On m - Neighbourly irregular fuzzy graphs

N.R. Santhi Maheswari ${ }^{1}$, C. Sekar ${ }^{2}$
${ }^{1}$ Department of Mathematics G. Venkataswamy Naidu College, Kovilpatti, India. nrsmaths@yahoo.com
${ }^{2}$ Department of Mathematics Aditanar College of Arts and Science Tiruchendur- 628 216, Tamilnadu, India. sekar.acas@gmail.com

Abstract

In this paper, d_{m}-degree and total d_{m}-degree of a vertex in fuzzy graphs, m - neighbourly irregular fuzzy graphs and m - neighbourly totally irregular fuzzy graphs are introduced. Some properties on m-neighbourly irregular fuzzy graphs are also discussed in this paper. Comparative study between m - neighbourly irregular fuzzy graphs and m - neighbourly totally irregular fuzzy graphs is done and m - neighbourly irregularity on some fuzzy graphs whose underlying crisp graphs are a cycle and a path is also studied.

Keywords: total degree, fuzzy graph, regular fuzzy graph, totally regular fuzzy graph, totally irregular fuzzy graphs, d_{2}-degree, total $d_{2^{-}}$degree, irregular fuzzy graph.
AMS Subject Classification(2010): 05C12, 03E72, 05C72.

1 Introduction

Azriel Rosenfeld introduced fuzzy graphs in 1975[3]. It has been growing fast and has numerous applications in various fields. A. Nagoor Gani and S.R. Latha [1] introduced irregular fuzzy graphs, total degree and totally irregular fuzzy graphs. N.R. Santhi Maheswari and C. Sekar introduced d_{2} - of a vertex in graphs [4] and also discussed some properties on d_{2} - of a vertex in graphs and introduced 2-neighbourly irregular graphs (semi neighbourly irregular graphs)and discussed some properties on 2 - neighbourly irregular graphs[4].
N.R. Santhi Maheswari and C. Sekar introduced $d_{2^{-}}$of a vertex in fuzzy graphs, $(2, k)$ regular fuzzy graphs, totally $(2, k)$-regular fuzzy graphs [5], $(r, 2, k)$-regular fuzzy graph and totally $(r, 2, k)$-regular fuzzy graph [6], 2- neighbourly irregular fuzzy graphs, 2- neighbourly totally irregular fuzzy graphs[7].

In this paper, we introduce d_{m}-degree and total d_{m}-degree of a vertex in fuzzy graphs, m - neighbourly irregular fuzzy graphs and m - neighbourly totally irregular fuzzy graphs and
also discussed some properties on m - neighbourly irregular fuzzy graphs. We make comparative study between m - neighbourly irregular fuzzy graphs and m - neighbourly totally irregular fuzzy graphs. Also m - neighbourly irregularity on some fuzzy graphs whose underlying crisp graphs are a cycle and a path is studied.

2 Preliminaries

We present some known definitions and results for a ready reference to go through the work presented in this paper.

Definition 2.1. A Fuzzy graph denoted by $G:(\sigma, \mu)$ on the graph $G^{*}:(V, E)$ is a pair of functions (σ, μ) where $\sigma: V \rightarrow[0,1]$ is a fuzzy subset V and $\mu: V \times V \rightarrow[0,1]$ is a symmetric fuzzy relation on σ such that for all u, v in V, the relation $\mu(u, v)=\mu(u v) \leq \sigma(u) \wedge \sigma(v)$ is satisfied. A fuzzy graph G is complete if $\mu(u, v)=\mu(u v)=\sigma(u) \wedge \sigma(v)$ for all $u, v \in V$, where $u v$ denotes the edge joining the vertices u and $v . G^{*}:(V, E)$ is called the underlying crisp graph of the fuzzy graph $G:(\sigma, \mu)$, where σ and μ are called membership function.

Definition 2.2. Let $G:(\sigma, \mu)$ be a fuzzy graph. The degree of a vertex u is $d_{G}(u)=\sum_{u \neq v} \mu(u v)$, for $u v \in E$ and $\mu(u v)=0$, for $u v$ not in E; this is equivalent to $d_{G}(u)=\sum_{u v \in E} \mu(u v)$.

Definition 2.3. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If $d(v)=k$ for all $v \in V$, then G is said to be a regular fuzzy graph of degree k.

