Extended results on restrained domination number and connectivity of a graph

C. Sivagnanam ${ }^{1}$, M.P. Kulandaivel ${ }^{2}$
${ }^{1}$ Department of General Requirements College of Applied Sciences, Ibri Sultanate of Oman. choshi71@gmail.com
${ }^{2}$ Mathematics Section, Department of Information Technology
Al Musanna College of Technology Sultanate of Oman.
mpkoman@gmail.com

Abstract

A subset S of V is called a dominating set in G if every vertex in $V-S$ is adjacent to at least one vertex in S. A dominating set S is said to be a restrained dominating set if $\langle V-S\rangle$ contains no isolated vertices. The minimum cardinality of a restrained dominating set of G is called the restrained domination number of G and is denoted by $\gamma_{r}(G)$. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph. In this paper we characterized the graphs with sum of restrained domination number and connectivity is equal to $2 n-6$.

Keywords: Restrained domination number, connectivity.
AMS Subject Classification(2010): 05C69.

1 Introduction

The graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. $H\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ denotes the graph obtained from the graph H by attaching m_{i} edges to the vertex $v_{i} \in V(H), 1 \leq i \leq n$. The graph $K_{2}(r, s)$ is called a bistar and is also denoted by $B(r, s) . H\left(P_{m_{1}}, P_{m_{2}}, \ldots, P_{m_{n}}\right)$ is the graph obtained from the graph H by attaching an end vertex of $P_{m_{i}}$ to the vertex v_{i} in $H, 1 \leq i \leq n$. The graph $G(r)$ is obtained from a graph $G \cup K_{1}$ where G is a regular graph, by adding r number of edges between the vertex of K_{1} and any r vertices of G. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [3, 4].

A subset S of V is called a dominating set of G if every vertex in $V-S$ is adjacent to at least one vertex in S. The minimum cardinality of a dominating set of G is called the domination
number of G and is denoted by $\gamma(G)$. A dominating set S is said to be a restrained dominating set if the induced subgraph $\langle V-S\rangle$ contains no isolated vertices. The minimum cardinality of a restrained dominating set of G is called the restrained domination number of G and is denoted by $\gamma_{r}(G)$. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. J. Paulraj Joseph and S. Arumugam [5] proved that $\gamma(G)+\kappa(G) \leq n$ and characterized the corresponding extremal graphs. P. Selvaraju and M.P. Kulandaivel [6] proved that $\gamma_{r}(G)+\kappa(G) \leq 2 n-1$ and they characterized the corresponding extremal graphs. Also they characterized the extremal graphs with the sum of restrained domination number and connectivity upto $2 n-5$.

In this paper we characterized the graphs with sum of restrained domination number and connectivity equals to $2 n-6$. We use the following theorems to prove our result.

Theorem 1.1. [2] For any connected graph $G, \gamma_{r}(G) \leq n$. Further, equality holds if and only if G is a star.

Theorem 1.2. [2] $\gamma_{r}\left(K_{n}\right)=1, n>2$.
Theorem 1.3. [2] If G is a connected graph of order n and G is not a star, then $\gamma_{r}(G) \leq n-2$.
Theorem 1.4. $\kappa(G) \leq \delta(G)$.
Theorem 1.5. [6] For any connected graph $G, \gamma_{r}(G)+\kappa(G) \leq 2 n-1$ and equality holds if and only if G is isomorphic to K_{2}.

2 Main Results

Theorem 2.1. For any connected graph $G, \gamma_{r}(G)+\kappa(G)=2 n-6$ if and only if G is isomorphic to any one of the following graphs $(i) K_{1,6}($ ii $) K_{3,2}(i i i) K_{6}(i v) B(2,1)(v) K_{3}(2,0,0)(v i) C_{4}(2)$ (vii) $C_{4}(3)(v i i i) P_{5}(i x) C_{3}(1,1,0)(x) K_{5}-Y$ where Y is a matching in $K_{5}(x i) K_{6}-M$ where M is a perfect matching in K_{6}.

Proof: Let $\gamma_{r}(G)+\kappa(G)=2 n-6$. Then there are five cases to consider $(i) \gamma_{r}(G)=n$ and $\kappa(G)=n-6($ ii $) \gamma_{r}(G)=n-2$ and $\kappa(G)=n-4(i i i) \gamma_{r}(G)=n-3$ and $\kappa(G)=n-3$ (iv) $\gamma_{r}(G)=n-4$ and $\kappa(G)=n-2(v) \gamma_{r}(G)=n-5$ and $\kappa(G)=n-1$.

Case 1: $\gamma_{r}(G)=n$ and $\kappa(G)=n-6$.
Then G is a star which gives $\kappa(G)=1=n-6$ and hence $n=7$. Then G is isomorphic to $K_{1,6}$.

Case 2: $\gamma_{r}(G)=n-2$ and $\kappa(G)=n-4$.
Then $n-4 \leq \delta(G)$. If $\delta(G)=n-1$ then G is a complete graph which is a contradiction to $\kappa(G)=n-4$.

