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Abstract

Nash equilibrium is the central solution concept with diverse applications for most games
in game theory. For games with multiple equilibria, different equilibria can have different
rewards for the players thus causing a challenge on their choice of strategies. The com-
putation of most efficient Nash Equilibrium in games can be applied to most situations in
competitive Economic environment that are faced with multiple choices on which strategy
is optimal.
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1 Introduction

Game theory is the formal study of conflict and cooperation. The concept of game theory
provides a language to formulate, structure, analyze and understand strategic scenarios. The
games studied in game theory are well defined mathematical objects with a set of players, a
set of moves (strategies) available to those players and a specification of payoffs or costs for
each combination of strategies [1]. Game theory has been broadly classified into four main
subcategories: Classical game theory, combinatorial game theory, dynamic game theory and
other topics such as evolutionary game theory, experimental game theory and economic game
theory [4].
A strong solution concept, which is applicable to all games in game theory, is the Nash equilib-
rium which captures the notion of a stable solution. As much as some experimental economic
games have a unique Nash equilibrium, others have none whereas the rest have multiple equilib-
ria. Multiple Nash Equilibria is one of the fundamental problems in game theory. For the games
with multiple Nash equilibria, it becomes difficult to predict what strategies will be chosen by
the players and there is need for players to make the best choices so as to optimize from the
outcomes of the game.

197



198 Rhodah O. Esilaba, Edgar O. Otumba and Alfred W. Manyonge

On the other hand, most experiments that have been conducted involve two players. Two-
person games do not take us very far because many of the games that are most important in real
world involve considerably more than two players, for example, economic competition, highway
congestion, over-exploitation of the environment and monetary exchange. For this study, a
game modelled as an experimental economic game with more than two players and multiple
equilibria was considered and the most efficient Nash equilibrium for the game computed.

This paper described and carried out an experiment on a game that was modelled as a
three-player experimental economic game. The results were recorded and by the best response
sets method we identified all the Pure Nash equilibria and computed the most efficient Nash
equilibrium for the modelled game. Using the Brauwer’s fixed point theorem we verified the
existence of mixed Nash equilibrium in the game. An individual whose aim was to minimize
risks played the risk dominant strategies whereas those aiming to maximize their profits, the
payoff dominant strategies were played to achieve their most efficient Nash equilibrium.

2 Nash Equilibrium

To represent a game, we will use the notation

Γ = 〈N, (Si), (ui)〉 (2.1)

where N is the number of players, Si the available strategies, ui the payoff to the player i and
i = 1, 2, 3. Every finite game has an equilibrium point [9]. Nash (1951) proved that every game
with a finite number of players, each having a finite set of strategies, has a Nash Equilibrium
of mixed strategies [5].

More formally, a strategy vector s ∈ S is said to be a Nash equilibrium if for all players i and
each alternate strategy s′i ∈ S, we have that

ui(si, sj) ≥ ui(s′i, sj). (2.2)

A dominant strategy solution is a Nash equilibrium. Moreover if the solution is strictly domi-
nating, it is also a unique Nash equilibrium. A game can have either a pure strategy and/or a
mixed strategy Nash equilibria [3].

Given a game (2.1) with pure strategies, the strategy profile

s∗ = (s∗1, · · · , s∗n)T

is said to be a pure strategy Nash equilibrium of (2.1) if

ui(s∗i , s∗j ) ≥ ui(si, s∗j ) (2.3)
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∀si ∈ Si ∀ i = 1, 2 · · ·n. That is each player’s Nash equilibrium strategy is a best response to
the Nash equilibrium strategies of the other players. Therefore for the game (2.1), the strategy
profile (s∗1, · · · , s∗n)T is a Nash equilibrium if and only if s∗i ∈ Bi(s∗j ) ∀i = 1, · · · , n.

Definition 2.1. A strategy profile (s∗i , s∗j ) is a strict Nash Equilibrium if for every player i,
ui(s∗i , s∗j ) > ui(si, s∗j ), for every s∗i 6= s∗j .

