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Abstract 

This paper deals with Fuzzy Multi-item displayed inventory model with alternative power 

supply cost (power generator). The cost parameters and the constraint are represented by the 

pentagonal fuzzy number. The model is solved by fuzzy geometric programming method. The 

optimal order quantity and number of display quantity have been determined. A numerical 

example is given to illustrate the model.  
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1    Introduction 

Multi – item classical inventory models under various types of constraints such as capital 

investment, available storage area, number of orders and available set – up time are presented in well – 

known books written by Churchman, Ackoff and Arnoff [3], Hardley and Whitin  [7] , Silver and 

Peterson. 

While modeling an inventory problem, generally three types of demand are considered. They are 

(1) constant demand (2) time – dependent demand and (3) stock – dependent demand. In the stock 

dependent demand, specially displayed inventory level demand has an effect on sales for many retail 

products. 

 Whitin [16] stated that for the retail stores the inventory control problem for style goods is further 

complicated with the fact that the inventory and the sales are not independent to each other. An 

increase in inventory may bring increased sales of some items. According to Silver and Peterson [13] 
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the sale at the retail level is proportional to the amount of displayed inventory. The most of the retailers 

displayed some products on shelf following the product variety, choice of the customers towards brand 

quality, and physical size of the product to influence the customer’s attention.  

Urban [15] developed a model to identify those products, which should be included in a firm’s 

product line in which the demand rate is a polynomial function of price, advertising and distribution. 

Corstjens and Doyle [4] developed a shelf – space allocation model in which demand rate is a function 

of shelf – space allocated to the product. 

But all these inventory problems are solved with the assumption that the co-efficient or cost 

parameters are specified in a precise way. In real life, there are many diverse situations due to 

uncertainty. Here inventory costs are imprecise, that is fuzzy in nature. 

Early works using fuzzy concept in decision making were done by Zadeh [18] and Bellman [2] by 

introducing fuzzy goals, costs and constraints. Later, the fuzzy linear programming model was 

formulated and an approach for solving linear programming model with fuzzy numbers has been 

presented by Zimmermann [19]. 

Geometric programming method is a relatively new technique to solve a non-linear programming 

problem. Duffin, Peterson and Zener [5] first developed an idea on GP method. Kotchenberger was the 

first to use this method on inventory problems. Later on Worrall and Hall  [17] analyzed a multi-item 

inventory model with several constraints using posynomial GP method. Later, the Geometric 

Programming techniques were discussed by Abou-el-Ata, Fergany,  and El-Wakeel [1], Mandal and 

Roy [8], [9], [11] and [12]. Recently Mandal and Roy [11] presented a displayed inventory model with 

triangular fuzzy number. 

The scarcity of power affects the small scale industries such as Bakery, Restaurants, Packaged food 

product companies, Retail showrooms. To solve this problem, generators are being installed, it incurs a 

cost. This paper introduces the cost as ‘alternative power supply cost’.  Also the pentagonal fuzzy 

number is defined. So the display inventory model by using pentagonal fuzzy number with Alternative 

power supply cost has been considered. In this paper, a multi item displayed inventory model under 

shelf – space constraint in fuzzy environment is formulated. Also power generator has been used in 

both backroom storage area and display area. 

The parameters involved in this paper are assumed to be imprecise in nature and the parameters are 

represented by pentagonal fuzzy numbers with different types of left and right membership functions. 

The model is then reduced to multi-objective decision-making inventory problem and is solved by 

fuzzy geometric programming method. Finally a numerical example is given to illustrate the model. 

2    Assumptions and Notations 

A multi-item displayed inventory model with generator cost is formulated under the following 

assumptions. 
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Assumptions: 

1. The unit cost of the item is independent of Q. 

2. The display cost does not depend on the length of cycle time T. 

3. The outstanding order was never more than one. 

4. Lead time is zero. 

5. Shortages are not allowed. 

6. Demand rate depends on display inventory for
thi item )10,0( 






ii

d

iii ddSdD i  

Here id and 


id (i=1, 2,….., n) are the scale and shape parameters of the demand function 

7. Full-shelf merchandising policy has been adopted, where the display area is always kept fully 

stocked, so the inventory is replenished as soon as the backroom inventory reaches zero. The 

displayed inventory will always be at its maximum. The inventory level decreases at a constant 

rate. 

8. Alternative power supply (power generator) cost is allowed. 

Notations: Let there be n items. The following are for the i
th
 item,   

iS  - number of display quantity (decision variable), ),),......,(( 21

T

nSSSS   

iQ  - number of order quantity (decision variable), ),),......,(( 21

T

nQQQQ   

i  - 
instantaneous inventory level of the entire system including both the backroom 

storage and the displayed Inventory  (net inventory), 

ip  - selling price per unit, 

iC  - purchasing price per unit, 

iC1  - holding cost per unit per unit time, 

iC2  - display shelf cost per unit per unit time, 

iC3  - set up cost per cycle, 

iD  - demand rate, 

iP  - production rate, 

ig  - alternative power supply cost (power generator) per unit per unit time, 

  ̃   - fuzzy profit function, 

id
ii

i
i

Sd

Q
T




 

- cycle time, 

W  - total display – shelf space. 
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3    Mathematical Model in Crisp Environment 

The inventory model is formulated to maximize the average net profit, which includes the gross 

revenues, unit purchasing cost, setup cost, holding cost and the display cost under the limited display – 

space constraint. 

