International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 155 - 164.

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

sb* - Separation axioms

A. Poongothai, R. Parimelazhagan

Department of Science and Humanities Karpagam College of Engineering Coimbatore-32, Tamil Nadu, India. pari_tce@yahoo.com

Abstract

The aim of this paper is to introduce some new type of seperation axioms and study some of their basic properties. Some implications between T_0 , T_1 and T_2 axioms are also obtained.

Keywords: sb*-open sets, sb*- closed sets, sb*-T₀, sb*-T₁, sb*- T₂. AMS Subject Classification(2010): 54A05.

1 Introduction

Andrijevic[1] introduced a new class of generalized open sets called b-open sets in topological spaces. This type of sets was discussed by [5] under the name of γ - open sets. Several research papers [2,3,4,13,15] with advance results in different aspects came into existence. Further, Caldas and Jafari [4], introduced and studied b-T₀, b-T₁, b- T₂, b-D₀, b-D₁ and b-D₂ via b-open sets. After to that Keskin and Noiri [7], introduced the notion of b-T_{1/2}. Recently, the authors[16,17,18] introduced and studied about the sb^{*} - closed sets, sb^{*}-open map, sb^{*}- continuous map, sb^{*}- irresolute and Homeomorphisms in topological spaces. In the present paper, sb^{*}-seperation axioms are introduced via sb^{*}-open sets and some of its basic properties are discussed.

2 Preliminaries

Throughout this paper, X and Y denote the topological spaces (X, τ) and (Y, σ) respectively and on which no separation axioms are assumed unless otherwise explicitly stated. Let A be a subset of the space X. The interior and closure of a set A in X are denoted by int(A) and cl(A) respectively. The complement of A is denoted by (X-A) or A^c. In this section, let us recall some definitions and results which are useful in the sequel.

Definition 2.1. [1] A subset A of a topological space (X, τ) is called *b*-open set if $A \subseteq (cl(int(A)) \cup int(cl(A)))$. The complement of a b-open set is said to be b-closed. The family of all b-open subsets of a space X is denoted by BO(X).

Definition 2.2. A subset A of a space X is called

(1) semi-open if $A \subseteq (cl(int(A))[8];$

(2) α -open if $A \subseteq int(cl(int(A)))[14]$.

The complement of a semi-open (resp. α -open) set is called semiclosed [12](resp. α -closed[19]).

Definition 2.3. [16] A subset A of a topological space (X, τ) is called a sb*-closed set (briefly sb*-closed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is b-open in X.The complement of sb*-closed set is called sb*-open. The family of all sb*-open sets of a space X is denoted by sb*O(X).

Definition 2.4. [4] A space X is said to be :

(1) b-T₀ if for each pair of distict points x and y in X, there exists a b-open set A containing x but not y or a b-open set B containing y but not x.

(2) b-T₁ if for each pair x; y in X, $x \neq y$, there exists a b-open set G containing x but not y and a b-open set B containing y but not x.

Definition 2.5. [15] A space X is said to b-T₂ if for any pair of distinct points x and y in X, there exist $U \in BO(X,x)$ and $V \in BO(X,y)$ such that $U \cap V = \phi$.

Definition 2.6. A space X is said to be :

(1) α -T₀ if for each pair of distinct points in X, there is an α - open set containing one of the points but not the other[9].

(2) α -T₁ if for each pair of distinct points x and y of X, there exists α -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V[9]$.

(3) α -T₂ if for each pair of distinct points x and y of X, there exist disjoint α -open sets U and V containing x and y respectively[11].

Definition 2.7. [10] (i) Let X be a topological space. For each $x \neq y \in X$, there exists a set U, such that $x \in U$, $y \notin U$, and there exists a set V such that $y \in V$, $x \notin V$, then X is called w-T₁ space, if U is open and V is w-open sets in X.

(ii) Let X be a topological space. And for each $x \neq y \in X$, there exist two disjoint sets U and V with $x \in U$ and $y \in V$, then X is called w- T₂ space if U is open and V is w-open sets in X.

Definition 2.8. [10] A topological space X is (1) semi T_0 if to each pair of distinct points x,y of X, there exists a semi open set A containing x but not y or a semi open set B containing y but not x.

(2) semi T_1 if to each pair of distinct points x, y of X, there exists a semi open set A containing x but not y and a semi open set B containing y but not x.