Consider a pure strategy game: (2.1). A pure strategy or a deterministic strategy for player
i specifies the deterministic choice si(I) at each information set I. Let Si be finite for each
i = 1, 2 · · ·n. If player i randomly chooses one element of the set Si, we have a mixed strategy
or a randomized strategy.
More formally, given a player i with Si as the set of pure strategies, a mixed strategy ρi for
player i is a probability density function over Si. That is, ρi : Si 7→ [0, 1] assigns to each pure
strategy si ∈ Si, a probability ρi(si) such that

∑
si∈Si

ρi(si) = 1. (2.4)

A mixed strategy profile is a Nash equilibrium if the mixed strategy for each player is a best
response to the mixed strategies of the rest; that is, it attains the maximum possible utility
among all possible mixed strategies of this player. The support of a mixed strategy is the set
of all pure strategies that have non-zero probability in it. A mixed strategy is a best response
if and only if all pure strategies in its support are best responses. If each player in n-player
game has a finite number of pure strategies, then there exists at least one equilibrium in mixed
strategy[5]. If there are no pure strategy equilibria, there must be a unique mixed strategy
equilibrium. However, it is possible for pure strategy and mixed strategy Nash equilibria to
co-exist in games.

3 Description of the Game

3.1 Stag Hunt Game

The original stag hunt game was described by the philosopher Jean-Jacques Rousseau in the
year 1755 . This game is a well known coordination game in which two players go out to hunt
together. If they cooperate they have a chance of capturing a stag, constituting a high reward.
On their own, the hunters can only hope to capture a hare yielding a lower payoff. Should one
player try to cooperate, while the other chooses to hunt alone (defects), the cooperator will fail
and get nothing, whereas the defector can still get a hare. In order to make the stag hunt game
to be more applicable in real world, it was generalized into an N -player Stag hunt game [7].
For this study, the following social cooperation situation was modelled as three- player stag
hunt game: In a certain High School, students were given two assignments to attempt. The
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first assignment (stag) was quite challenging and for an individual to succeed he must have the
cooperation of one of his partners. The second assignment (hare) is simpler and can be done
by any one student without any problem.
The students were required to make a choice between attempting the first assignment or at-
tempting the second assignment. Attempting the first assignment together and obtaining a
correct solution was more rewarding than individually finding a solution to the second assign-
ment. Any student who cooperated with any other to correctly complete the first assignment
was given a payoff of 10 and whoever cooperated with any other student to complete the second
assignment correctly was given a payoff of 7 points. Attempting the first assignment individually
was doomed to failure and had a payoff of zero.
The following assumptions were made:

(i) All the players (students) were rational as they made their choice.

(ii) All the players had the same ability in making choices.

(iii) All the players had the same strategy profile.

We denote the above game as

Γ1 = 〈N, (Si), (ui)〉 (3.1)

where N is the number of players, Si the available strategies, ui the payoffs to the players and
i = 1, 2, 3. The game (3.1) is a pure strategy game with the strategy profile β = (β1, β2) where:
β1 represents the first pure strategy (choosing the first assignment - stag), β2 represents the
second pure strategy (choosing the second assignment - hare. Note that β ∈ Si.

3.2 Stages of the Game (3.1)

The stag hunt game and the game modelled as the stag hunt game, (3.1), was explained
to students so that they had the full knowledge of the game and they made their choices
independently. It was a dynamical stage game in that the students were allowed to play it for a
finite number of repetitions as they varied their strategies as well. The students had complete
information about the game since all the parameters and the rules of the game were well known
by all of them.
The game modelled in (3.1) had three players (three students) in each group. The two strategies
available to the players were:
(β1) and (β2). The following steps were followed:
(i) Students were asked to choose their strategies, β1 or β2. Note that players chose their
strategies independently.
(ii) The outcomes were recorded before they were allowed to repeat the same game.
(iii) The payoffs for all the possible outcome cells from the game were calculated.
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3.3 Outcomes of the Game (3.1)

In the three person stag hunt game (3.1) modelled above, each player had two choices, attempt-
ing the first assignment or attempting the second assignment. This resulted to eight possible
outcomes (cells) for the three players, (Player 1, Player 2, Player 3) respectively as: (β1, β1, β1);
(β1, β1, β2); (β1, β2, β1); (β1, β2, β2); (β2, β1, β1); (β2, β1, β2); (β2, β2, β1) and (β2, β2, β2).
Therefore to find the number of possible outcomes we use the expression SN where S represents
the number of strategies available to the players and N represents the number of players. Thus
23 = 8.
Payoffs were calculated by examining each pair-wise payoff set among players, and the payoffs
for three players were calculated by considering the type of interaction they had. For example,
the payoffs for three players for (β1, β2, β1) was as follows: Player 1 received 0 points for the
interaction with player 2 and 10 points for cooperating with player 3. Player 2 received 7 points
for not cooperating with player 1 and 7 points for not cooperating with player 3. Player 3 re-
ceived 10 points for cooperating with player 1 and 0 points for not cooperating with player 2.
Therefore (β1, β2, β1) = (10, 14, 10). This implies that u1(β1, β2, β1) = 10, u2(β1, β2, β1) = 14,
u3(β1, β2, β1) = 10 where u1, u2 and u3 are the payoffs of player 1, player 2 and player 3 re-
spectively. Applying the same rules, we have the summary for the payoffs to the three players
as per the eight possible outcomes as shown below:
(β1, β1, β1) = (20, 20, 20); (β1, β1, β2) = (10, 10, 14); (β1, β2, β1) = (10, 14, 10); (β1, β2, β2) =
(0, 14, 14); (β2, β1, β1) = (14, 10, 10); (β2, β1, β2) = (14, 0, 14); (β2, β2, β1) = (14, 14, 0);
(β2, β2, β2) = (14, 14, 14). (see Figure 1.)

