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Abstract

The aim of this paper is to introduce some new type of seperation axioms and study
some of their basic properties. Some implications between T0, T1 and T2 axioms are also
obtained.
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1 Introduction

Andrijevic[1] introduced a new class of generalized open sets called b-open sets in topological
spaces. This type of sets was discussed by [5] under the name of γ - open sets. Several research
papers [2,3,4,13,15] with advance results in different aspects came into existence. Further,
Caldas and Jafari [4], introduced and studied b-T0, b-T1, b- T2, b-D0, b-D1 and b-D2 via
b-open sets. After to that Keskin and Noiri [7], introduced the notion of b-T1/2. Recently,
the authors[16,17,18] introduced and studied about the sb* - closed sets, sb*-open map, sb*-
continuous map, sb*- irresolute and Homeomorphisms in topological spaces. In the present
paper, sb*-seperation axioms are introduced via sb*-open sets and some of its basic properties
are discussed.

2 Preliminaries

Throughout this paper, X and Y denote the topological spaces (X, τ) and (Y,σ) respectively
and on which no seperation axioms are assumed unless otherwise explicitly stated. Let A be a
subset of the space X. The interior and closure of a set A in X are denoted by int(A) and cl(A)
respectively.The complement of A is denoted by (X-A) or Ac. In this section, let us recall some
definitions and results which are useful in the sequel.

Definition 2.1. [1] A subset A of a topological space (X, τ) is called b-open set if A ⊆
(cl(int(A))∪ int(cl(A))). The complement of a b-open set is said to be b-closed. The family of
all b-open subsets of a space X is denoted by BO(X).
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Definition 2.2. A subset A of a space X is called
(1) semi-open if A ⊆ (cl(int(A))[8];
(2) α-open if A ⊆ int(cl(int(A)))[14].
The complement of a semi-open (resp. α-open) set is called semiclosed [12](resp. α-closed[19]).

Definition 2.3. [16] A subset A of a topological space (X, τ) is called a sb*-closed set (briefly
sb*-closed) if cl(int(A)) ⊆ U whenever A ⊆ U and U is b-open in X.The complement of sb*-
closed set is called sb*-open. The family of all sb*-open sets of a space X is denoted by sb*O(X).

Definition 2.4. [4] A space X is said to be :
(1) b-T0 if for each pair of distict points x and y in X, there exists a b-open set A containing x
but not y or a b-open set B containing y but not x.
(2) b-T1 if for each pair x; y in X, x6=y, there exists a b-open set G containing x but not y and
a b-open set B containing y but not x.

Definition 2.5. [15] A space X is said to b-T2 if for any pair of distinct points x and y in X,
there exist U∈BO(X,x) and V∈BO(X,y) such that U∩V=φ.

Definition 2.6. A space X is said to be :
(1) α-T0 if for each pair of distinct points in X, there is an α - open set containing one of the
points but not the other[9].
(2) α-T1 if for each pair of distinct points x and y of X, there exists α-open sets U and V
containing x and y respectively such that y/∈U and x /∈V[9].
(3) α-T2 if for each pair of distinct points x and y of X, there exist disjoint α-open sets U and
V containing x and y respectively[11].

Definition 2.7. [10] (i) Let X be a topological space. For each x6=y∈X, there exists a set U,
such that x∈U, y/∈U, and there exists a set V such that y∈ V, x/∈ V, then X is called w-T1

space, if U is open and V is w-open sets in X.
(ii) Let X be a topological space. And for each x6=y∈ X, there exist two disjoint sets U and V
with x∈U and y∈ V, then X is called w- T2 space if U is open and V is w-open sets in X.

Definition 2.8. [10] A topological space X is (1) semi T0 if to each pair of distinct points x,y
of X, there exists a semi open set A containing x but not y or a semi open set B containing y
but not x.
(2) semi T1 if to each pair of distinct points x, y of X, there exists a semi open set A containing
x but not y and a semi open set B containing y but not x.
(3) semi T2 if to each pair of distinct points x, y of X, there exist disjoint semi open sets A and
B in X s.t. x∈ A, y ∈ B.
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Definition 2.9. [20] A topological space X is called a T0 space if and only if it satisfies the
following axiom of Kolmogorov. (T0) If x and y are distinct points of X, then there exists an
open set which contains one of them but not the other.