(3) semi T_2 if to each pair of distinct points x, y of X, there exist disjoint semi open sets A and B in X s.t. $x \in A, y \in B$.

156

Definition 2.9. [20] A topological space X is called a T_0 space if and only if it satisfies the following axiom of Kolmogorov. (T_0) If x and y are distinct points of X, then there exists an open set which contains one of them but not the other.

Definition 2.10. [20] A topological space X is a T_1 -space if and only if it satisfies the following separation axiom of Frechet. (T_1) If x and y are two distinct points of X, then there exists two open sets, one containing x but not y and the other containing y but not x.

Definition 2.11. [20] A topological space X is said to be a T_2 - space or hausdorff space if and only if for every pair of distinct points x,y of X, there exists two disjoint open sets one containing x and the other containing y.

Theorem 2.12. [16] (i)Every open set is sb*-open.

(ii)Every α open set is sb*-open.

(iii)Every w-open set is sb*-open.

(iv)Every sb*-open set is b - open.

Definition 2.13. Let A be a subset of a space X. Then the sb*-closure of A is defined as the intersection of all sb*-closed sets containing A. ie., $sb^*-cl(A) = \cap \{F: F \text{ is } sb^*-closed, A \subseteq F\}$.

Definition 2.14. [17] Let X and Y be topological spaces. A map f: $X \to Y$ is called strongly b^{*} - continuous (sb^{*}- continuous) if the inverse image of every open set in Y is sb^{*} - open in X.

Definition 2.15. [17] Let X and Y be a topological spaces. A map $f: X \to Y$ is called strongly b^* -closed (sb^{*} - closed) map if the image of every closed set in X is sb^{*} - closed in Y.

Definition 2.16. [18] Let X and Y be topological spaces. A map f: $(X,\tau) \to (Y,\sigma)$ is said to be sb^{*} - Irresolute if the inverse image of every sb^{*} - closed set in Y is sb^{*} - closed set in X.

Definition 2.17. Let X be a topological space. A subset $A \subseteq X$ is called a sb^* - neighbourhood (Briefly sb^* - nbd) of a point $x \in X$ if there exists a sb^* - open set G such that $x \in G \subseteq A$.

3 $sb^* - T_0$ Spaces

In this section, we define sb^* - T_0 space and study some of their properties.

Definition 3.1. A topological space X is said to be sb^*-T_0 if for every pair of distinct points x and y of X, there exists a sb^* -open set G such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$.

Theorem 3.2. Every α -T₀ space is sb^{*}-T₀.

Proof: Let X be a α -T₀ space. Let x and y be any two distinct points in X. Since X is α -T₀, there exists a α open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. By Theorem 2.11(ii), U is a sb*-open set such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Thus X is sb*-T₀.

Theorem 3.3. Every topological space X is sb^*-T_0 .

Proof: Since every topological space is α -T₀ and by the above Theorem every topological space X is sb^{*}-T₀.

Theorem 3.4. A space X is sb^*-T_0 space if and only if sb^* -closures of distinct points are distinct.

Proof: Necessity: Let $x,y \in X$ with $x \neq y$ and X be a sb^*-T_0 space. Since X is sb^*-T_0 , by Definition 3.1, there exists an sb^* -open set G such that $x \in G$ but $y \notin G$. Also $x \notin X$ -G and $y \in X$ -G, where X-G is a sb^* -closed set in X. Since $sb^*cl(\{y\})$ is the smallest sb^* -closed set containing y, $sb^*cl(\{y\})\subseteq X$ -G. Hence $y \in sb^*cl(\{y\})$ but $x \notin sb^*cl(\{y\})$ as $x \notin X$ -G. Consequently $sb^*cl(\{x\})\neq sb^*cl(\{y\})$.

Sufficiency: Suppose that for any pair of distinct points $x,y \in X$, $sb^*cl(\{x\}) \neq sb^*cl(\{y\})$. Then there exists atleast one point $z \in X$ such that $z \in sb^*cl(\{x\})$ but $z \notin sb^*cl(\{y\})$. Suppose we claim that $x \notin sb^*cl(\{y\})$. For, if $x \in sb^*cl(\{y\})$, then $sb^*cl(\{x\}) \subseteq sb^*cl(\{y\})$. So $z \in sb^*cl(\{y\})$, which is a contradiction. Hence $x \notin sb^*cl(\{y\})$. Which implies that $x \in X$ - $sb^*cl(\{y\})$ is a sb^* -open set in X containing x but not y. Hence X is a sb^* -T₀ space.

