International Journal of Mathematics and Soft Computing Vol.6, No.1 (2016), 1 - 9.

ISSN Print : 2249 - 3328 ISSN Online : 2319 - 5215

On semi- γ -*I*-open sets and a new mapping

Hariwan Z. Ibrahim¹, A. $Mizyed^2$

¹ Department of Mathematics Faculty of Science, University of Zakho Kurdistan-Region, Iraq. hariwan_math@yahoo.com

> ² Department of Mathematics Islamic University of Gaza. ayman20201@gmail.com

Abstract

In this paper, we introduce and study the notion of semi- γ -*I*-open sets in ideal topological spaces and investigate some of their properties. Further, we study continuous functions on the above set and derive some of their properties.

Keywords: *I*-open; γ -open; semi- γ -*I*-open sets. AMS Subject Classification(2010): Primary: 54A05, 54A10; Secondary: 54C05.

1 Introduction

The topological notions of γ -semi-open sets and γ -semi-continuity was introduced by Hariwan [5]. Also, the notion of pre- γ -*I*-open sets introduced by Hariwan [4]. Jankovic and Hamlett [8] introduced the notion of *I*-open sets in topological spaces via ideals. Hatir and Noiri [2] introduced semi-*I*-open sets. Kasahara [10] defined an operation α on a topological space to introduce α -closed graphs. Following the same technique, Ogata [13] defined an operation γ on a topological space and introduced γ -open sets.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a topological space and A a subset of X.

An operation γ [10] on a topology τ is a mapping from τ in to power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [13] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [14] of A is denoted by τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. The τ_{γ} -closure [13] of A is denoted by τ_{γ} -Cl(A) and defined to be the intersection of all γ -closed sets containing A.

An ideal is defined as a nonempty collection I of subsets X satisfying the following two conditions:

- (1) If $A \in I$ and $B \subseteq A$, then $B \in I$.
- (2) $A \in I$ and $B \in I$, then $A \cup B \in I$.

For an ideal I on (X, τ) , (X, τ, I) is called an ideal topological space or simply an ideal space. Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function [3], [11] of A with respect to τ and Iis defined as follows for a subset A of X, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for each neighborhood}$ U of $x\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $Cl^*(A) = A \cup A^*(I, \tau)$ [9]. We will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be

- 1. *I*-open [8] if $A \subseteq Int(A^*)$.
- 2. pre- γ -*I*-open [4] if $A \subseteq \tau_{\gamma}$ -*Int*($Cl^*(A)$).
- 3. semi-*I*-open [2] if $A \subseteq Cl^*(Int(A))$.
- 4. semi-open [12] if $A \subseteq Cl(Int(A))$.
- 5. γ -semi-open [5] if $A \subseteq \tau_{\gamma}$ - $Cl(\tau_{\gamma}$ -Int(A)).

Lemma 2.2. [9] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then

- 1. If $A \subseteq B$, then $A^* \subseteq B^*$.
- 2. If $U \in \tau$, then $U \cap A^* \subseteq (U \cap A)^*$.
- 3. A^* is closed in (X, τ) .

Definition 2.3. [1] A function $f: (X, \tau) \to (Y, \sigma)$ is said to be γ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U containing x such that $f(U) \subseteq V$.

Definition 2.4. [5] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be γ -semi-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -semi-open set U of X containing x such that $f(U) \subset V$.

Definition 2.5. [6] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly γ -continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U of X containing x such that $f(U) \subseteq Cl(V)$.

 $\mathbf{2}$

Definition 2.6. [5] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly γ -semi-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -semi-open set U of X containing x such that $f(U) \subseteq Cl(V)$.

Definition 2.7. [7] A function $f : (X, \tau) \to (Y, \sigma)$ is called almost γ -continuous at if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$.

3 Semi- γ -I-Open Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, I) with an operation γ on τ is called semi- γ -I-open set if $A \subseteq Cl^*(\tau_{\gamma}-Int(A))$. A subset F of a space X is said to be semi- γ -I-closed if its complement is semi- γ -I-open.