Figure 1: Tree Diagram on outcomes and payoffs.
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The payoffs for all the three players, ui(β) will be as shown below:
u1(β1, β1, β1) = 20, u2(β1, β1, β1) = 20 and u3(β1, β1, β1) = 20
u1(β1, β1, β2) = 10, u2(β1, β1, β2) = 10 and u3(β1, β1, β2) = 14
u1(β1, β2, β1) = 10, u2(β1, β2, β1) = 14 and u3(β1, β2, β1) = 10
u1(β1, β2, β2) = 0, u2(β1, β2, β2) = 14 and u3(β1, β2, β2) = 14
u1(β2, β1, β1) = 14, u2(β2, β1, β1) = 10 and u3(β2, β1, β1) = 10
u1(β2, β1, β2) = 14, u2(β2, β1, β2) = 0 and u3(β2, β1, β2) = 14
u1(β2, β2, β1) = 14, u2(β2, β2, β1) = 14 and u3(β2, β2, β1) = 0
u1(β2, β2, β2) = 14, u2(β2, β2, β2) = 14 and u3(β2, β2, β2) = 14

4 Computation and Identification of Efficient Nash Equilibria

4.1 Identification of Pure NE in the Game (3.1)

The game (3.1) which is an example of non-cooperative coordination game has eight different
action profiles:
(β1, β1, β1) = (20, 20, 20), (β1, β1, β2) = (10, 10, 14), (β1, β2, β1) = (10, 14, 10), (β1, β2, β2) =
(0, 14, 14), (β2, β1, β1) = (14, 10, 10), (β2, β1, β2) = (14, 0, 14), (β2, β2, β1) = (14, 14, 0) and
(β2, β2, β2) = (14, 14, 14) for the three players, (Player 1, Player 2, Player 3), respectively.
Since the game has only a few actions, we found Nash equilibria for the game by examining
each action profile in turn to determine if it satisfied the conditions for equilibrium.
The best response sets for the game (3.1) were:

(i) Bi(β1; i = 1, 2, 3) = β1 , that is, the best response for player i when he or she plays β1 is
β1 and

(ii) Bi(β2; i = 1, 2, 3) = β2 which means that the best response for player i when β2 is played
is β2.

Therefore, B1(β1) = β1; B1(β2) = β2, B2(β1) = β1; B2(β2) = β2 and B3(β1) = β1; B3(β2) = β2.

B1, B2 and B3 are the best response for player 1, 2 and 3 respectively.
Since β1 ⊂ B1(β1), β1 ⊂ B2(β1) and β1 ⊂ B3(β1), then (β1, β1, β1) = (20, 20, 20) is a pure Nash
Equilibrium.
Similarly, since β2 ⊂ B1(β2),β2 ⊂ B2(β2) and β2 ⊂ B3(β2), then (β2, β2, β2) = (14, 14, 14) is a
pure Nash equilibrim.

The other profiles: (β1, β1, β2) = (10, 10, 14), (β1, β2, β1) = (10, 14, 10), (β1, β2, β2) = (0, 14, 14),
(β2, β1, β1) = (14, 10, 10), (β2, β1, β2) = (14, 0, 14) and (β2, β2, β1) = (14, 14, 0) are not pure
Nash equilibria since, β1 ( Bi(β2) and β2 ( Bi(β1).
In summary, the results of the game (3.1) are as shown below:
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(i) (β1, β1, β1) is a pure Nash equilibrium because it is better off remaining attentive to the
pursuit of a stag, β1, than running after a hare, β2, if all other players remain attentive).