Definition 2.10. [20] A topological space X is a T1 -space if and only if it satisfies the following
seperation axiom of Frechet. (T1) If x and y are two distinct points of X, then there exists two
open sets, one containing x but not y and the other containing y but not x.

Definition 2.11. [20] A topological space X is said to be a T2 - space or hausdorff space if
and only if for every pair of distinct points x,y of X, there exists two disjoint open sets one
containing x and the other containing y.

Theorem 2.12. [16] (i)Every open set is sb*-open.
(ii)Every α open set is sb*-open.
(iii)Every w-open set is sb*-open.
(iv)Every sb*-open set is b - open.

Definition 2.13. Let A be a subset of a space X. Then the sb*-closure of A is defined as the
intersection of all sb*-closed sets containing A. ie., sb*-cl(A) = ∩ {F: F is sb*-closed, A⊆F}.

Definition 2.14. [17] Let X and Y be topological spaces. A map f: X → Y is called strongly
b* - continuous (sb*- continuous) if the inverse image of every open set in Y is sb* - open in X.

Definition 2.15. [17] Let X and Y be a topological spaces. A map f : X→ Y is called strongly
b* -closed (sb* - closed) map if the image of every closed set in X is sb* - closed in Y.

Definition 2.16. [18] Let X and Y be topological spaces. A map f: (X,τ) → (Y, σ) is said to
be sb* - Irresolute if the inverse image of every sb* - closed set in Y is sb* - closed set in X.

Definition 2.17. Let X be a topological space. A subset A⊆ X is called a sb* - neighbourhood
(Briefly sb* - nbd) of a point x ∈ X if there exists a sb* - open set G such that x ∈ G ⊆ A.

3 sb* - T0 Spaces

In this section, we define sb* - T0 space and study some of their properties.

Definition 3.1. A topological space X is said to be sb*-T0 if for every pair of distinct points
x and y of X, there exists a sb*-open set G such that x∈G and y/∈ G or y∈G and x /∈G.

Theorem 3.2. Every α-T0 space is sb*-T0.

Proof: Let X be a α-T0 space. Let x and y be any two distinct points in X. Since X is α-T0,
there exists a α open set U such that x∈ U and y/∈U or y∈U and x/∈U. By Theorem 2.11(ii), U
is a sb*-open set such that x∈ U and y/∈U or x/∈U and y ∈ U. Thus X is sb*-T0.
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Theorem 3.3. Every topological space X is sb*-T0.

Proof: Since every topological space is α-T0 and by the above Theorem every topological space
X is sb*-T0.

Theorem 3.4. A space X is sb*-T0 space if and only if sb*-closures of distinct points are
distinct.

Proof: Necessity: Let x,y ∈ X with x6=y and X be a sb*-T0 space. Since X is sb*-T0, by
Definition 3.1, there exists an sb*-open set G such that x∈G but y/∈G. Also x/∈ X-G and
y∈ X-G, where X-G is a sb*-closed set in X. Since sb*cl({y}) is the smallest sb*-closed set
containing y, sb*cl({y})⊆X-G. Hence y∈sb*cl({y}) but x /∈sb*cl({y}) as x/∈X-G. Consequently
sb*cl({x}) 6=sb*cl({y}).
Sufficicency: Suppose that for any pair of distinct points x,y∈ X, sb*cl({x}) 6=sb*cl({y}). Then
there exists atleast one point z∈ X such that z∈sb*cl({x}) but z/∈sb*cl({y}). Suppose we claim
that x/∈sb*cl({y}). For, if x∈ sb*cl({y}), then sb*cl({x})⊆sb*cl({y}). So z∈ sb*cl({y}),which
is a contradiction. Hence x/∈sb*cl({y}). Which implies that x∈ X-sb*cl({y}) is a sb*-open set
in X containing x but not y. Hence X is a sb*-T0 space.

Theorem 3.5. Every subspace of a sb*-T0 space is sb*-T0.

Proof: Let (Y, τ∗) be a subspace of a space X where τ∗ is the relative topology of τ on Y. Let
y1, y2 be two distinct points of Y. As Y⊆ X, y1 and y2 are distinct points of X and there exists
a sb*-open set G such that y1 ∈ G but y2 /∈G since X is sb*-T0. Then G∩Y is a sb*-open set
in (Y, τ∗) which contains y1 but does not contain y2. Hence (Y, τ∗) is a sb*-T0 space.