The family of all semi- γ -*I*-open sets in ideal topological space (X, τ, I) is denoted by $S\gamma IO(X, \tau, I)$ or simply by $S\gamma IO(X, \tau)$ or $S\gamma IO(X)$ when there is no confusion with ideal.

Remark 3.2. The concepts of semi- γ -*I*-open and pre- γ -*I*-open sets are independent.

Example 3.3. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, X\}$ and $I = \{\phi\}$. Define an operation γ on τ by $\gamma(A) = A$. Clearly, $\tau_{\gamma} = \{\phi, X\}$. Then, $\{b\}$ is pre- γ -*I*-open but not semi- γ -*I*-open.

Example 3.4. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $I = \{\phi\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \\ X & \text{if } A \neq \{a\} \end{cases}$$

Clearly, $\tau_{\gamma} = \{\phi, \{a\}, X\}$. Then, $\{a, b\}$ is semi- γ -*I*-open but not pre- γ -*I*-open.

Proposition 3.5. Every γ -open set is semi- γ -*I*-open.

Proof: Let A be a γ -open subset of an ideal topological space (X, τ, I) . Then, $A = \tau_{\gamma}$ -Int(A) and $A \subseteq \tau_{\gamma}$ -Int(A) $\cup (\tau_{\gamma}$ -Int(A))^* = Cl^*(\tau_{\gamma}-Int(A)). Hence, $A \subseteq Cl^*(\tau_{\gamma}$ -Int(A)). Thus, A is semi- γ -I-open.

The converse of above proposition need not be true in general as shown in the following example.

Example 3.6. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$ and $I = \{\phi, \{b\}\}$. Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Then, $A = \{a, b\}$ is a semi- γ -I-open set which is not γ -open.

Proposition 3.7. Every semi- γ -*I*-open set is semi-*I*-open.

Proof: Let A be a semi- γ -I-open subset of an ideal topological space (X, τ, I) . Then, $A \subseteq Cl^*(\tau_{\gamma}-Int(A)) \subseteq Cl^*(Int(A))$ and so $A \subseteq Cl^*(Int(A))$. Hence, A is semi-I-open.

The converse of above proposition need not be true in general as shown in the following example.

Example 3.8. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, X\}$ and $I = \{\phi, \{c\}\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then, $A = \{c\}$ is a semi-*I*-open set which is not semi- γ -*I*-open.

Remark 3.9. Every semi- γ -*I*-open set is semi-open.

Proposition 3.10. Every semi- γ -*I*-open set is γ -semi-open.

Proof: Let A be semi- γ -I-open ubset of an ideal topological space (X, τ, I) . Then, $A \subseteq Cl^*(\tau_{\gamma}-Int(A)) \subseteq Cl(\tau_{\gamma}-Int(A)) \subseteq \tau_{\gamma}-Cl(\tau_{\gamma}-Int(A))$. Therefore, A is γ -semi-open.

The converse of above proposition need not be true in general as shown in the following example.

Example 3.11. Consider $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{c, d\}, X\}$ and I = P(X). Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Then, $A = \{a, c, d\}$ is a γ -semi-open set which is not semi- γ -I-open.

Proposition 3.12. Let (X, τ, I) be an ideal topological space and $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of semi- γ -*I*-open sets in (X, τ, I) . Then, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is semi- γ -*I*-open.

Proof: Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of semi- γ -*I*-open sets in (X, τ, I) . Then, $A_{\alpha} \subseteq Cl^*(\tau_{\gamma}-Int(A_{\alpha}))$ for each $\alpha \in \Delta$ and $\bigcup_{\alpha \in \Delta} A_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} Cl^*(\tau_{\gamma}-Int(A_{\alpha})) \subseteq Cl^*(\bigcup_{\alpha \in \Delta} \tau_{\gamma}-Int(A_{\alpha})) \subseteq Cl^*(\tau_{\gamma}-Int(\bigcup_{\alpha \in \Delta} A_{\alpha}))$. Hence, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is semi- γ -*I*-open.

