd}; \\ &\forall \ w \in V(< C_{n_1}, P_{n_2}, \dots, C_{n_{k-1}} >); \\ g_{k+1}(v) &= f_{k+1}(v), & \text{when } f_{k+1}(v) \le \frac{q_{k+1}}{2}, \\ &= f_{k+1}(v) + \sum_{j=1}^k q_j, & \text{when } f_{k+1}(v) > \frac{q_{k+1}}{2}, \forall \ v \in V(C_{n_{k+1}}); \\ g_{k+1}(w) &= \sum_{j=1}^k q_j + \left(\frac{g_{k+1}}{2}\right) - g_k(w), & \forall \ w \in V(< C_{n_1}, P_{n_2}, \dots, C_{n_{k-1}}, P_{n_k} >). \end{split}$$

Above labeling pattern give rise graceful labelings g_k, g_{k+1} to the graphs $\langle C_{n_1}, P_{n_2}, \ldots, P_{n_k} \rangle$ and $\langle C_{n_1}, P_{n_2}, \ldots, C_{n_{k+1}} \rangle$ respectively and so they are graceful graphs, $\forall k = 2, 4, \ldots, t$. Particularly $\langle C_{n_1}, P_{n_2}, \ldots, P_{n_{2t}}, C_{n_{2t+1}} \rangle$ is a graceful graph.

Illustration-2.22 : $< C_8, P_{10}, C_4, P_7, C_{12}, P_3, C_8 >$ and its graceful labeling g_7 shown in *figure*-20, for this we have computed graceful labelings f_1, f_2, \ldots, f_7 for $C_8, P_{10}, C_4, P_7,$ C_{12}, P_3, C_8 respectively in *figure*-16, $< C_8, P_{10} >$, $< C_8, P_{10}, C_4 >$ and their graceful labelings g_2, g_3 are shown in *figure*-17, $< C_8, P_{10}, C_4, P_7 >$, $< C_8, P_{10}, C_4, P_7, C_{12} >$ and their graceful labeling g_4, g_5 are shown in *figure*-18 and $< C_8, P_{10}, C_4, P_7, C_{12}, P_3 >$ and its graceful labeling g_6 shown in *figure*-19.

Figure -16 $C_8, P_{10}, C_4, P_7, C_{12}, P_3, C_8$ and its graceful labelings f_1, f_2, \ldots, f_7 respectively.

 $Figure - 17 \qquad < C_8, P_{10} >, < C_8, P_{10}, C_4 > \text{ and their graceful labelings } g_2, g_3.$

Figure -20 G and its graceful labeling g_7 .

Theorem-2.23 : $\langle P_{n_1} \times P_{m_1}, P_{r_1}, P_{n_2} \times P_{m_2}, \dots, P_{r_{t-1}}, P_{n_t} \times P_{m_t} \rangle$ is graceful. **Proof**: Let $G = \langle P_{n_1} \times P_{m_1}, P_{r_1}, P_{n_2} \times P_{m_2}, \dots, P_{r_{t-1}}, P_{n_t} \times P_{m_t} \rangle$. It is obvious that $p_i = |V(P_{n_i} \times P_{m_i})| = m_i n_i, \forall i = 1, 2, \dots, t \text{ and } |V(P_{r_j})| = r_j, \forall j = 1, 2, \dots, t - 1$. Also $q_i = |E(P_{n_i} \times P_{m_i})| = 2p_j - (m_i + n_i), \forall i = 1, 2, \dots, t \text{ and } |E(P_{r_j})| = q'_j = r_j - 1, \forall j = 1, 2, \dots, t - 1$. Let $V(P_{n_i} \times P_{m_i}) = \{u_{i,j,k}/1 \leq j \leq n_i, 1 \leq k \leq m_i\}, \forall i = 1, 2, \dots, t \text{ and } V(P_{r_l}) = \{u_{l,k}/1 \leq k \leq r_l\}, \forall l = 1, 2, \dots, t-1 \text{ with } u_{i,1,1} = v_{i,r_i} \text{ and } v_{i,1} = u_{i+1,n_{i+1},m_{i+1}} \text{ for every } i = 1, 2, \dots, t-1 \text{ to from connected graph } G.$ Here we see that $|V(G)| = \sum_{i=1}^t p_i + \sum_{i=1}^{t-1} (r_i - 2)$ and $|E(G)| = \sum_{i=1}^t q_i + \sum_{i=1}^{t-1} (q'_i)$. Let $f_l : V(P_{n_l} \times P_{m_l}) \longrightarrow \{0, 1, \dots, q_l\}$ be vertex labeling function for $P_{n_l} \times P_{m_l}$ defined by