(ii) (β2, β2, β2) is a pure Nash equilibrium because it is better off catching a hare, (β2), than
pursuing a stag, (β1), if no one else pursues a stag.

(iii) No other profile is a pure Nash equilibrium because in any other profile at least one
player chooses a stag, (β1), and at least one player chooses a hare, (β2), so that any
player choosing (β1) is better off switching to (β2)

Since (β1, β1, β1) is a strict NE, then β1 is evolutionary stable. (β2, β2, β2) is also a strict NE,
therefore β2 is also evolutionary stable.

4.2 Mixed Nash Equilibrium in the Game (3.1)

Since this game had multiple equilibrium points, the optimal choice is a mixed strategy. Thus
randomization of the pure strategies was done as shown below:
Suppose (ρ1, ρ2, ρ3) is a mixed strategy profile. This means that ρ1 is a probability density
function on S1 = {β1, β2}, ρ2 is a probability density function on S2 = {β1, β2} and ρ3 is a
probability density function on S3 = {β1, β2}.
Let us represent ρ1 = (ρ1(β1)ρ1(s2)), ρ2 = (ρ2(β1)ρ2(s2)) and ρ3 = (ρ3(β1)ρ3(s2)). We have,
S = S1 × S2 × S3

= {(β1, β1, β1)(β1, β1, β2)(β1, β2, β1)(β1, β2, β2)(β2, β1, β1)(β2, β1, β2)(β2, β2, β1)(β2, β2, β2).}
We computed the payoff functions u1, u2 and u3.

Note that, ui(ρ1, ρ2, ρ3) =
∑
S1,S2,S3∈S ρ(S1, S2, S3)ui(S1, S2, S3) for i = 1, 2, 3. That is:

u1(ρ1, ρ2, ρ3) =ρ1(β1)ρ2(β1)ρ3(β1)u1(β1, β1, β1) + ρ1(β1)ρ2(β1)ρ3(β2)u1(β1, β1, β2)+

ρ1(β1)ρ2(β2)ρ3(β1)u1(β1, β2, β1) + ρ1(β1)ρ2(β2)ρ3(β2)u1(β1, β2, β2)+

ρ1(β2)ρ2(β1)ρ3(β1)u1(β2, β1, β1) + ρ1(β2)ρ2(β1)ρ3(β2)u1(β2, β1, β2)+

ρ1(β2)ρ2(β2)ρ3(β1)u1(β2, β2, β1) + ρ1(β2)ρ2(β2)ρ3(β2)u1(β2, β2, β2).

(4.1)

u1(ρ1, ρ2, ρ3) = 20ρ1(β1)ρ2(β1)ρ3(β1) + 10ρ1(β1)ρ2(β1)ρ3(β2)+

10ρ1(β1)ρ2(β2)ρ3(β1) + 14ρ1(β2)ρ2(β1)ρ3(β1)+

14ρ1(β2)ρ2(β1)ρ3(β2) + 14ρ1(β2)ρ2(β2)ρ3(β1)+

14ρ1(β2)ρ2(β2)ρ3(β2).

(4.2)

u1(ρ1, ρ2, ρ3) = 20ρ1(β1)ρ2(β1)ρ3(β1) + 10ρ1(β1)ρ2(β1)(1− ρ3)(β1)+

10ρ1(β1)(1− ρ2)(β1)ρ3(β1) + 14(1− ρ1)(β1)ρ2(β1)ρ3(β1)+

14(1− ρ1)(β1)ρ2(β1)(1− ρ3)(β1) + 14(1− ρ1)(β1)(1− ρ2)(β1)ρ3(β1)+

14(1− ρ1)(β1)(1− ρ2)(β1)(1− ρ3)(β1).

(4.3)
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u1(ρ1, ρ2, ρ3) =14− 14ρ1(β1) + 10ρ1(β1)ρ2(β1) + 10ρ1(β1)ρ3(β1). (4.4)
Similarly,

u2(ρ1, ρ2, ρ3) =14− 14ρ2(β1) + 10ρ1(β1)ρ2(β1) + 10ρ2(β1)ρ3(β1). (4.5)

u3(ρ1, ρ2, ρ3) =14− 14ρ3(β1) + 10ρ1(β1)ρ3(β1) + 10ρ2(β1)ρ3(β1). (4.6)

Basing on the assumption that all the students were rational, they had the same strategy profile
to choose from and their ability in making choices were the same, we let

ρ1 =
(1

3 ,
1
3 ,

1
3

)
, ρ2 =

(1
3 ,

1
3 ,

1
3

)
, ρ3 =

(1
3 ,

1
3 ,

1
3

)
.