The intersection of two semi- γ -*I*-open sets need not be semi- γ -*I*-open in general as shown in the following example.

Example 3.13. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $I = \{\phi\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{b, c\} \\ X & \text{otherwise.} \end{cases}$$

Set $A = \{a, b\}$ and $B = \{b, c\}$. Since $A^* = B^* = X$, then both A and B are semi- γ -I-open. But on the other hand $A \cap B = \{b\} \notin S\gamma IO(X, \tau)$. **Proposition 3.14.** Let (X, τ, I) be an ideal topological space. If A is semi- γ -I-open and U is γ -open, where γ is a regular operation on τ , then $A \cap U$ is semi- γ -I-open.

Proof: Let A be semi- γ -I-open and U be γ -open. Then $A \cap U \subseteq Cl^*(\tau_{\gamma}-Int(A)) \cap U = [\tau_{\gamma}-Int(A)^* \cup \tau_{\gamma}-Int(A)] \cap U = [\tau_{\gamma}-Int(A)^* \cap U] \cup [\tau_{\gamma}-Int(A)] \cap U$]. By Lemma 2.2, we have $A \cap U \subseteq (\tau_{\gamma}-Int(A) \cap U)^* \cup \tau_{\gamma}-Int(A \cap U) = Cl^*(\tau_{\gamma}-Int(A \cap U))$. Hence, $A \cap U$ is semi- γ -I-open.

Proposition 3.15. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If I = P(X), then $S\gamma IO(X) = \tau_{\gamma}$.

Proof: Let I = P(X), then τ_{γ} -Int $(A)^* = \emptyset$ and so $Cl^*(\tau_{\gamma}$ -Int $(A)) = \tau_{\gamma}$ -Int $(A)^* \cup \tau_{\gamma}$ -Int(A)= τ_{γ} -Int(A). Let A be semi- γ -I-open, then $A \subseteq Cl^*(\tau_{\gamma}$ -Int $(A)) \subseteq \tau_{\gamma}$ -Int(A). Hence, A is γ -open. By Proposition 3.5, we have $S\gamma IO(X) = \tau_{\gamma}$.

Definition 3.16. Let (X, τ, I) be an ideal topological space and $A \subseteq X$.

- 1. The union of all semi- γ -*I*-open sets contained in *A* is called the semi- γ -*I*-interior of *A* and denoted by $s\gamma I$ -Int(*A*).
- 2. The intersection of all semi- γ -*I*-closed sets containing *A* is called the semi- γ -*I*-closure of *A* and denoted by $s\gamma I$ -Cl(A).

Now, we state the following theorems without proofs.

Theorem 3.17. Let (X, τ, I) be an ideal topological space and γ an operation on τ . For any subsets A, B of X, we have the following:

- 1. A is semi- γ -*I*-open if and only if $A = s\gamma I$ -*Int*(A).
- 2. A is semi- γ -*I*-closed if and only if $A = s\gamma I$ -Cl(A).
- 3. If $A \subseteq B$, then $s\gamma I$ - $Int(A) \subseteq s\gamma I$ -Int(B) and $s\gamma I$ - $Cl(A) \subseteq s\gamma I$ -Cl(B).
- 4. $s\gamma I$ -Int $(A) \cup s\gamma I$ -Int $(B) \subseteq s\gamma I$ -Int $(A \cup B)$.
- 5. $s\gamma I$ -Int $(A \cap B) \subseteq s\gamma I$ -Int $(A) \cap s\gamma I$ -Int(B).
- 6. $s\gamma I$ - $Cl(A) \cup s\gamma I$ - $Cl(B) \subseteq s\gamma I$ - $Cl(A \cup B)$.
- 7. $s\gamma I$ - $Cl(A \cap B) \subseteq s\gamma I$ - $Cl(A) \cap s\gamma I$ -Cl(B).
- 8. $s\gamma I$ - $Int(X \setminus A) = X \setminus s\gamma I$ -Cl(A).
- 9. $s\gamma I$ - $Cl(X \setminus A) = X \setminus s\gamma I$ -Int(A).