$$\begin{split} f(u_{l,j,1}) &= g_l - \frac{(j-1)^2}{2}, & \text{when } j \text{ is odd}, \\ &= \frac{j(j-2)}{2}, & \text{when } j \text{ is even}, \forall j = 1, 2, \dots, n_l; \\ f(u_{l,j,m_l}) &= \frac{q_l}{2} - \frac{1}{4} + (-1)^{m_l + j} [\frac{(n_l - j)^2}{2} + \frac{1}{4}], & \forall j = n_l, n_{l-1}, \dots, 1; \\ f(u_{l,j,k}) &= f(u_{l,j-1,k+1}) + (-1)^{j+k}, & \forall k = m_l - 1, m_l - 2, \dots, m_l + 1 - n_l, \\ & \forall j = n_l, n_l - 1, \dots, m_l + 1 - k; \\ f(u_{l,n_l,k}) &= f(u_{l,n_l,1}) + (-1)^{n_l} [\frac{(2n_l - 1)(k-1)}{2}], & \text{when } k \text{ is odd}, \\ &= f(u_{l,n_l,1}) - (-1)^{n_l} [\frac{(2n_l - 1)(k)}{2}], & \text{when } k \text{ is even}, \forall k = 2, 3, \dots, m_l - n_l; \\ f(u_{l,j,k}) &= f(u_{l,j+1,k-1}) + (-1)^{j+k}, \forall k = 2, 3, \dots, m_l - 1, \forall j = 1, 2, \dots, min\{n_l, m_l - k\}, \\ & \forall l = 1, 2, \dots, t. \end{split}$$

which is a graceful labeling function for $P_{n_l} \times P_{m_l}$, $\forall l = 1, 2, ..., t$.

Let
$$f'_l: V(P_{r_l}) \longrightarrow \{0, 1, \dots, q'_l\}$$
 be vertex labeling function for P_{r_l} defined by
 $f'_l(v_{l,k}) = g_l - (\frac{k-1}{2}),$ when k is odd,
 $= \frac{k-2}{2},$ when k is even;
 $\forall k = 1, 2, \dots, r_l, \forall l = 1, 2, \dots, t-1.$

which is a graceful labeling function for P_{r_l} , $\forall l = 1, 2, \dots, t-1$.

 $\begin{array}{l} \text{Define for each } l = 2, 3, \dots, t, \ g_{l-1}' : V(< P_{n_1} \times P_{m_1}, P_{r_1}, \dots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}} >) \\ \longrightarrow \{0, 1, \dots, \sum_{i=1}^{l-1} (q_i + q_i')\} \text{ and } g_l : V(< P_{n_1} \times P_{m_1}, P_{r_1}, \dots, P_{r_{l-1}}, P_{n_l} \times P_{m_l} >) \longrightarrow \{0, 1, \dots, q_l + \sum_{i=1}^{l-1} (q_i + q_i')\} \text{ as follows (assuming } g_1 = f_1). \\ g_{l-1}'(u) = f_{l-1}'(u), & \text{when } f_{l-1}'(u) < \frac{q_l'}{2}, \\ = f_{l-1}'(u) + g_{l-1} + \sum_{i=1}^{l-2} (q_i + q_i'), & \text{when } f_{l-1}'(u) \geq \frac{q_l'}{2}, \\ \forall \ u \in V(P_{l-1}); \\ g_{l-1}'(w) = g_{l-1}(w) + \frac{q_{l-1}'}{2}, & \text{when } g_{l-1}' \text{ is even}, \\ = q_{l-1} + \sum_{i=1}^{l-2} (q_i + q_i') + (\frac{q_{l-1}'-1}{2}) - g_{l-1}(w), & \text{when } g_{l-1}' \text{ is odd}, \\ \forall \ w \in V(< P_{n_1} \times P_{m_1}, P_{r_1}, \dots, P_{n_{l-1}} \times P_{m_{l-1}} >); \end{array}$

$$\begin{split} g_l(v) &= f_l(v), & \text{when } f_l(v) < \frac{q_l}{2}, \\ &= f_l(v) + \sum_{i=1}^{l-1} (q_i + q'_i), & \text{when } f_l(v) \geq \frac{q_l}{2}, \\ &\forall v \in V(P_{n_l} \times P_{m_l}); \\ g_l(w) &= g'_{l-1}(w) + \frac{q_l}{2}, & \text{when } g_l \text{ is even}, \\ &= \sum_{i=1}^{l-1} (q_i + q'_i) + (\frac{q_l-1}{2}) - g'_{l-1}(w), & \text{when } g_l \text{ is odd.} \\ &\forall w \in V(< P_{n_1} \times P_{m_1}, P_{r_1}, \dots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}} >) \end{split}$$