Theorem 3.5. Every subspace of a sb^*-T_0 space is sb^*-T_0 .

Proof: Let (Y, τ^*) be a subspace of a space X where τ^* is the relative topology of τ on Y. Let y_1, y_2 be two distinct points of Y. As $Y \subseteq X$, y_1 and y_2 are distinct points of X and there exists a sb*-open set G such that $y_1 \in G$ but $y_2 \notin G$ since X is sb*-T₀. Then $G \cap Y$ is a sb*-open set in (Y, τ^*) which contains y_1 but does not contain y_2 . Hence (Y, τ^*) is a sb*-T₀ space.

4 sb*- T_1 Spaces

Definition 4.1. A space X is said to be sb^*-T_1 if for every pair of distinct points x and y in X, there exist sb^* - open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Proposition 4.2. (i) Every w-T₁ space is sb^* - T₁.

(ii) Every sb^*-T_1 space is $b-T_1$.

Proof: (i) Suppose X is a w- T_1 space. Let x and y be two distinct points in X. Since X is w- T_1 , there exist w- open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. By Theorem 2.11(iii), U and V are sb^{*}- open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is sb^{*}- T_1 .

(ii) Suppose X is a sb*-T₁ space. Let x and y be two distinct points in X. Since X is sb*-T₁, there exist sb*-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ and $x \notin V$. By Theorem 2.11(iv), U and V are b-open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Thus X is b-T₁.

158

Remark 4.3. The converse of the above proposition is not true as shown in the following examples.

Example 4.4. Consider the space (X, τ) , where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Clearly (X, τ) is $sb^* - T_1$ but not w-T₁. This shows that $sb^* - T_1$ does not imply w- T₁.

Example 4.5. Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then (X, τ) is b-T₁ but not sb*-T₁. This shows that b-T₁ does not imply sb*-T₁.

Remark 4.6. The concepts of sb^*-T_1 and semi $-T_1$ are independent as shown in the following examples.

Example 4.7. Consider the space (X, τ) , where $X = \{a,b,c,d\}$ and $\tau = \{\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\},X\}$. Clearly (X, τ) is semi-T₁ but not sb*-T₁. This shows that semi-T₁ does not imply sb*-T₁.

Example 4.8. Consider the space (X,τ) , where $X = \{a,b,c,d\}$ and $\tau = \{\phi, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}$. Then (X,τ) is sb*-T₁ but not semi - T₁. This shows that sb*-T₁ does not imply semi-T₁.

Theorem 4.9. Let f: $X \to Y$ be a sb^* - irresolute, injective map. If Y is sb^*-T_1 , then X is sb^*-T_1 .

Proof: Assume that Y is sb^*-T_1 . Let x, $y \in Y$ be such that $x \neq y$. Then there exists a pair of sb^* -open sets U, V in Y such that $f(x)\in U$, $f(y)\in V$ and $f(x)\notin V$, $f(y)\notin U$. Then $x\in f^{-1}(U)$, $y\notin f^{-1}(U)$ and $y\in f^{-1}(V)$, $x\notin f^{-1}(V)$. Since f is sb^* -irresolute, X is sb^*-T_1 .

Theorem 4.10. A space (X, τ) is sb*- T_1 if and only if for every $x \in X$, $sb*cl\{x\} = \{x\}$.

Proof: Let (X, τ) be sb*-T₁ and $x \in X$. Then for each $y \neq x$, there exists a sb*-open set G such that $x \in G$ but $y \notin G$. This implies that $y \notin sb*cl\{x\}$, for every $y \in X$ and $y \neq x$. Thus $\{x\} = sb*cl\{x\}$.

Conversely, suppose $sb^*cl\{x\} = \{x\}$ for every $x \in X$. Let x, y be two distinct points in X. Then $x \notin \{y\} = sb^*cl\{y\}$ implies there exists a sb^* -closed set B_1 such that $y \in B_1$, $x \notin B_1$ implies B_1^c is a sb^* -open set such that $x \in B_1^c$ but $y \notin B_1^c$.