Theorem 3.18. Let A be a subset of an ideal topological space (X, τ, I) and γ an operation on τ . Then,

1. $x \in s\gamma I - Cl(A)$ if and only if for every semi- γ -*I*-open set *V* of *X* containing $x, A \cap V \neq \phi$.

2. $x \in s\gamma I \text{-} Int(A)$ if and only if there exists a semi- $\gamma \text{-} I$ -open set U such that $x \in U \subseteq A$.

4 New Continuous Functions Via Semi- γ -I-Open sets

Definition 4.1. A function $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ is called semi- γ -*I*-continuous if for each $x \in X$ and for each open set V of Y containing f(x), there exists a semi- γ -*I*-open set U of X containing x such that $f(U) \subseteq V$.

Definition 4.2. A function $f: (X, \tau, I) \longrightarrow (Y, \sigma)$ is called weakly semi- γ -*I*-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a semi- γ -*I*-open set U of X containing x such that $f(U) \subseteq Cl(V)$.

Remark 4.3. It is obvious from the definition that semi- γ -*I*-continuity implies weakly semi- γ -*I*-continuity. However, the converse is not true in general as it is shown in the following example:

Example 4.4. Consider $X = \{a, b, c\}$ with the topology

 $\tau = \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $I = \{\phi\}$. Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Define a function $f : (X, \tau) \to (X, \sigma)$ as follows:

$$f(x) = \begin{cases} c & \text{if } x = a \\ b & \text{if } x = b \\ a & \text{if } x = c. \end{cases}$$

Then, f is weakly semi- γ -I-continuous but not semi- γ -I-continuous, because $\{a\}$ is an open set in (X, σ) containing f(c) = a, but there exist no semi- γ -I-open set U in (X, τ) containing csuch that $f(U) \subseteq \{a\}$.

Corollary 4.5. 1. Every γ -continuous is semi- γ -*I*-continuous.

- 2. Every semi- γ -*I*-continuous is γ -sem-continuous.
- 3. Every weakly γ -continuous is weakly semi- γ -*I*-continuous.
- 4. Every almost γ -continuous is weakly semi- γ -*I*-continuous.
- 5. Every weakly semi- γ -*I*-continuous is weakly γ -semi-continuous.

Remark 4.6. From Remark 4.3 and Corollary 4.5, we obtain the following diagram of implications:

where cont. means continuous.

Theorem 4.7. For a bijective function $f : (X, \tau, I) \longrightarrow (Y, \sigma)$, the following statements are equivalent:

- 1. f is semi- γ -I-continuous.
- 2. $f^{-1}(V)$ is semi- γ -*I*-open in *X*, for each open set *V* of *Y*.
- 3. $f^{-1}(V)$ is semi- γ -*I*-closed in *X*, for each closed set *V* of *Y*.
- 4. $f(s\gamma I Cl(U)) \subseteq Cl(f(U))$, for each subset U of X.
- 5. $s\gamma I$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each subset V of Y.
- 6. $f^{-1}(Int(V)) \subseteq s\gamma I \cdot Int(f^{-1}(V))$, for each subset V of Y.
- 7. $Int(f(U)) \subseteq f(s\gamma I Int(U))$, for each subset U of X.

Proof: $(1) \Rightarrow (2) \Rightarrow (3)$: Directly from Definition 4.1.