Then, u1(ρ1, ρ2, ρ3) = 104
9 , u2(ρ1, ρ2, ρ3) = 104

9 , u3(ρ1, ρ2, ρ3) = 104
9 .

Suppose (ρ1, ρ2, ρ3) is a mixed strategy profile. It can be seen that

u1(ρ1, ρ2, ρ3) = 14− 14ρ1(β1) + 10ρ1(β1)ρ2(β1) + 10ρ1(β1)ρ3(β1),

u2(ρ1, ρ2, ρ3) = 14− 14ρ2(β1) + 10ρ1(β1)ρ2(β1) + 10ρ2(β1)ρ3(β1) and

u3(ρ1, ρ2, ρ3) = 14− 14ρ3(β1) + 10ρ1(β1)ρ3(β1) + 10ρ2(β1)ρ3(β1).

Let (ρ∗1, ρ∗2, ρ∗3) be a mixed strategy equilibrium. Then

u1(ρ∗1, ρ∗2, ρ∗3) ≥ u1(ρ1, ρ
∗
2, ρ
∗
3) ∀ ρ1 ∈ ∆(S1);

u2(ρ∗1, ρ∗2, ρ∗3) ≥ u1(ρ∗1, ρ2, ρ
∗
3) ∀ ρ2 ∈ ∆(S2);

u3(ρ∗1, ρ∗2, ρ∗3) ≥ u1(ρ∗1, ρ∗2, ρ3) ∀ ρ3 ∈ ∆(S3).

(4.7)

The inequalities (4.7) are equivalent to:

14− 14ρ∗1(β1) + 10ρ∗1(β1)ρ∗2(β1) + 10ρ∗1(β1)ρ∗3(β1)

≥ 14− 14ρ1(β1) + 10ρ1(β1)ρ∗2(β1) + 10ρ1(β1)ρ∗3(β1)

∀ρ1 ∈ ∆(S1);

14− 14ρ∗2(β1) + 10ρ∗1(β1)ρ∗2(β1) + 10ρ∗2(β1)ρ∗3(β1)

≥ 14− 14ρ2(β1) + 10ρ∗1(β1)ρ2(β1) + 10ρ2(β1)ρ∗3(β1)

∀ρ2 ∈ ∆(S2);

14− 14ρ∗3(β1) + 10ρ∗1(β1)ρ∗3(β1) + 10ρ∗2(β1)ρ∗3(β1)

≥ 14− 14ρ3(β1) + 10ρ∗1(β1)ρ3(β1) + 10ρ∗2(β1)ρ3(β1)

∀ρ3 ∈ ∆(S3).

(4.8)



Computation of Efficient Nash Equilibria for experimental economic games 205

These inequalities (4.8) are equivalent to:

10ρ∗1(β1)ρ∗2(β1) + 10ρ∗1(β1)ρ∗3(β1)− 14ρ∗1(β1) ≥ 10ρ1(β1)ρ∗2(β1) + 10ρ1(β1)ρ∗3(β1)− 14ρ1(β1)

∀ρ1 ∈ ∆(S1);

10ρ∗1(β1)ρ∗2(β1) + 10ρ∗2(β1)ρ∗3(β1)− 14ρ∗2(β1) ≥ 10ρ∗1(β1)ρ2(β1) + 10ρ2(β1)ρ∗3(β1)− 14ρ2(β1)

∀ρ2 ∈ ∆(S2);

10ρ∗1(β1)ρ∗3(β1) + 10ρ∗2(β1)ρ∗3(β1)− 14ρ∗3(β1) ≥ 10ρ∗1(β1)ρ3(β1) + 10ρ∗2(β1)ρ3(β1)− 14ρ3(β1)

∀ρ3 ∈ ∆(S3).
(4.9)

In turn the inequalities (4.9) are equivalent to:

ρ∗1(β1){10ρ∗2(β1) + 10ρ∗3(β1)− 14} ≥ ρ1(β1){10ρ∗2(β1) + 10ρ∗3(β1)− 14}

∀ρ1 ∈ ∆(S1);

ρ∗2(β1){10ρ∗1(β1) + 10ρ∗3(β1)− 14} ≥ ρ2(β1){10ρ∗1(β1) + 10ρ∗3(β1)− 14}

∀ρ2 ∈ ∆(S2);

ρ∗3(β1){10ρ∗1(β1) + 10ρ∗2(β1)− 14} ≥ ρ3(β1){10ρ∗1(β1) + 10ρ∗2(β1)− 14}

∀ρ3 ∈ ∆(S3).