Also $y \notin \{x\} = sb^*cl\{x\} \Rightarrow$ there exists a sb^* -closed set B_2 such that $x \in B_2$, $y \notin B_2$. Which implies that B_2^c is a sb^* -open set such that $y \in B_2^c$ but $x \notin B_2^c$. By Definition 4.1, (X, τ) is sb^*-T_1 .

Theorem 4.11. Let $f: X \to Y$ be bijective.

(i) If f is sb^{*} continuous and (Y,τ_2) is T_1 , then (X, τ_1) is sb^{*}- T_1 .

(ii) If f is sb*-open and (X, τ) is sb*-T₁ then (Y, τ_2) is sb*-T₁.

Proof: Let f: $(X, \tau_1) \to (X, \tau_2)$ be bijective.

(i) Suppose f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ is sb*-continuous and (Y, τ_2) is T_1 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$. Since (Y, τ_2) is T_1 , there exist open sets G and H such that $y_1 \in G$ but $y_2 \notin G$ and $y_2 \in H$ but $y_1 \notin H$. Since f is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ but $x_2 = f^{-1}(y_2) \notin f^{-1}(G)$ and $x_2 = f^{-1}(y_2) \in f^{-1}(H)$ but $x_1 = f^{-1}(y_1) \notin f^{-1}(H)$. Since f is sb*-continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are sb*- open sets in (X, τ_1) . It follows that (X, τ_1) is sb* - T_1 . This proves (i).

(ii) Suppose f is sb*-open and (X, τ_1) is sb*-T₁. Let $y_1 \neq y_2 \in Y$. Since f is bijective, there exist x_1, x_2 in X, such that $f(x_1) = y_1$ and $f(x_2) = y_2$ with $x_1 \neq x_2$. Since (X, τ_1) is sb* - T₁, there exist sb*-open sets G and H in X such that $x_1 \in G$ but $x_2 \notin G$ and $x_2 \in H$ but $x_1 \notin H$. Since f is sb* -open, f(G) and f(H) are sb*-open in Y such that $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \in f(H)$. Again since f is bijective, $y_2 = f(x_2) \notin f(G)$ and $y_1 = f(x_1) \notin f(H)$. Thus (Y, τ_2) is sb* - T₁. This proves (iii).

5 sb*- T₂ Spaces

In this section we introduce sb*-T₂ space and investigate some of their basic properties.

Definition 5.1. A space X is said to be sb^*-T_2 if for every pair of distinct points x and y in X, there are disjoint sb^* - open sets U and V in X containing x and y respectively.

Theorem 5.2. (i) Every w-T₂ space is sb*-T₂.
(ii) Every α - T₂ space is sb*-T₂.

Proof: (i)Let X be a w-T₂ space. Let x and y be two distinct points in X. Since X is w-T₂, there exist disjoint w-open sets U and V such that $x \in U$ and $y \in V$. By Theorem 2.11(ii), U and V are disjoint sb*-open sets such that $x \in U$ and $y \in V$. Hence X is sb*-T₂.

ii) Suppose X is α -T₂ space. Let x and y be two disjoint α open sets U and V such that $x \in U$ and $y \in V$. By Theorem 2.11(i), U and V are disjoint sb*-open sets such that $x \in U$ and $y \in V$. Hence X is sb*-T₂.

Remark 5.3. The converse of the statements (i) and(ii) of the above Theorem is not true as shown in the following examples.

Example 5.4. Consider the space (X, τ) , where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is sb^*-T_2 but not w-T₂. This shows that sb^*-T_2 does not imply w-T₂.

Example 5.5. Consider the space (X, τ) , where $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, c\}, X\}$. It can be verified that (X, τ) is sb*-T₂ but not α -T₂. This shows that sb*-T₂ does not imply α -T₂.

Remark 5.6. The concepts of semi- T_2 and sb^{*}- T_2 are independent as shown in the following examples.

160

Example 5.7. Consider the space (X, τ) , wher $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. It can be verified that (X, τ) is semi - T₂ but not sb*-T₂. This shows that semi-T₂ does not imply sb*-T₂.

Example 5.8. Consider the space (X, τ) , where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is sb^*-T_2 but not semi - T_2 . This shows that sb^*-T_2 does not imply semi- T_2 .

Remark 5.9. Every sb^*-T_2 space is $b-T_2$. But the converse is not true as shown in the following example.