If $\delta(G)=n-2$ then G is isomorphic to $K_{n}-Y$ where Y is a matching in G. Hence $\gamma_{r}(G) \leq 2$. Then $n \leq 4$ which is a contradiction to $\kappa(G)=n-4$. Suppose $\delta(G)=n-3$. Let $X=\left\{v_{1}, v_{2}, \cdots, v_{n-4}\right\}$ be a minimum vertex cut of G and let $V-X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

If $\langle V-X\rangle$ contains at least one isolated vertex then $\delta(G) \leq n-4$ which is a contradiction. Hence $\langle V-X\rangle$ is isomorphic to $K_{2} \cup K_{2}$. Also every vertex of $V-X$ is adjacent to all the vertices of X. Then X is a restrained dominating set of G. Hence $\gamma_{r}(G) \leq n-4$ which is a contradiction. Thus $\delta(G)=n-4$.
Sub Case 2.1: $\langle V-X\rangle=\overline{K_{4}}$.
Then every vertex of $V-X$ is adjacent to all the vertices in X. Suppose $E(\langle X\rangle)=\phi$. Then $|X| \leq 4$ and hence G is isomorphic to $K_{s, 4}, 1 \leq s \leq 4$. But $\gamma_{r}(G)+\kappa(G) \neq 2 n-6$.

Suppose $E(\langle X\rangle) \neq \phi$. If any one of the vertex in X say v_{1} is adjacent to all the vertices in X and hence $\gamma_{r}(G)=1$. Then $n=3$ which is impossible. Hence every vertex in X is not adjacent to at least one vertex in X. Hence $\gamma_{r}(G)=2$. Then $n=4$ which is also impossible.
Sub Case 2.2: $\langle V-X\rangle=P_{3} \cup K_{1}$.
Let x_{1} be the isolated vertex in $\langle V-X\rangle$ and let $\left(x_{2}, x_{3}, x_{4}\right)$ be a path in $\langle V-X\rangle$. Then x_{1} is adjacent to all the vertices in X and x_{2} and x_{4} are not adjacent to at most one vertex in X and x_{3} is not adjacent to at most two vertices in X. If $|X| \geq 3$ then $X \cup\left\{x_{1}\right\}$ is a restrained dominating set of cardinality $n-3$ which is a contradiction. If $|X|=2$ then $\left\{x_{3}, x_{4}, v_{2}\right\}$ is a restrained dominating set of G or G is isomorphic to C_{6}. Both the cases we get a contradiction. If $|X|=1$ then G is isomorphic to P_{5} or $B(2,1)$ or $C_{3}(1,1,0)$ or $C_{4}(1,0,0)$ or the graph G_{1} which is obtained from $\left(K_{4}-e\right) \cup K_{1}$ by adding an edge between a vertex of K_{1} and a vertex of degree three in $K_{4}-e$. But $\gamma_{r}\left(C_{4}(1,0,0)\right)=\gamma_{r}\left(G_{1}\right)=2 \neq n-2$. Hence G is isomorphic to P_{5} or $B(2,1)$ or $C_{3}(1,1,0)$.
Sub Case 2.3: $\langle V-X\rangle=K_{3} \cup K_{1}$.
Let x_{1} be the isolated vertex in $\langle V-X\rangle$ and let $\left\langle\left\{x_{2}, x_{3}, x_{4}\right\}\right\rangle$ be the complete graph. Then x_{1} is adjacent to all the vertices in X and x_{2}, x_{3}, x_{4} are not adjacent to at most two vertices in X. If $|X| \geq 3$ then $X \cup\left\{x_{1}\right\}$ is a restrained dominating set of cardinality $n-3$ which is a contradiction. If $|X|=2$ then $\left\{v_{1}, x_{1}, x_{2}\right\}$ or $\left\{v_{1}, x_{1}, x_{3}\right\}$ or $\left\{v_{1}, x_{1}, x_{4}\right\}$ is a restrained dominating set of G. Hence $\gamma_{r}(G) \leq 3$. Then $n \leq 5$ which is a contradiction. If $|X|=1$ then $\gamma_{r}(G) \leq 2$ and hence $n \leq 4$ which is a contradiction.

Sub Case 2.4: $\langle V-X\rangle=K_{2} \cup K_{2}$.
Let $x_{1} x_{2}, x_{3} x_{4} \in E(G)$. Since $\delta(G)=n-4$ each $x_{i}, 1 \leq i \leq 4$ is non-adjacent to at
most one vertex in X. If $|X| \geq 2$ then X is a restrained dominating set of cardinality $n-4$ which is a contradiction. Hence $|X|=1$. Then G is isomorphic to P_{5} or $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ or the graph G_{2} which is obtained from $C_{3}(2,0,0)$ by joining the pendant vertices by an edge. But $\gamma_{r}\left(C_{3}\left(P_{3}, P_{1}, P_{1}\right)\right)=2 \neq n-2$ and $\gamma_{r}\left(G_{2}\right)=1 \neq n-2$ which is a contradiction. Hence G is isomorphic to P_{5}.