4 sb*- T1 Spaces

Definition 4.1. A space X is said to be sb*-T1 if for every pair of distinct points x and y in
X, there exist sb* - open sets U and V such that x ∈ U but y/∈U and y ∈ V but x/∈ V.

Proposition 4.2. (i) Every w-T1 space is sb*- T1.
(ii) Every sb*-T1 space is b-T1.

Proof: (i) Suppose X is a w- T1 space. Let x and y be two distinct points in X. Since X is
w-T1, there exist w- open sets U and V such that x∈U but y /∈ U and y ∈V but x /∈V. By
Theorem 2.11(iii), U and V are sb*- open sets such that x∈ U but y /∈ U and y ∈V but x/∈ V.
Hence X is sb*-T1.
(ii) Suppose X is a sb*-T1 space. Let x and y be two distinct points in X. Since X is sb*-T1,
there exist sb*-open sets U and V such that x∈U but y /∈ U and y ∈ V and x /∈V. By Theorem
2.11(iv) , U and V are b-open sets such that x∈ U but y /∈ U and y∈ V but x /∈ V. Thus X is
b-T1.
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Remark 4.3. The converse of the above proposition is not true as shown in the following
examples.

Example 4.4. Consider the space (X, τ), where X = {a,b,c} and τ = {φ, {a,b}, X}. Clearly
(X, τ ) is sb* -T1 but not w-T1. This shows that sb*-T1 does not imply w- T1.

Example 4.5. Consider the space (X, τ) where X = {a,b,c, d} and τ = {φ,{a},{b},{a,b},{a,b,c},X
}. Then (X, τ) is b-T1 but not sb*-T1. This shows that b-T1 does not imply sb*-T1.

Remark 4.6. The concepts of sb*-T1 and semi -T1 are independent as shown in the following
examples.

Example 4.7. Consider the space (X, τ), where X = {a,b,c,d} and τ = {φ,{a},{b},{c},
{a,b},{a,c},{b,c},{a,b,c},X}. Clearly (X, τ) is semi-T1 but not sb*-T1. This shows that semi-T1

does not imply sb*-T1.

Example 4.8. Consider the space (X,τ) , where X= {a,b,c,d} and τ = { φ, {a,b}, {a,b,c},{a,b,d},
X }. Then (X,τ) is sb*-T1 but not semi - T1. This shows that sb*-T1 does not imply semi-T1.

Theorem 4.9. Let f: X→ Y be a sb* - irresolute, injective map. If Y is sb*-T1 , then X is
sb*-T1.

Proof: Assume that Y is sb*-T1. Let x, y ∈Y be such that x6= y. Then there exists a pair of
sb*-open sets U , V in Y such that f(x)∈U, f(y)∈ V and f(x) /∈ V, f(y) /∈ U. Then x∈f−1(U), y
/∈f−1(U)and y∈ f−1(V), x/∈ f−1(V). Since f is sb*-irresolute, X is sb*-T1.

Theorem 4.10. A space (X, τ) is sb*- T1 if and only if for every x∈X, sb*cl{x}={x}.

Proof: Let (X, τ) be sb*-T1 and x∈X. Then for each y 6= x, there exists a sb*-open set G
such that x∈G but y/∈G. This implies that y/∈sb*cl{x}, for every y∈ X and y 6= x. Thus {x} =
sb*cl{x}.

Conversely, suppose sb*cl{x}={x} for every x∈ X. Let x, y be two distinct points in X. Then
x/∈{y} = sb*cl{y}implies there exists a sb*-closed set B1 such that y∈B1 , x/∈ B1 implies Bc

1 is
a sb*-open set such that x∈ Bc

1 but y /∈Bc
1.