 Average profit = Gross revenues per unit  – purchasing price per unit  – setup cost per unit   

                                       time – holding cost per unit time –generator cost per unit time – display   

                                       shelf space cost per unit time 

Hence, the profit function is  



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where the average inventory is
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Average profit function is reduced to 
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The problem is then stated as  

Max ),( QSPF  

subject to:   1
1
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The standard geometric programming problem is 


 




































n

i

i

ii

d

ii
iiii

i

iii

d

iiiii
ii

d

ii

d

ii

i

i

P

gCSd
SCCg

P

QgCSdQCg
CpSdSd

Q

C

QSPF
i

i

ii

1
1

1

21

113

)(
)(

2

)(

2

)(
)(

),(Min  

subject to:      .0,;1
1




ii

n

i

ii
QS

W

Sw

                                                

      (4) 

This primal problem (4) is a constrained signomial problem with 3n-1 degree of difficulty. The 

corresponding dual problem is  
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subject to:  

w1i  - w2i +w3i –w4i +w5i –w6i = -1 
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
id w1i  -


id w2i  – 


id w4i +  


id –( 


id +1)w6i+w7i = 0 

-w1i   +w3i –w4i  = 0 

where  w1i  ,w2i , w3i , w4i , w5i ,w6i  and w7i > 0. 

By using geometric programming theorem [5], the analytical expressions for the decision variables Qi 

and Si are obtained. 
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4    Pentagonal Fuzzy number and its Nearest Interval Approximation 

Definition 4.1.  A pentagonal fuzzy number A
~

 is a fuzzy subset on the real line R whose membership 

function )(~ x
A

  is defined as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 16.0  Aw and a, b, c, d and e are real numbers.
 

This type of fuzzy number be denoted as A
~

= (a, b, c, d, e; Aw ) PFN.
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1. 
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~  is a continuous mapping from R to the closed interval [0, 1]. 

2. 
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~  is a convex function. 
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~  = 0,       . 
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A
~ (x) = L(x) is strictly increasing on (a, c). 

5. 
A
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~ (x) = R(x) is strictly decreasing on (c, e). 
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7. 
A
~ (x) = 0,      .

 

Remarks: 

1. If Aw < 0.6 then A
~

 becomes a triangular fuzzy number. 

2. If Aw =1 then A
~

becomes a trapezoidal fuzzy number. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graphical representation of  Pentagonal Fuzzy number for Aw  = 0.75. 

 

Nearest Interval Approximation: Here we approximate a fuzzy number by a crisp model. Suppose 
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Solving 
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By the nearest interval approximation method, the lower and upper limits of the interval are  
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and      
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5    The proposed inventory model in fuzzy environment:   

If the cost parameters and total display shelf space parameters are fuzzy numbers, then the problem 

(3) is transformed to 
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where    represents the fuzzification of the parameters. 

In our proposed model, the cost parameters pi, Ci, C1i, C2i, C3i, gi, Pi and W are considered as   

pentagonal fuzzy numbers. 
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6    Cases of proposed inventory model with pentagonal fuzzy number 

Case 1: All the cost parameters are fuzzified and the total displayed shelf-space parameter is 

deterministic.  
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Using the Nearest Interval Approximation, the above model is defuzzified as follows: 
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The multi-objective inventory problem (9) is solved by the geometric programming technique and a 

pay-off matrix of order 2 2 is formed. 
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This primal problem (11) is a constrained signomial problem with 3n-1 degree of difficulty. The 

corresponding dual problem is  
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           subject to: 

w1i  - w2i +w3i –w4i +w5i –w6i = -1 


id w1i  -


id w2i  –


id w4i +w5i –( 


id +1)w6i+w7i = 0 

-w1i   +w3i –w4i = 0 

where w1i  ,w2i , w3i , w4i , w5i ,w6i & w7i> 0. 
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By using geometric programming theorem [5], the analytical expressions for the decision variables Qi 

and Si  are obtained. 
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Substituting   
       

  in PFL (S ,Q) and PFC (S ,Q), the optimal values of  PFL
1
(S ,Q)  andPFC

1
 (S,Q) are 

obtained. 

In a similar way, the optimal values of Qi and Si for PFC[S,Q] subject to the same constraint are 

obtained. 
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Substituting    
     

  in PFL(S, Q) and PFc(S, Q), the optimal values of PFL
2
(S, Q) and PFC

 2
 (S, Q) are 

obtained. 