Sub Case 2.5: $\langle V-X\rangle=K_{2} \cup \overline{K_{2}}$.
Let $x_{1} x_{2} \in E(G)$ and $x_{3} x_{4} \in E(\bar{G})$. Then each $x_{i}, i=1$ or 2 is non adjacent to at most one vertex in X and each $x_{j}, j=3$ or 4 is adjacent to all the vertices in X. For this graph $\gamma_{r}(G) \leq 3$ and hence $n \leq 5$. Thus $n=5$. Then $|X|=1$. Hence G is isomorphic to $B(2,1)$ or $K_{3}(2,0,0)$.

Case 3: $\gamma_{r}(G)=n-3$ and $\kappa(G)=n-3$.
Then $n-3 \leq \delta(G)$. If $\delta=n-1$ then G is a complete graph which is a contradiction to $\kappa(G)=n-3$. If $\delta=n-2$ then G is isomorphic to $K_{n}-Y$ where Y is a matching in K_{n}. Then $\gamma_{r}(G) \leq 2$. If $\gamma_{r}(G)=1$ then $n=4$. Hence G is isomorphic to $K_{4}-e$. But $\kappa\left(K_{4}-e\right)=2 \neq n-3$ which is a contradiction. If $\gamma_{r}(G)=2$ then $n=5$. There is no graph satisfies this condition. Hence $\delta(G)=n-3$. Let $X=\left\{v_{1}, v_{2}, \cdots, v_{n-3}\right\}$ be a minimum vertex cut of G and let $V-X=\left\{x_{1}, x_{2}, x_{3}\right\}$.

Sub Case 3.1: $\langle V-X\rangle=\overline{K_{3}}$.
Then every vertex of $V-X$ is adjacent to all the vertices in X. Suppose $E(\langle X\rangle)=\phi$. Then $|X| \leq 3$ and hence G is isomorphic to $K_{s, 3}, s=2$ or 3 . If $s=3$ then G is isomorphic to $K_{3,3}$. But $\gamma_{r}\left(K_{3,3}\right)=2 \neq n-3$. Hence G is isomorphic to $K_{3,2}$. Suppose $E(\langle X\rangle) \neq \phi$. If any $v_{1} \in X$ is adjacent to all the vertices in X and hence $\gamma_{r}(G)=1$. Then $n=4$ which is a contradiction. Hence every vertex in X is not adjacent to at least one vertex in X. Hence $\gamma_{r}(G)=2$. Then $n=5$. Hence G is isomorphic to $K_{3,2}$.

Sub Case 3.2: $\langle V-X\rangle=K_{1} \cup K_{2}$.
Let $x_{1} x_{2} \in E(G)$. Since $\delta=n-3$ we have x_{3} is adjacent to all the vertices of X. Suppose $d\left(x_{1}\right)$ or $d\left(x_{2}\right)$ is $n-2$. Let $d\left(x_{1}\right)=n-2$. Then $\left\{x_{2}, x_{3}\right\}$ is a restrained dominating set of G and hence $\gamma_{r}(G) \leq 2$. If $\gamma_{r}(G)=1$ then $n=4$ which is impossible. If $\gamma_{r}(G)=2$ then $n=5$. Hence G is isomorphic to $C_{4}(2)$ or $C_{4}(3)$. Suppose $d\left(x_{i}\right)=n-3,1 \leq i \leq 2$. Then $\gamma_{r}(G)=2$ or 3 . If $\gamma_{r}(G)=3$ then $n=6$. Then we get the graphs with $\gamma_{r}(G)+\kappa(G) \neq 2 n-6$. If $\gamma_{r}(G)=2$ then $n=5$. Hence G is isomorphic to C_{5} or $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$. For these graphs $\gamma_{r}(G)+\kappa(G) \neq 2 n-6$.
Case 4: $\gamma_{r}(G)=n-4$ and $\kappa(G)=n-2$.
Then $\delta(G) \geq n-2$. If $\delta(G)=n-1$ then G is a complete graph which is a contradiction. Hence $\delta(G)=n-2$. Then G is isomorphic to $K_{n}-M$ where M is a matching in K_{n}. Thus $\gamma_{r}(G) \leq 2$. If $\gamma_{r}(G)=1$ then $n=5$. Hence G is isomorphic to $K_{5}-M$ where M is a matching in K_{5}. If $\gamma_{r}(G)=2$ then $n=6$ and hence G is isomorphic to $K_{6}-M$ where M is a perfect
matching in K_{6}.
Case 5: $\gamma_{r}(G)=n-5$ and $\kappa(G)=n-1$.
Then G is isomorphic to a complete graph. Hence $\gamma_{r}(G)=1=n-5$. Thus $n=6$. Hence G is isomorphic to K_{6}. The converse is obvious.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, (2005).
[2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Mathematics, 203 (1999), 61-69.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs-Advanced Topics, Marcel Dekker, Inc., New York, (1998).
[5] J. Paulraj Joseph and S. Arumugam, Domination and Connectivity in graphs, International Journal of Management and Systems, 8 (1992), 233-236.
[6] P. Selvaraju and M.P. Kulandaivel, Restrained domination number and Connectivity of a graph, Proceedings of the International Conference on Mathematics and Computer Science, Loyola college, Chennai, 1 (2009), 72 - 74.