Definition 2.4. The strength of connectedness between two vertices u and v is $\mu^{\infty}(u, v)=$ $\sup \left\{\mu^{k}(u, v): k=1,2, \ldots\right\}$, where $\mu^{k}(u, v)=\sup \left\{\mu\left(u u_{1}\right) \wedge \mu\left(u_{1} u_{2}\right) \wedge \ldots \cdots \wedge \mu\left(u_{k-1} v\right)\right.$: $u, u_{1}, u_{2}, \ldots, u_{k-1}, v$ is a path connecting u and v of length $\left.k\right\}$.

Definition 2.5. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The total degree of a vertex u is defined as $t d(u)=\sum \mu(u, v)+\sigma(u)=d(u)+\sigma(u), u v \in E$. If each vertex of G has the same total degree k, then G is said to be totally regular fuzzy graph of degree k or k-totally regular fuzzy graph.

Definition 2.6. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. Then G is an irregular fuzzy graph if no two vertices have the same degree [1].

Definition 2.7. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. Then G is a totally irregular fuzzy graph if no two vertices have the same total degree [1].

Definition 2.8. Let $G:(\sigma, \mu)$ be a connected fuzzy graph on $G^{*}:(V, E)$. Then G is said to be a neighbourly irregular fuzzy graph if every two adjacent vertices of G have distinct degrees [1].

Definition 2.9. If every two adjacent vertices of a fuzzy graph $G:(\sigma, \mu)$ have distinct total degrees, then G is said to be a neighbourly total irregular fuzzy graph [1].

Definition 2.10. Let $G:(\sigma, \mu)$ be a fuzzy graph. The d_{2}-degree of a vertex u in G is $d_{2}(u)=$ $\sum \mu^{2}(u, v)$, where $\mu^{2}(u, v)=\sup \left\{\mu\left(u, u_{1}\right) \wedge \mu\left(u_{1}, v\right): u, u_{1}, v\right.$ is a shortest path of length of 2$\}$. Also $\mu(u v)=0$, for $u v$ not in $E[5]$.

Definition 2.11. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If $d_{2}(u)=k$ for all $u \in V$, then G is said to be a $(2, k)$-regular fuzzy graph [5].

Definition 2.12. Let $G:(\sigma, \mu)$ be fuzzy graph on $G^{*}:(V, E)$. The total d_{2}-degree of a vertex $u \in V$ is defined as $t d_{2}(u)=\sum \mu^{2}(u, v)+\sigma(u)=d_{2}(u)+\sigma(u)[5]$.

Definition 2.13. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If $d(u)=r$ and $d_{2}(u)=k$, for all $u \in V$, then G is said to be a $(r, 2, k)$-regular fuzzy graph [6].

Definition 2.14. If each vertex of G has the same total degree r and total d_{2}-degree k, then G is said to be a totally $(r, 2, k)$ - regular fuzzy graph [6].

Definition 2.15. Let $G:(\sigma, \mu)$ be a connected fuzzy graph on $G^{*}:(V, E)$. Then G is said to be a 2-neighbourly irregular fuzzy graph if every two adjacent vertices of G have distinct d_{2}-degrees [7].

Definition 2.16. If every two adjacent vertices of a fuzzy graph $G:(\sigma, \mu)$ on $G^{*}:(V, E)$ have distinct total d_{2}-degrees, then G is said to be a 2 -neighbourly totally irregular fuzzy graph [7].

$3 \quad d_{m}$-degree and total d_{m}-degree of a Vertex in Fuzzy Graph

In this section, we define d_{m}-degree of a vertex in Fuzzy Graph and Total d_{m}-degree of a vertex in Fuzzy Graph[8].

Definition 3.1. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The d_{m}-degree of a vertex u in G is $d_{m}(u)=\sum \mu^{m}(u v)$, where $\mu^{m}(u v)=\sup \left\{\mu\left(u u_{1}\right) \wedge \mu\left(u_{1} u_{2}\right) \wedge \ldots, \mu\left(u_{m-1} v\right):\right.$ $u, u_{1}, u_{2}, \ldots, u_{m-1}, v$ is the shortest path connecting u and v of length $\left.m\right\}$. Also, $\mu(u v)=0$, for $u v$ not in E.
The minimum d_{m}-degree of G is $\delta_{m}(G)=\wedge\left\{d_{m}(v): v \in V\right\}$.
The maximum d_{m}-degree of G is $\Delta_{m}(G)=\vee\left\{d_{m}(v): v \in V\right\}[8]$.
Example 3.2. Consider $G^{*}:(V, E)$ where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}\right.$, $\left.u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{6}, u_{6} u_{7}, u_{7} u_{1}\right\}$. Define $G:(\sigma, \mu)$ by $\sigma\left(u_{1}\right)=0.1, \sigma\left(u_{2}\right)=0.2, \sigma\left(u_{3}\right)=0.3, \sigma\left(u_{4}\right)=$ $0.4, \sigma\left(u_{5}\right)=0.5, \sigma\left(u_{6}\right)=0.6, \sigma\left(u_{7}\right)=0.7$ and $\mu\left(u_{1} u_{2}\right)=0.1, \mu\left(u_{2} u_{3}\right)=0.2, \mu\left(u_{3} u_{4}\right)=$