Also y/∈{x} = sb*cl{x} ⇒ there exists a sb*-closed set B2 such that x ∈B2, y/∈ B2. Which
implies that Bc

2 is a sb*-open set such that y ∈Bc
2 but x /∈ Bc

2. By Definition 4.1, (X, τ) is
sb*-T1.

Theorem 4.11. Let f: X → Y be bijective.
(i) If f is sb* continuous and (Y,τ2) is T1 , then (X, τ1) is sb*-T1.
(ii) If f is sb*-open and (X, τ) is sb*-T1 then (Y, τ2) is sb*-T1.
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Proof: Let f: (X, τ1) → (X, τ2) be bijective.
(i) Suppose f: (X, τ1)→(Y, τ2) is sb*-continuous and (Y, τ2) is T1. Let x1, x2 ∈ X with x1 6=
x2. Since f is bijective, y1 = f(x1 ) 6= f(x2)= y2 for some y1 , y2 ∈ Y. Since (Y, τ2) is T1, there
exist open sets G and H such that y1 ∈G but y2 /∈G and y2 ∈H but y1 /∈H. Since f is bijective,
x1=f−1(y1) ∈f−1(G) but x2 = f−1(y2)/∈ f−1(G) and x2 = f−1(y2)∈ f−1(H) but x1 = f−1(y1)/∈
f−1(H). Since f is sb*-continuous, f−1(G) and f−1(H)are sb*- open sets in (X, τ1). It follows
that (X, τ1) is sb* - T1. This proves (i).
(ii) Suppose f is sb*-open and (X, τ1) is sb*-T1. Let y1 6= y2 ∈ Y. Since f is bijective, there
exist x1, x2 in X, such that f(x1) = y1 and f(x2) = y2 with x1 6= x2. Since (X, τ1) is sb* - T1,
there exist sb*-open sets G and H in X such that x1 ∈ G but x2 /∈ G and x2 ∈H but x1 /∈ H.
Since f is sb* -open, f(G) and f(H) are sb*-open in Y such that y1= f(x1)∈ f(G) and y2= f(x2)∈
f(H). Again since f is bijective, y2= f(x2)/∈ f(G) and y1= f(x1)/∈ f(H). Thus (Y, τ2) is sb* - T1.
This proves (iii).

5 sb*- T2 Spaces

In this section we introduce sb*-T2 space and investigate some of their basic properties.

Definition 5.1. A space X is said to be sb*-T2 if for every pair of distinct points x and y in
X, there are disjoint sb*- open sets U and V in X containing x and y respectively.

Theorem 5.2. (i) Every w-T2 space is sb*-T2.
(ii) Every α - T2 space is sb*-T2.

Proof: (i)Let X be a w-T2 space. Let x and y be two distinct points in X. Since X is w-T2,
there exist disjoint w-open sets U and V such that x∈ U and y ∈V. By Theorem 2.11(ii), U
and V are disjoint sb*-open sets such that x∈ U and y ∈V. Hence X is sb*-T2.
ii) Suppose X is α-T2 space. Let x and y be two disjoint α open sets U and V such that x ∈U
and y ∈V. By Theorem 2.11(i), U and V are disjoint sb*-open sets such that x∈U and y∈V.
Hence X is sb*-T2.

Remark 5.3. The converse of the statements (i) and(ii) of the above Theorem is not true as
shown in the following examples.

Example 5.4. Consider the space (X, τ), where X= {a,b,c} and τ= {φ, {a,b}, X}. Then (X,
τ) is sb*-T2 but not w-T2. This shows that sb*-T2 does not imply w-T2.

Example 5.5. Consider the space (X, τ), where X= {a,b,c} and τ={φ, {b},{a,c},X}. It can
be verified that (X, τ) is sb*-T2 but not α-T2. This shows that sb*-T2 does not imply α-T2.

Remark 5.6. The concepts of semi-T2 and sb*-T2 are independent as shown in the following
examples.
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Example 5.7. Consider the space (X, τ), wher X={a,b,c,d} and τ = {φ,{a}, {b},{a,b},X}.
It can be verified that (X, τ) is semi - T2 but not sb*-T2. This shows that semi-T2 does not
imply sb*-T2.

Example 5.8. Consider the space (X, τ), where X= {a,b,c,d} and τ={φ, {a,b},X}. Then (X,
τ) is sb*-T2 but not semi - T2. This shows that sb*-T2 does not imply semi-T2.

Remark 5.9. Every sb*-T2 space is b-T2. But the converse is not true as shown in the following
example.