(4.10)

Some of the possible cases are:

(i) 5
7{ρ
∗
2(β1) + ρ∗3(β1)} > 1 which leads to the pure strategy profile β1, β1, β1 that is a NE.

(ii) 5
7{ρ
∗
2(β1) + ρ∗3(β1)} < 1 which leads to the pure strategy profile β2, β2, β2 that is a NE.

(iii) 5
7{ρ
∗
2(β1) + ρ∗3(β1)} = 1 which leads to a mixed strategy profile that we indeed showed

that it was also a NE.

4.2.1 Verification of Existence of Equilibria in the Game (3.1)

Considering the game (3.1) analyzed above, the two multiple equilibria (pure Nash equilibria)
were (β1, β1, β1) = (20, 20, 20) and (β2, β2, β2) = (14, 14, 14). We proved the existence of mixed
Nash equilibrium using the Brauwer’s fixed point theorem as shown below:
We had the game (3.1),

Γ1 = 〈N, (Si), (ui)〉,
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where N is the number of players and Si = S1 × S2 × S3 is the action set for the players. All
the action sets Si are finite.

We let ∆ = ∆1× · · · ×∆N denote the set of mixed strategies for the players in the game (3.1).
The finiteness of Si ensures the compactness of ∆.

We then defined the gain function for player i, Gi. For a mixed strategy ρ ∈ ∆, we let the gain
for player i on action β ∈ Si be

Gi(ρ, β) = max{0, ui(β, ρj)− ui(ρi, ρj)},

where ρi is the mixed strategy for player i and ρj is the mixed strategy for all other players in
the game (3.1). The gain function represents the benefit a player gets by unilaterally changing
his strategy.

We now define g = (g1, · · · , gN ) where gi(ρ, β) = ρi(β) +Gi(ρ, β) for ρ ∈ ∆, β ∈ Si.
We see that

∑
β∈Si

gi(ρ, β) =
∑
β∈Si

ρi(β) +Gi(ρ, β) = 1 +
∑
β∈Si

Gi(ρ, β) > 0.

We now use g to define f : ∆ 7→ ∆ as follows:
Let

fi(ρ, β) = gi(ρ, β)∑
β∈Si

gi(ρ, β)

for β ∈ Si.

It is easy to see that fi is a valid mixed strategy in ∆i. It is also easy to check that each fi is
a continuous function of ρ, and hence f is a continuous function. Now ∆ is the cross product
of a finite number of compact convex sets, and so we get that ∆ is also compact and convex.
Therefore we may apply the Brouwer fixed point theorem to f. So f has a fixed point in ∆, call
it ρ∗.

We claim that ρ∗ is a Nash equilibrium in the game (3.1). For this purpose it suffices to show
that

∀ 1 ≤ i ≤ N, ∀ β ∈ Si, Gi(ρ∗, β) = 0.

This simply states that each player gains nothing by unilaterally changing his strategy, which
is exactly the necessary condition for Nash equilibrium.

Now assume that the gains are not zero. ∃ i, 1 ≤ i ≤ N and β ∈ Si such that

Gi(ρ∗, β) > 0.
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Note then that ∑
β∈Si

gi(ρ∗, β) = 1 +
∑
β∈Si

Gi(ρ∗, β) > 1.

So let
C =

∑
β∈Si

gi(ρ∗, β).

We denote G(i, ·) as the gain vector indexed by actions in Si. Since

f(ρ∗) = ρ∗,

we clearly have that
fi(ρ∗) = ρ∗i .

Therefore we see that
ρ∗i = gi(ρ∗)∑

β∈Si
gi(ρ∗, β) .

⇒ ρ∗i = ρ∗i +Gi(ρ∗, ·)
C

Cρ∗i = ρ∗i +Gi(ρ∗, ·)

(C − 1)ρ∗i = Gi(ρ∗, ·)

ρ∗i = ( 1
C − 1)Gi(ρ∗, ·).

Since C > 1, we have that ρ∗i is some positive scaling of the vector Gi(ρ∗, ·).

Now we claim that

ρ∗i (β)(Ui(βi, ρ∗j )− Ui(ρ∗i , ρ∗j )) = ρ∗i (β)Gi(ρ∗, β)∀β ∈ Si.

To see this, we first note that if
Gi(ρ∗, β) > 0,

then this is true by the definition of the gain function.