$$
\begin{aligned}
& 0.3, \mu\left(u_{4} u_{5}\right)=0.4, \mu\left(u_{5} u_{6}\right)=0.5, \sigma\left(u_{6} u_{7}\right)=0.6, \sigma\left(u_{7} u_{1}\right)=0.1 \\
& d_{3}\left(u_{1}\right)=\{0.1 \wedge 0.2 \wedge 0.3\}+\{0.1 \wedge 0.6 \wedge 0.5\}=0.1+0.1=0.2 \\
& d_{3}\left(u_{2}\right)=\{0.2 \wedge 0.3 \wedge 0.4\}+\{0.1 \wedge 0.1 \wedge 0.6\}=0.2+0.1=0.3 . \\
& d_{3}\left(u_{3}\right)=\{0.3 \wedge 0.4 \wedge 0.5\}+\{0.2 \wedge 0.1 \wedge 0.1\}=0.3+0.1=0.4 . \\
& d_{3}\left(u_{4}\right)=\{0.4 \wedge 0.5 \wedge 0.6\}+\{0.3 \wedge 0.2 \wedge 0.1\}=0.4+0.1=0.5 \\
& d_{3}\left(u_{5}\right)=\{0.5 \wedge 0.6 \wedge 0.1\}+\{0.4 \wedge 0.3 \wedge 0.2\}=0.1+0.2=0.3 \\
& d_{3}\left(u_{6}\right)=\{0.5 \wedge 0.4 \wedge 0.3\}+\{0.6 \wedge 0.1 \wedge 0.1\}=0.3+0.1=0.4 . \\
& d_{3}\left(u_{7}\right)=\{0.6 \wedge 0.5 \wedge 0.4\}+\{0.1 \wedge 0.1 \wedge 0.2\}=0.4+0.1=0.5
\end{aligned}
$$

Definition 3.3. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The total d_{m}-degree of a vertex $u \in V$ is defined as $t d_{m}(u)=\sum \mu^{m}(u v)+\sigma(u)=d_{m}(u)+\sigma(u)$.
The minimum $t d_{m}$-degree of G is $\operatorname{t} \delta_{m}(G)=\wedge\left\{t d_{m}(v): v \in V\right\}$.
The maximum $t d_{m}$-degree of G is $\mathrm{t} \Delta_{m}(G)=\vee\left\{t d_{m}(v): v \in V\right\}[8]$.
Example 3.4. Fuzzy graph given in above example 3.2, we have

$$
\begin{aligned}
t d_{3}\left(u_{1}\right) & =d_{3}\left(u_{1}\right)+\sigma\left(u_{1}\right)=0.2+0.1=0.3 . \\
t d_{3}\left(u_{2}\right) & =d_{3}\left(u_{2}\right)+\sigma\left(u_{2}\right)=0.3+0.2=0.5 . \\
t d_{3}\left(u_{3}\right) & =d_{3}\left(u_{3}\right)+\sigma\left(u_{3}\right)=0.4+0.3=0.7 . \\
t d_{3}\left(u_{4}\right) & =d_{3}\left(u_{4}\right)+\sigma\left(u_{4}\right)=0.5+0.4=0.9 . \\
t d_{3}\left(u_{5}\right) & =d_{3}\left(u_{5}\right)+\sigma\left(u_{5}\right)=0.3+0.5=0.8 . \\
t d_{3}\left(u_{6}\right) & =d_{3}\left(u_{6}\right)+\sigma\left(u_{6}\right)=0.4+0.6=1.0 \\
t d_{3}\left(u_{7}\right) & =d_{3}\left(u_{7}\right)+\sigma\left(u_{7}\right)=0.5+0.7=1.2 .
\end{aligned}
$$

4 - Neighbourly irregular fuzzy graph and m - Neighbourly totally irregular fuzzy graph.