Example 5.10. Consider the space (X, τ) , where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Clearly (X, τ) is b- T₂ but not sb*-T₂. This shows that b-T₂ does not imply sb*-T₂.

Theorem 5.11. Every sb^*-T_2 space is sb^*-T_1 .

Proof: Let X be a sb^*-T_2 space. Let x and y be two distinct points in X. Since X is sb^*-T_2 , there exist disjoint sb^* -open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is sb^*-T_1 .

However the converse is not true as shown in the following example.

Example 5.12. Consider the space (X, τ) , where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then (X, τ) is sb^*-T_1 but not sb^*-T_2 . This shows that sb^*-T_1 does not imply sb^*-T_2 .

Theorem 5.13. For a topological space X, the following are equivalent:

(i) X is a sb^*-T_2 space.

(ii) Let $x \in X$. Then for each $y \neq x$ there exists a sb*-open set U such that $x \in U$ and $y \notin sb*cl(U)$. (iii) For each $x \in X$, $\cap \{ sb*-cl(U) : U \in sb*O(X) \text{ and } x \in U \} = \{x\}$.

Proof: (i) \Rightarrow (ii): Suppose X is a sb*-T₂ space. Then for each $y \neq x$ there exist disjoint sb*open sets U and V such that $x \in U$ and $y \in V$. Since V is sb*-open, V^c is sb* - closed and U \subseteq V^c. This implies that sb*cl(U) \subseteq V^c. Since $y \notin V^c$, $y \notin sb*cl(U)$.

(ii) \Rightarrow (iii) : If $y \neq x$, then there exists a sb*-open set U such that $x \in U$ and $y \notin sb*cl(U)$. Therefore $y \notin \cap \{sb*cl(U): U \in sb*O(X) \text{ and } x \in U\}$. Therefore $\cap \{sb*cl(U): U \in sb*O(X) \text{ and } x \in U\} = \{x\}$. This proves (iii).

(iii)⇒ (i): Let $y \neq x$ in X. Then $y \notin \{x\} = \cap \{sb^*cl(U): U \in sb^*O(X) \text{ and } x \in U\}$. This implies that there exists a sb*-open set U such that $x \in U$ and $y \notin sb^*cl(U)$. Let $V = (sb^*cl(U))^c$. Then V is sb*-open and $y \in V$. Now $U \cap V = U \cap (sb^*cl(U))^c \subseteq U \cap (U)^c = \phi$. Therefore X is sb^*-T_2 space.

Theorem 5.14. Let $f:X \rightarrow Y$ be a bijection.

(i) If f is sb^* -open and X is T_2 , then Y is sb^*-T_2 .

(ii) If f is sb^* -continuous and Y is T_2 , then X is sb^*-T_2 .

Proof: Let $f: X \to Y$ be a bijection.

(i) Suppose f is sb*-open and X is T₂. Let $y_1 \neq y_2 \in Y$. Since f is a bijection, there exist x_1, x_2 in X such that $f(x_1) = y_1$ and $f(x_2) = y_2$ with $x_1 \neq x_2$. Since X is T₂, there exist disjoint open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$. Since f is sb*-open, f(U) and f(V) are sb*-open in Y such that $y_1=f(x_1) \in f(U)$ and $y_2=f(x_2)\in f(V)$. Again since f is a bijection, f(U) and f(V) are disjoint in Y. Thus Y is sb*-T₂.

(ii) Suppose f: X \rightarrow Y is sb*-continuous and Y is T₂. Let x₁, x₂ \in X with x₁ \neq x₂. Let y₁ = f(x₁) and y₂ = f(x₂). Since f is one-one, y₁ \neq y₂. Since Y is T₂, there exist disjoint open sets U and V containing y₁ and y₂ respectively. Since f is sb*-continuous bijective, f⁻¹(U) and f⁻¹(V) are disjoint sb*-open sets containing x₁ and x₂ respectively. Thus X is sb*-T₂.

Theorem 5.15. A topological space (X, τ) is sb*-T₂ if and only if the intersection of all sb*-closed, sb*-neighbourhoods of each point of the space is reduced to that point.