Using the optimal solutions, a payoff matrix of size 2 2 is formed 
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The standard geometric programming problem is, 
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This primal problem (17) is a constrained signomial problem with 3n-1 degree of difficulty. The 

corresponding dual problem is  
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where w1i  ,w2i , w3i , w4i , w5i ,w6i & w7i> 0. 

By using geometric programming theorem [5], the analytical expressions for the decision variables Qi 

and Si are obtained. 
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Case 2: The cost parameters are deterministic and the display shelf space parameter W is a pentagonal 

fuzzy number. 

Then the problem is  
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Using the Nearest Interval Approximation, the above model is defuzzified as  
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The standard geometric programming problem is 
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This primal problem (22) is a constrained signomial problem with 4n-1 degree of difficulty. The 

corresponding dual problem is  
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subject to:  
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where w1i  ,w2i , w3i , w4i , w5i ,w6i , w7i > 0. 

By using geometric programming theorem [5], the analytical expressions for the decision variables Qi 

and Si  are obtained. 
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Case 3: The cost parameters and the total display shelf- space parameter W are considered as 

pentagonal fuzzy numbers.  
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Using the nearest interval approximation, the above model is defuzzified as  
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subject to: ,

1






n

i

Rii WSw .
1





n

i

Lii WSw  

By using the same procedure as in cases 1 and 2, multi-objective inventory problem is solved and  pay 

off matrix is formed. Also the membership function for the objective function has been constructed. 

The problem (26) can be formulated as 

 Max V(S, Q) = [    
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The standard signomial geometric programming form can be stated as 
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By using geometric programming theorem [5], the analytical expressions for the decision variables Qi 

and Si  are obtained. 
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7    Numerical Example 

Assume that an apparel showroom sells two  items. The shop has a total available storage space of 

3750 m
2
. The relevant data for the two items is given below: 

D1 = 20Si
0.5 

units, C1 = 45, C11= 1.1, C21 =  1.45, C31 =  30, p1 =  100, g1=  1, P1=240 units, 

w1=0.4m
2
, D2 = 25Si

0.6
 units, C2 = 100, C12=  0.6, C22 = 1.5, C32 =  20, p2 =  150, g2= 0.5, 

P2=200 units, w2=0.5 m
2
. 

  ̃                        ̃                               ̃                            

   ̃                         ̃                               ̃               

  ̃                           ̃                                ̃                            

   ̃                             ̃                          ̃                         

  ̃                             ̃                            

 ̃                                      

Using the analytic expression (6), (7), (9), (10), (18), (19), (24), (25), (30) & (31)  for Qi*, Si*and 

PF(S*,Q*) in crisp and fuzzy environment, the following results are obtained. 

Table 1:  Left and Right Branches of Fuzzy Parameters. 

Br   ̃    ̃    ̃    ̃   ̃   ̃   ̃   ̃    ̃    ̃    ̃   ̃   ̃   ̃  ̃ 

Left H P P L L H L H L H P P L P L 

Right L H L P H h L P H H L P L H L 

Here P,L,H stands for Parabolic, Linear and Hyperbolic pentagonal fuzzy membership function 

respectively. 
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Table 2: Nearest interval approximation to pentagonal fuzzy numbers for Item 1& 2. 

Br   ̃    ̃    ̃    ̃   ̃   ̃   ̃ 

Left 50.96 1.19 1.54 30.75 107.5 1.63 247.5 

Right 77.5 1.44 1.83 33.08 134.22 4.43 272.5 

Center 64.23 1.315 1.685 31.91 120.86 3.03 260 

Br   ̃    ̃    ̃    ̃   ̃   ̃   ̃  ̃ 

Left 102.93 0.64 1.56 20.92 168.33 1.59 207.5 3575 

Right 115.42 0.76 1.81 23.25 211.67 1.84 232.5 3825 

Center 109.17 0.7 1.685 22.085 190 1.715 220 3700 

Table 3:  Optimal Solutions. 

Cases i Si* Qi* PF(S*,Q*) 

Crisp 
1 201.2072 179.5918 

35,651 
2 103.7713 67.2403 

Case 1 
1 233.5637 156.6133 

[30,494 50,50970,436] 
2 109.4986 66.6495 

Case 2 
1 108.1143 88.0000 

30,398 
2 95.2381 66.6667 

Case 3 
1 315.5399 171.2809 

[36,165 59,847 83,389] 
2 147.20 66.61 

Observation 7.1. In Table -3, the optimal values are given for the fuzzy model as well as the crisp 

model, from the same, the following are observed. 

(i) In Case 1, the optimal value of the average profit is more than that of crisp model. 

(ii) In Case 2, the optimal value of the average profit is less compared to that of Cases 1, 3   

             and crisp model. 

(iii) In Case 3, the optimal value of the average profit is more compared to that of Cases 1, 2 

             and the crisp model. 

(iv) Among the above three cases, Case 3 gives the best optimal solution. 
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