We assume that
Gi(ρ∗, β) = 0.

By our previous statements we have that

ρ∗i (β) = 1
C − 1Gi(ρ

∗, β) = 0,

and so the left term is zero, giving the entire expression as 0 as needed.
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So finally we have that

0 =(Ui(βi, ρ∗j )− Ui(ρ∗i , ρ∗j )

=
∑
β∈Si

(ρ∗i (β)Ui(βi, ρ∗j )− Ui(ρ∗i , ρ∗j ))

=
∑
β∈Si

(ρ∗i (β)(Ui(βi, ρ∗j )− Ui(ρ∗i , ρ∗j ))

=
∑
β∈Si

ρ∗i (β)Gi(ρ∗, β) by the previous statements.

=
∑
β∈Si

(C − 1)ρ∗i (β)2 > 0

where the last inequality follows since ρ∗i is a non-zero vector. But this is a clear contradiction,
so all the gain must indeed be zero.
Therefore ρ∗ is a mixed Nash equilibrium for the game (3.1) as needed.
More often, most situations involve population of players and to study multi-player games
effectively we need to deviate from classical game theory to Evolutionary Game Theory. Edgar
(2012)[6] presented an approach that deviates from classical game theory in regard to rationality
of players, belief about the behaviour of other players and the alignment of such beliefs across
players. This is important because in a multi-player game, some players may make their choices
irrationally. Evolutionary Game Theory will effectively enable us determine equilibria of games
played by a population of players, where the fitness (payoff) of the players is derived from the
success each player has in playing the game.
Together with Evolutionary Game Theory, new concepts were developed such as the Evolu-
tionary Stable Strategy which is applied to study the stability of populations [8]. ESS is an
equilibrium refinement of NE. It is a NE that is evolutionary stable in the sense that if adopted
by a population of players in a given environment, it cannot be invaded by any alternative
strategy that is initially rare. It is known that any ESS is an asymptotically stable strategy [2].
In particular, in games with multiple ESS, we resolve the problem of equilibrium selection by
choosing the one that is stochastically stable.
Suppose in the game (3.1), a third pure strategy (attempting the third assignment, β3) is
introduced such that attempting the first assignment (β1) together is still more rewarding than
individually attempting either the second assignment (β2) or the third assignment (β3.) We
denote the new game as

Γ2 = 〈N, (Si), (ui)〉 (4.11)

where N is the number of players, Si the available strategies, ui the payoffs to the players and
i = 1, 2, 3.
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The game (4.11) is a pure strategy game with the strategy profile β = (β1, β2, β3), where
β1 represents the first pure strategy (choosing the first assignment),
β2 represents the second pure strategy (choosing the second assignment),
β3 represents the third pure strategy (choosing the third assignment) and N is the number of
players.
The rewards for β1 and β2 are maintained as in the game (3.1). However the third assignment
(β3) has the lowest reward of 5. We considered two cases: where the third assignment (β3) could
be completed successfully on its own and where the reward for β3 depends on cooperation among
the students. The result was twenty seven possible outcome cells and their respective payoffs
were calculated by examining each pair-wise payoff set among players, and the payoffs for three
players were calculated by considering the type of interaction they had as was done in the
game (3.1). The first eight possible outcomes of this game and their respective payoffs for the
three players were the same as the outcomes in the game (3.1). However the other 19 possible
outcome cells and their respective payoffs for the three players were calculated and the results
were as displayed in Table (1).

Table 1: Possible outcomes and their respective payoffs for the game (4.11)
OUTCOMES FIRST PAYOFF, Ui(β) SECOND PAYOFF,Ui(β)
β3, β3, β3 (10, 10, 10) (10, 10, 10)
β3, β3, β1 (10, 10, 0) (5, 5, 0)
β3, β1, β1 (10, 10, 10) (0, 10, 10)
β3, β1, β3 (10, 0, 10) (5, 0, 5)
β3, β3, β2 (10, 10, 14) (5, 5, 14)
β3, β2, β2 (10, 14, 14) (0, 14, 14)
β3, β2, β3 (10, 14, 10) (5, 14, 5)
β1, β2, β3 (0, 14, 10) (0, 14, 0)
β3, β2, β1 (10, 14, 0) (0, 14, 0)
β2, β3, β1 (14, 10, 0) (14, 0, 0)
β2, β3, β3 (14, 10, 10) (14, 5, 5)
β1, β3, β3 (0, 10, 10) (0, 5, 5)
β1, β3, β1 (10, 10, 10) (10, 0, 10)
β1, β1, β3 (10, 10, 10) (10, 10, 0)
β1, β3, β2 (0, 10, 14) (0, 0, 14)
β2, β1, β3 (14, 0, 10) (14, 0, 0)
β3, β1, β2 (10, 0, 14) (0, 0, 14)
β2, β2, β3 (14, 14, 10) (14, 14, 0)
β2, β3, β2 (14, 10, 14) (14, 0, 14)