Above labeling pattern give rise graceful labeling g'_{l-1}, g_l to the graphs $\langle P_{n_1} \times P_{m_1}, P_{r_1}, \ldots, P_{n_{l-1}} \times P_{m_{l-1}}, P_{r_{l-1}} \rangle$ and $\langle P_{n_1} \times P_{m_1}, P_{r_1}, \ldots, P_{r_{l-1}}, P_{n_l} \times P_{m_l} \rangle$ respectively, $\forall l = 2, 3, \ldots, t$. So they are graceful graphs. Particularly $G = \langle P_{n_1} \times P_{m_1}, P_{r_1}, \ldots, P_{r_{t-1}}, P_{n_t} \times P_{m_t} \rangle$ is graceful.

Illustration-2.24 : $\langle P_3 \times P_3, P_5, P_3 \times P_4, P_8, P_4 \times P_4 \rangle$ and its graceful labeling g_3 shown in *figure*-24, for this we have computed graceful labelings f_1, f_2, f_3, f'_1 and f'_2 for the graphs $P_3 \times P_3, P_3 \times P_4, P_4 \times P_4, P_5$ and P_8 respectively in *figure*-21, graceful labeling g'_1 for $\langle P_3 \times P_3, P_5 \rangle$, graceful labeling g_2 for $\langle P_3 \times P_3, P_5, P_3 \times P_4 \rangle$ in *figure*-22, graceful labeling g'_2 for $\langle P_3 \times P_3, P_5, P_3 \times P_4, P_5, P_3 \times P_4, P_6 \rangle$ in *figure*-23.

Figure -22 Graceful labeling g'_1 for $\langle P_3 \times P_3, P_5 \rangle$ and g_2 for $\langle P_3 \times P_3, P_5, P_3 \times P_4 \rangle$.

Figure-24 Graceful labeling for G.

Theorem-2.25 : Arbitrary path union of t complete bipartite graphs K_{m_i,n_i} $(1 \le i \le t)$ by t - 1 paths of arbitrary length $r_j - 1$ $(1 \le j \le t - 1)$ is graceful.

Proof: Let $G = \langle K_{m_1,n_1}, P_{r_1}, K_{m_2,n_2}, P_{r_2}, \dots, K_{m_t,n_t} \rangle$. Obviously $P = |V(G)| = \sum_{i=1}^{t} (m_i + n_i) + \sum_{i=1}^{t-1} (r_i - 2)$ and $Q = |E(G)| = \sum_{i=1}^{t} q_i + \sum_{i=1}^{t-1} q'_i$, where $q_i = |E(K_{m_i,n_i}| = m_i n_i$ and $q'_i = |E(P_{r_j})| = r_j - 1$, $\forall i = 1, 2, \dots, t$ and $\forall j = 1, 2, \dots, t - 1$.

Let $V(K_{m_i,n_i}) = \{u_{i,j}/1 \leq j \leq m_i\} \cup \{w_{i,k}/1 \leq k \leq n_i\}, \forall i = 1, 2, \dots, t$ and $V(P_{r_l}) = \{v_{l,t}/1 \leq t \leq r_l\}$, with $u_{l,1} = v_{l,r_l}, u_{l+1,m_{l+1}} = v_{l,1} \forall l = 1, 2, \dots, t-1$.

Let $f_l: V(K_{m_l,n_l}) \longrightarrow \{0, 1, \ldots, q_l\}$ be graceful labeling function for K_{m_l,n_l} defined by

$$f_{l}(u_{l,j}) = j - 1, \qquad \forall \ j = 1, 2, \dots, m_{l};$$

$$f_{l}(w_{l,k}) = m_{l} \cdot k, \qquad \forall \ k = 1, 2, \dots, n_{l}, \ \forall \ l = 1, 2, \dots, t.$$

Let $f'_l: V(P_{r_l}) \longrightarrow \{0, 1, \dots, q'_l\}$ be graceful labeling function for P_{r_l} defined by

 $f'_{l}(v_{l,k}) = q'_{l} - \left(\frac{k-1}{2}\right), \qquad \text{when } k \text{ is odd},$ $= \left(\frac{k-2}{2}\right), \qquad \text{when } k \text{ is even, } \forall k = 1, 2, \dots, r_{l};$ $\forall l = 1, 2, \dots, t-1.$