Example 5.10. Consider the space (X, τ), where X = {a,b,c} and τ= {φ, {a}, {c},{a,c},X}.
Clearly (X, τ) is b- T2 but not sb*-T2. This shows that b-T2 does not imply sb*-T2.

Theorem 5.11. Every sb*-T2 space is sb*-T1.

Proof: Let X be a sb*-T2 space. Let x and y be two distinct points in X. Since X is sb*-T2,
there exist disjoint sb*-open sets U and V such that x∈ U and y∈ V. Since U and V are disjoint,
x∈ U but y/∈ U and y∈V but x /∈ V. Hence X is sb*-T1.

However the converse is not true as shown in the following example.

Example 5.12. Consider the space (X, τ), where X = {a,b,c,d} and τ = {φ,{a,b},X}. Then
(X, τ) is sb*-T1 but not sb*-T2. This shows that sb*-T1 does not imply sb*-T2.

Theorem 5.13. For a topological space X, the following are equivalent:
(i) X is a sb*-T2 space.
(ii) Let x∈ X. Then for each y6= x there exists a sb*-open set U such that x∈U and y /∈ sb*cl(U).
(iii) For each x∈X, ∩ { sb*-cl(U): U∈ sb*O(X) and x∈ U} = {x}.

Proof: (i)⇒ (ii): Suppose X is a sb*-T2 space. Then for each y6= x there exist disjoint sb*-
open sets U and V such that x∈ U and y∈ V. Since V is sb*-open, Vc is sb* - closed and U⊆
Vc. This implies that sb*cl(U) ⊆ Vc. Since y /∈ Vc, y /∈ sb*cl(U).

(ii)⇒ (iii) : If y 6= x, then there exists a sb*-open set U such that x ∈ U and y/∈ sb*cl(U).
Therefore y/∈ ∩{sb*cl(U):U∈sb*O(X) and x∈ U}. Therefore ∩{sb*cl(U):U∈sb*O(X) and x∈
U}={x}. This proves (iii).

(iii)⇒ (i): Let y 6= x in X. Then y /∈ {x} = ∩{sb*cl(U):U∈sb*O(X) and x∈ U}. This implies
that there exists a sb*-open set U such that x∈ U and y /∈ sb*cl(U). Let V= (sb*cl(U))c. Then
V is sb*-open and y ∈V. Now U∩V = U∩(sb*cl(U))c ⊆U∩(U)c=φ. Therefore X is sb*-T2

space.

Theorem 5.14. Let f:X→Y be a bijection.
(i) If f is sb*-open and X is T2, then Y is sb*-T2.
(ii) If f is sb*-contiuous and Y is T2, then X is sb*-T2.
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Proof: Let f:X → Y be a bijection.

(i) Suppose f is sb*-open and X is T2. Let y1 6= y2 ∈ Y. Since f is a bijection, there exist x1, x2

in X such that f(x1) = y1 and f(x2) = y2 with x1 6= x2. Since X is T2, there exist disjoint open
sets U and V in X such that x1 ∈U and x2 ∈V. Since f is sb*-open, f(U) and f(V) are sb*-open
in Y such that y1=f(x1) ∈f(U) and y2=f(x2)∈f(V). Again since f is a bijection, f(U) and f(V)
are disjoint in Y. Thus Y is sb*-T2.

(ii) Suppose f: X →Y is sb*-continuous and Y is T2. Let x1, x2 ∈X with x1 6=x2. Let y1 =
f(x1) and y2 = f(x2). Since f is one-one, y1 6= y2. Since Y is T2, there exist disjoint open sets U
and V containing y1 and y2 respectively. Since f is sb*-continuous bijective, f−1(U) and f−1(V)
are disjoint sb*-open sets containing x1 and x2 respectively. Thus X is sb*-T2.

Theorem 5.15. A topological space (X, τ) is sb*-T2 if and only if the intersection of all
sb*-closed, sb*-neighbourhoods of each point of the space is reduced to that point.

Proof: Let (X, τ) be sb*-T2 and x∈ X. Then for each y 6= x in X, there exist disjoint sb*-
open sets U and V such that x∈U , y∈V. Now U∩ V = φ implies x∈U⊆Vc. Therefore Vc is
a sb*-neighbourhood of x. Since V is sb*-open, Vc is sb* closed and sb* -neighbourhood of x
to which y does not belong. That is there is a sb*-closed, sb*-neighbourhoods of x which does
not contain y. so we get the intersection of all sb* - closed, sb*-neighbourhood of x is {x}.