In the game (4.11), we had multiple equilibria. Assuming that all players acted rationally,
the two pure Nash Equilibria are (β1, β1, β1) and (β2, β2, β2) profiles since no player had an
incentive to deviate from either the first or second equilibria. Since the two pure NE are strict,
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then the two pure strategies of the game (4.11) are evolutionary stable strategies. The mixed
strategy that resulted from the two pure Nash Equilibria is also evolutionary stable.
In some cases, some students decided to behave irrationally by attempting the third assignment,
β3 which was less rewarding than the first two assignments. Since β1 and β2 were evolutionary
stable strategies, any student with mutant behaviour who decided to adopt the third strategy,
β3, could not successfully invade this population of players.
More precisely, β1 is an ESS if either:

(i) the payoff for playing β1 against other players playing β1 is greater than that of playing
any other strategy β3 against players playing β1, for example,

Ui(β1, β1, β1) > Ui(β3, β1, β1),

(ii) the payoff of playing β1 against itself is equal to that of playing β3 against β1 but the
payoff of playing β3 against β3 is less than that of playing β1 against β3, for example

Ui(β1, β1, β1) = Ui(β3, β1, β1)

and
Ui(β1, β1, β3) > Ui(β3, β3, β3).

Alternatively, β2 is an ESS if either:

(i) the payoff for playing β2 against other players playing β2 is greater than that of playing
any other strategy β3 against players playing β2, for example,

Ui(β2, β2, β2) > Ui(β3, β2, β2),

(ii) the payoff of playing β2 against itself is equal to that of playing β3 against β2 but the
payoff of playing β3 against β3 is less than that of playing β2 against β3, for example

Ui(β2, β2, β2) = Ui(β3, β2, β2)

and
Ui(β2, β2, β3) > Ui(β3, β3, β3).

Note that for both evolutionary stable strategies, either (i) or (ii) will do and that the former
is a stronger condition than the latter. It is most likely that players will always adopt the
evolutionary stable strategies since no mutant strategy can successfully invade this game.
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4.3 Identification of Efficient Nash Equilibria in the Game (3.1)

The game (3.1) modelled in this study is an example of coordination game with multiple Nash
equilibria. Some equilibria may give higher payoffs, some may be naturally more salient, others
may be safer and/or fairer. When there are several NE, how will a rational agent decide on
which of the several equilibria is the right one to settle upon? Attempts to resolve this problem
have produced a number of refinements to the concept of NE. This necessitated the need to
identify which equilibria is efficient in the case of multiple equilibria.
Risk dominance and payoff dominance are two related refinements of NE solution concept in
game theory. A NE is considered payoff dominant if it is Pareto superior to all other NE in
the game. When faced with a choice among equilibria, all players would agree on the payoff
dominant equilibrium since it offers each player at least as much payoff as the other NE. This
implies that

ui(β1, β1, β1) > ui(β2, β2, β2).

In the game modelled in (3.1), (β1, β1, β1) is a payoff dominant equilibrium because each player
prefers this profile to that in which she chooses β2 alone. A player is better off remaining
attentive in attempting the first assignment, β1, than attempting the second assignment, β2, if
all other players remain attentive since this will give them a higher reward.
Conversely, a NE equilibrium is considered risk dominant if it has the largest basin of attraction.
In the game (3.1), (β2, β2, β2) is a risk dominant equilibrium because each player prefers this
profile to that in which she attempts the first assignment, (β1), alone. A player is better off
attempting the second assignment, (β2), than the first assignment, (β1), if no one else attempts
the first assignment because this option is less risky. Pareto dominant and the risk dominant
strategies are both ESS.

5 Conclusion

A major contribution that this study has made is that since most situations in economics such
as cooperative projects and security dilemma are usually faced with multiple choices which chal-
lenge players in this field, and if Economics strives to be a predictive Science, then multiplicity
of equilibria is a problem that needs to be dealt with. More often, in selecting from multiple
equilibria, economists make use of efficiency considerations and that not only equilibria that
are payoff dominant should be chosen, but also risk dominance should be considered as well.
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