Define for each $\forall l = 2, 3, ..., t$ (assuming $g_l = f_1$) $g'_{l-1} : V(\langle K_{m_1,n_1}, P_{r_1}, ..., K_{m_{l-1},n_{l-1}}, P_{r_{l-1}} \rangle) \longrightarrow \{0, 1, ..., \sum_{i=1}^{l-1} (q_i + q'_i)\}$ and $g_l : V(\langle K_{m_1,n_1}, P_{r_1}, ..., P_{r_{l-1}}, K_{m_l,n_l} \rangle) \longrightarrow \{0, 1, ..., \sum_{i=1}^{l-1} (q_i + q'_i) + q_l\}$ as follows

$$\begin{split} g_{l-1}'(u) &= f_{l-1}'(u), & \text{when } f_{l-1}'(u) < \frac{q_{l}'}{2}, \\ &= f_{l-1}'(u) + q_{l-1} + \sum_{i=1}^{l-2}(q_{i} + q_{i}'), & \text{when } f_{l-1}'(u) \geq \frac{q_{l}'}{2}, \\ &\forall u \in V(P_{l-1}); \\ g_{l-1}'(w) &= g_{l-1}(w) + (\frac{q_{l-1}'-1}{2}), & \text{when } g_{l-1}' \text{ is odd}, \\ &= q_{l-1} + \sum_{i=1}^{l-2}(q_{i} + q_{i}') + (\frac{q_{l-1}'}{2}) - g_{l-1}(w), & \text{when } q_{l-1}' \text{ is even}, \\ &\forall w \in V(< k_{m_{1},n_{1}}, P_{r_{1}}, \dots, K_{m_{l-1},n_{l-1}} >); \\ g_{l}(v) &= f_{l}(v), & \text{when } f_{l}(v) < m_{l}, \\ &= f_{l}(v) + \sum_{i=1}^{l-1}(q_{i} + q_{i}'), & \text{when } f_{l}(v) \geq m_{l}, \\ &\forall v \in V(K_{m_{l},n_{l}}); \\ g_{l}(w) &= \sum_{i=1}^{l-1}(g_{i} + g_{i}') + m_{l} - g_{l-1}'(w) - 1, \\ &\forall w \in V(< k_{m_{1},n_{1}}, P_{r_{1}}, \dots, K_{m_{l-1},n_{l-1}}, P_{r_{l}} >) \end{split}$$

Above defined labeling pattern give rise graceful labelings g'_{l-1}, g_l to the graphs $\langle K_{m_1,n_1}, P_{r_1}, \ldots, P_{r_{l-1}} \rangle$ and $\langle K_{m_1,n_1}, P_{r_1}, \ldots, K_{m_l,n_l} \rangle$ respectively, $\forall l = 2, 3, \ldots, t$. So these are graceful graphs, $\forall l = 2, 3, \ldots, t$. Particularly $G = \langle K_{m_1,n_1}, P_{r_1}, \ldots, K_{m_t,n_t} \rangle$ is graceful.

Illustration-2.26 : $\langle K_{3,5}, P_6, K_{3,3}, P_5, K_{3,4} \rangle$ and its graceful labeling g_3 shown in *figure*-28, for this we have computed graceful labelings $f_1, f_2, f_3, f'_1, f'_2$ for the graphs $K_{3,5}, K_{3,3}, K_{3,4}, P_6, P_5$ respectively in *figure*-25, graceful labeling g'_1 for $\langle K_{3,5}, P_6, K_{3,3} \rangle$ in *figure*-26 and graceful labeling g'_2 for $\langle K_{3,5}, P_6, K_{3,3}, P_5 \rangle$ in *figure*-27.

Figure -25 Graceful labeling for $k_{3,5}, K_{3,3}, K_{3,4}, P_6, P_5$.

References

- A. Rosa, On certain valuation of graph, *Theory of Graphs (Rome, July* 1966), Goden and Breach, N. Y. and Paris, (1967) pp. 349 – 355.
- [2] H.K.Ng, α -valuations and k-gracefulness, Notices AMS, 7, 1986, pp. 247.
- [3] V.J. Kaneria and M.M. Jariya, Smooth Graceful Graphs And Its Application To Construct Graceful Graphs, *I.J. of Sci. and Research* Vol-3 (8), Aug. 2014, pp. 909-912. http://www.ijsr.net/archive/v3i8/MDIwMTU0ODg=.pdf
- [4] V.J. Kaneria and M.M. Jariya, Semi smooth graceful graph and construction of new graceful trees, *Elixir Applied Mathematics* Vol-76, 2014, pp. 28536 – 28538.

- [5] J. A. Gallian, The Electronics Journal of Combinatorics, 17, #DS6(2014). http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6
- [6] F. Harary, Graph theory Addition Wesley, Massachusetts, 1972.
- [7] V. J. Kaneria and H. M. Makadia, Graceful Labeling for Step Grid Graph, J. of advance in Maths Vol-9 (5), Nov. 2014, pp. 2647 – 2654. http://cirworld.org/journals/index.php/jam/article/view/3199