Conversely, let x, y∈X such that x 6=y in X. Then by assumption, there exist a sb*-closed ,
sb*-neighbourhood V of x such that y /∈V. Now there exists a sb*-open set U such that x ∈ U
⊆ V. Thus U and Vc are disjoint sb*-open sets containing x and y respectively. Thus (X, τ) is
sb*-T2.

Theorem 5.16. If f: X → Y be bijective, sb*-irresolute map and X is sb*-T2, then (X, τ2) is
sb*-T2.

Proof: Suppose f: (X, τ1 → (Y,τ2) is bijective. And f is sb*-irresolute, and (Y, τ2) is sb*-T2.
Let x1, x2 ∈X with x1 6= x2. Since f is bijective, y1= f(x1) 6=f(x2) = y2 for some y1, y2 ∈
Y. Since (Y, τ2) is sb*-T2, there exist disjoint sb*-open sets G and H such that y1∈G and
y2∈H. Again since f is bijective, x1 = f−1(y1)∈f−1(G) and x2 = f−1(y2)∈f−1(H). Since f is sb*-
irresolute, f−1(G) and f−1(H) are sb*-open sets in (X, τ1). Also f is bijective, G∩H= φ implies
that f−1(G)∩ f−1(H) = f−1(G∩ H)==f−1(φ)=φ. It follows that (X, τ2) is sb*-T2.

References

[1] D. Andrijevic, On b-open sets, Mat. Vesink, 48(1996), 59 - 64.

[2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986),24-32.



sb* - Separation axioms 163

[3] A. Al-Omari and M.S.M. Noorani, On generalized b-closed sets, Bull. Malaysian Math. Sc.
Soc., 32(1)(2009).

[4] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi.
J.Math.2(2007), 11-19.

[5] A. A. El Atik and M. Caldas, Slightly γ-continuous functions, Bol. Soc. Para. Mat,
22(2)(2004), 63-74.

[6] M. H. Hadi, Weak form of w-open sets and decomposition of seperation axioms, M.Sc.
Thesis, Babylon University(2011).

[7] A.Keskin and T. Noiri, On b-D sets and associated seperation axioms, Bulletin of the
Iranina Math. Soc., 35(1)(2009), 179-198.

[8] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly,
70(1963), 36-41.

[9] H. Maki ,R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull.
Fukuoka Univ. Ed., Part - III, 42(1993), 13-21.

[10] S. N. Maheswari and R. Prasad, Some new seperation axioms, Annales de la societe’
Scientifique de Bruxelles, T. 89(1975), III, 395-402.

[11] S. N. Maheswari and S. S. Thakur , On α-irresolute mappings, Tamkang J. Math, 11(1980),
209-214.

[12] A. S. Mashhour, I. A. Hasanein and S. N. El Deep , α - continuous and α- open mappings,
Acta. Math. Hungar., 41(1983), 213-218.

[13] A. A. Nasef, On locally b-closed sets and related topic, Chaos Solutions Fractals, 12(2001),
1905-1915.

[14] O. Njastad, Some classes of nearly open sets, Pcific J. Math., 15(1965), 961-970.

[15] J. H. Park, Strongly θ-b continuous functions, Acta. Math. Hungar., 110(4)(2006), 347-359.

[16] A. Poongothai and R. Parimelazhagan , sb* - closed sets in Topological spaces, Int. Journal
of Math.Analysis, 6, 47(2012), 2325-2333.

[17] A. Poongothai and R. Parimelazhagan , Strongly b* - continuous functions in Topological
spaces, International Journal of Computer Applications, Volume 58, No.14(2012), 08 - 11.

[18] A. Poongothai and R. Parimelazhagan , sb* - irresolute maps and homeomorphisms in
Topological spaces, Wulfenia Journal, Vol 20, No. 4(2013).



164 A. Poongothai and R. Parimelazhagan

[19] M. Rajamani and K. Viswanathan, On αgs-closed sets in topological spaces, Acta ciencia
Indica, Vol XXXM, No. 3(2004), 521-526.

[20] Stephen Willard, General Topology, Addison Wesley(1970).