Proof: Let (X, τ) be sb*-T₂ and $x \in X$. Then for each $y \neq x$ in X, there exist disjoint sb*open sets U and V such that $x \in U$, $y \in V$. Now $U \cap V = \phi$ implies $x \in U \subseteq V^c$. Therefore V^c is a sb*-neighbourhood of x. Since V is sb*-open, V^c is sb* closed and sb* -neighbourhood of x to which y does not belong. That is there is a sb*-closed, sb*-neighbourhoods of x which does not contain y. so we get the intersection of all sb* - closed, sb*-neighbourhood of x is {x}.

Conversely, let x, $y \in X$ such that $x \neq y$ in X. Then by assumption, there exist a sb*-closed , sb*-neighbourhood V of x such that $y \notin V$. Now there exists a sb*-open set U such that $x \in U \subseteq V$. Thus U and V^c are disjoint sb*-open sets containing x and y respectively. Thus (X, τ) is sb*-T₂.

Theorem 5.16. If f: $X \to Y$ be bijective, sb*-irresolute map and X is sb*-T₂, then (X, τ_2) is sb*-T₂.

Proof: Suppose f: $(X, \tau_1 \to (Y, \tau_2)$ is bijective. And f is sb*-irresolute, and (Y, τ_2) is sb*-T₂. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$. Since (Y, τ_2) is sb*-T₂, there exist disjoint sb*-open sets G and H such that $y_1 \in G$ and $y_2 \in H$. Again since f is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ and $x_2 = f^{-1}(y_2) \in f^{-1}(H)$. Since f is sb*-irresolute, $f^{-1}(G)$ and $f^{-1}(H)$ are sb*-open sets in (X, τ_1) . Also f is bijective, $G \cap H = \phi$ implies that $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\phi) = \phi$. It follows that (X, τ_2) is sb*-T₂.

References

- [1] D. Andrijevic, On b-open sets, Mat. Vesink, 48(1996), 59 64.
- [2] D. Andrijevic, *Semi-preopen sets*, Mat. Vesnik, 38(1)(1986),24-32.

- [3] A. Al-Omari and M.S.M. Noorani, On generalized b-closed sets, Bull. Malaysian Math. Sc. Soc., 32(1)(2009).
- [4] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi. J.Math.2(2007), 11-19.
- [5] A. A. El Atik and M. Caldas, *Slightly* γ -continuous functions, Bol. Soc. Para. Mat, 22(2)(2004), 63-74.
- [6] M. H. Hadi, Weak form of w-open sets and decomposition of seperation axioms, M.Sc. Thesis, Babylon University(2011).
- [7] A.Keskin and T. Noiri, On b-D sets and associated seperation axioms, Bulletin of the Iranina Math. Soc., 35(1)(2009), 179-198.
- [8] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [9] H. Maki ,R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed., Part - III, 42(1993), 13-21.
- [10] S. N. Maheswari and R. Prasad, Some new separation axioms, Annales de la societe' Scientifique de Bruxelles, T. 89(1975), III, 395-402.
- [11] S. N. Maheswari and S. S. Thakur , On α -irresolute mappings, Tamkang J. Math, 11(1980), 209-214.
- [12] A. S. Mashhour, I. A. Hasanein and S. N. El Deep , α continuous and α open mappings, Acta. Math. Hungar., 41(1983), 213-218.
- [13] A. A. Nasef, On locally b-closed sets and related topic, Chaos Solutions Fractals, 12(2001), 1905-1915.
- [14] O. Njastad, Some classes of nearly open sets, Pcific J. Math., 15(1965), 961-970.
- [15] J. H. Park, Strongly θ -b continuous functions, Acta. Math. Hungar., 110(4)(2006), 347-359.
- [16] A. Poongothai and R. Parimelazhagan, sb* closed sets in Topological spaces, Int. Journal of Math.Analysis, 6, 47(2012), 2325-2333.
- [17] A. Poongothai and R. Parimelazhagan, Strongly b* continuous functions in Topological spaces, International Journal of Computer Applications, Volume 58, No.14(2012), 08 - 11.
- [18] A. Poongothai and R. Parimelazhagan, sb* irresolute maps and homeomorphisms in Topological spaces, Wulfenia Journal, Vol 20, No. 4(2013).

- [19] M. Rajamani and K. Viswanathan, On αgs-closed sets in topological spaces, Acta ciencia Indica, Vol XXXM, No. 3(2004), 521-526.
- [20] Stephen Willard, General Topology, Addison Wesley(1970).