 $(3) \Rightarrow (4)$: Let $U \subseteq X$, then $f(U) \subseteq Y$ and $f(U) \subseteq Cl(f(U))$ where Cl(f(U)) is closed in Y. Then by Part (3), $f^{-1}(Cl(f(U)))$ is semi- γ -I-closed in X. But $U \subseteq f^{-1}(Cl(f(U)))$. Hence, $s\gamma I-Cl(U) \subseteq f^{-1}(Cl(f(U)))$. Therefore, $f(s\gamma I-Cl(U)) \subseteq Cl(f(U))$.

(4) \Rightarrow (5): Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. By Part (4), $f(s\gamma I - Cl(f^{-1}(V))) \subseteq Cl(f(f^{-1}(V))) \subseteq Cl(V)$. Hence, $s\gamma I - Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$. (5) \Rightarrow (6): Let V be any subset of Y. Then apply Part (5) to $Y \setminus V$, we have, $s\gamma I - Cl(f^{-1}(Y \setminus V))$

 $\subseteq f^{-1}(Cl(Y \setminus V)) \text{ which implies, } s\gamma I - Cl(X \setminus f^{-1}(V)) \subseteq f^{-1}(Y \setminus Int(V)). \text{ Hence, } X \setminus s\gamma I - Intf^{-1}(V)) \\ \subseteq X \setminus f^{-1}(Int(V)) \text{ and therefore, } f^{-1}(Int(V)) \subseteq s\gamma I - Int(f^{-1}(V)).$

(6) \Rightarrow (7): Let U be any subset of X. Then f(U) is a subset of Y. By Part (6), we have, $f^{-1}(Int(f(U))) \subseteq s\gamma I \cdot Int(f^{-1}(f(U))) = s\gamma I \cdot Int(U)$. Therefore, $Int(f(U)) \subseteq f(s\gamma I \cdot Int(U))$. (7) \Rightarrow (1): Let $x \in X$ and V be any open subset of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), $Int(f(f^{-1}(V))) \subseteq f(s\gamma I \cdot Int(f^{-1}(V)))$. Then $Int(V) \subseteq$ $f(s\gamma I \cdot Int(f^{-1}(V)))$. Since V is an open set, $V \subseteq f(s\gamma I \cdot Int(f^{-1}(V)))$ implies, $f^{-1}(V) \subseteq s\gamma I \cdot Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is semi- γ -I-open set in X which contains x and $f(f^{-1}(V)) \subseteq$ V. Hence, f is semi- γ -I-continuous. **Theorem 4.8.** For a function $f: (X, \tau, I) \longrightarrow (Y, \sigma)$, the following statements are equivalent:

- 1. f is weakly semi- γ -I-continuous.
- 2. $f^{-1}(V) \subseteq s\gamma I \operatorname{Int}(f^{-1}(Cl(V)))$, for each open set V of Y.
- 3. $s\gamma I$ - $Cl(f^{-1}(Int(F))) \subseteq f^{-1}(F)$, for each closed set F of Y.
- 4. $s\gamma I$ - $Cl(f^{-1}(Int(Cl(B)))) \subseteq f^{-1}(Cl(B))$, for each subset B of Y.
- 5. $f^{-1}(Int(B)) \subseteq s\gamma I Int(f^{-1}(Cl(Int(B)))))$, for each subset B of Y.
- 6. $s\gamma I$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$, for each open subset V of Y.

Proof: (1) \Rightarrow (2): Let V be an open set of Y such that $x \in f^{-1}(V)$. Then $f(x) \in V$ and so there exists a semi- γ -I-open set U in X containing x such that $f(U) \subseteq Cl(V)$. Thus, $x \in U \subseteq f^{-1}(Cl(V))$. Therefore, $x \in s\gamma I$ -Int $(f^{-1}(Cl(V)))$.

(2) \Rightarrow (3): Let F be a closed subset of Y. Assume that $x \notin f^{-1}(F)$. Then $x \in X \setminus f^{-1}(F)$ where $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F)$ and $Y \setminus F$ is open in Y. By Part (2), $f^{-1}(Y \setminus F) \subseteq s\gamma I$ - $Int(f^{-1}(Cl(Y \setminus F))) = s\gamma I \cdot Int(f^{-1}(Y \setminus Int(F))) = s\gamma I \cdot Int(X \setminus f^{-1}(Int(F))) = X \setminus s\gamma I \cdot Cl(f^{-1}(Int(F)))$. Therefore, $x \notin s\gamma I \cdot Cl(f^{-1}(Int(F)))$.

(3) ⇒ (4): Let B be a subset of Y. Then Cl(B) is closed in Y. By Part (3), $s\gamma I$ - $Cl(f^{-1}(Int(Cl(B)))) \subseteq f^{-1}(Cl(B))$.

 $\begin{array}{l} (4) \Rightarrow (5): \mbox{ Let } B \mbox{ be any subset of } Y \mbox{ and } x \in f^{-1}(Int(B)). \mbox{ But } f^{-1}(Int(B)) = X \setminus f^{-1}(Cl(Y \setminus B)). \\ \mbox{ Hence, } x \in X \setminus f^{-1}(Cl(Y \setminus B)) \mbox{ which implies, by Part } (4), \ x \in X \setminus s\gamma I\text{-}Cl(f^{-1}(Int(Cl(Y \setminus B)))) \\ = s\gamma I\text{-}Int(f^{-1}(Cl(Int(B)))). \end{array}$

(5) \Rightarrow (6): Let V be open in Y. Suppose that $x \notin f^{-1}(Cl(V))$. Then $f(x) \notin Cl(V)$ and so there exists an open set W containing f(x) such that $W \cap V = \emptyset$ which implies, $Cl(W) \cap V = \emptyset$. By Part (5), $x \in s\gamma I \cdot Int(f^{-1}(Cl(W)))$ and hence, there exists a semi- γ -I-open set U such that $x \in U \subseteq f^{-1}(Cl(W))$. Since, $Cl(W) \cap V = \emptyset$, $U \cap f^{-1}(V) = \emptyset$ and so, $x \notin s\gamma I \cdot Cl(f^{-1}(V))$. Therefore, if $x \in s\gamma I \cdot Cl(f^{-1}(V))$, then $x \in f^{-1}(Cl(V))$.

(6) \Rightarrow (1): Let $x \in X$ and V be an open set of Y containing f(x). Then $x \in f^{-1}(V) \subseteq f^{-1}(Int(Cl(V))) = X \setminus f^{-1}(Cl(Y \setminus Cl(V)))$. By Part (6), $x \notin f^{-1}(Cl(Y \setminus Cl(V)))$ and hence, $x \in s\gamma I$ -Int $(f^{-1}(Cl(V)))$. Therefore, there exists a semi- γ -I-open set U such that $x \in U \subseteq f^{-1}(Cl(V))$. Hence, $f(U) \subseteq Cl(V)$ and f is weakly semi- γ -I-continuous.

References

 C.K. Basu, B. M. U. Afsan and M. K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, 38 (2) (2009), 103-118.

- [2] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.
- [3] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205-215.
- [4] H. Z. Ibrahim, On pre-γ-I-open sets in ideal topological spaces, Journal of University of Zakho (JUOZ), 1 (A) (1) (2013), 349-353.
- [5] H. Z. Ibrahim, γ -semi-open sets and γ -semi-functions, Journal of Advanced Studies in Topology, 4 (1) (2013), 55-65.
- [6] H. Z. Ibrahim, On weakly γ-continuous functions, International Electronic Journal of Pure and Applied Mathematics, 6 (1) (2013), 41-49.
- [7] H. Z. Ibrahim, On almost γ-continuous functions, European Journal Of Mathematical Sciences, 1 (1) (2012), 27-35.
- [8] D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital., (7) 6 (3) (1992), 453-465.
- D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [10] S. Kasahara, Operalion-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [11] K. Kuratowski, Topology, Vol. I, Academic Press, NewYork, 1966.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [13] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1991), 175-184.
- [14] G. Sai Sundara Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003) 305-311.