In this section, we define m-neighbourly irregular fuzzy graphs and m-neighbourly totally irregular fuzzy graphs and campared through various examples. The neccessary and sufficient condition under which they are equivalent is provided.

Definition 4.1. Let $G:(\sigma, \mu)$ be a connected fuzzy graph on $G^{*}:(V, E)$. Then G is said to be an m - neighbourlyirregular fuzzy graph if every pair of adjacent vertices of G have distinct d_{m}-degrees.

Definition 4.2. If every pair of adjacent vertices of a fuzzy graph $G:(\sigma, \mu)$ have distinct total $d_{m^{-}}$degrees, then G is said to be an m - neighbourly totally irregular fuzzy graph.

Definition 4.3. Let $G:(\sigma, \mu)$ be a connected fuzzy graph on $G^{*}:(V, E)$. Then G is said to be a 3- neighbourly irregular fuzzy graph if every pair of adjacent vertices of G have distinct d_{3}-degrees.

Definition 4.4. If every pair of adjacent vertices of a fuzzy graph $G:(\sigma, \mu)$ have distinct total $d_{3^{-}}$degrees, then G is said to be a 3 - neighbourly totally irregular fuzzy graph.

Example 4.5. Consider $G^{*}:(V, E)$, where $V=\{u, v, w, x, y, z\}$ and $E=\{u v, v w, w x, x y, y z, z u\}$.

Figure 1: A 3-neighbourly irregular as well as 3 -neighbourly totally irregular fuzzy graph.

$$
\begin{aligned}
d_{3}(u) & =\operatorname{Sup}\{0.1 \wedge 0.2 \wedge 0.3,0.4 \wedge 0.5 \wedge 0.4\}=\operatorname{Sup}\{0.1,0.4\}=0.4 . \\
d_{3}(v) & =\operatorname{Sup}\{0.2 \wedge 0.3 \wedge 0.4,0.1 \wedge 0.4 \wedge 0.5\}=\operatorname{Sup}\{0.2,0.1\}=0.2 . \\
d_{3}(w) & =\operatorname{Sup}\{0.3 \wedge 0.4 \wedge 0.5,0.2 \wedge 0.1 \wedge 0.4\}=\operatorname{Sup}\{0.3,0.1\}=0.3 . \\
d_{3}(x) & =\operatorname{Sup}\{0.4 \wedge 0.5 \wedge 0.4,0.3 \wedge 0.2 \wedge 0.1\}=\operatorname{Sup}\{0.4,0.1\}=0.4 . \\
d_{3}(y) & =\operatorname{Sup}\{0.5 \wedge 0.4 \wedge 0.1,0.4 \wedge 0.3 \wedge 0.2\}=\operatorname{Sup}\{0.1,0.2\}=0.2 . \\
d_{3}(z) & =\operatorname{Sup}\{0.4 \wedge 0.1 \wedge 0.2,0.5 \wedge 0.4 \wedge 0.3\}=\operatorname{Sup}\{0.1,0.3\}=0.3 .
\end{aligned}
$$

Note that in Figure 1, $d_{3}(u)=0.4, d_{3}(v)=0.2, d_{3}(w)=0.3, d_{3}(x)=0.4, d_{3}(y)=0.2, d_{3}(z)=$ 0.3 . Hence G is 3 -neighbourly irregular fuzzy graph.

Now, we calculate total d_{3}-degree of all the vertices of G.

$$
\begin{aligned}
t d_{3}(u) & =d_{3}(u)+\sigma(u)=0.4+0.4=0.8 . \\
t d_{3}(v) & =d_{3}(v)+\sigma(v)=0.2+0.2=0.4 . \\
t d_{3}(w) & =d_{3}(w)+\sigma(w)=0.3+0.3=0.6 . \\
t d_{3}(x) & =d_{3}(x)+\sigma(x)=0.4+0.4=0.8 . \\
t d_{3}(y) & =d_{3}(y)+\sigma(y)=0.2+0.5=0.7 . \\
t d_{3}(z) & =d_{3}(z)+\sigma(z)=0.3+0.6=0.9
\end{aligned}
$$

It is noted that $t d_{3}(u)=0.8, t d_{3}(v)=0.4, t d_{3}(w)=0.6, t d_{3}(x)=0.8$ and $t d_{3}(y)=$ $0.7, t d_{3}(z)=0.9$. Hence G is both 3 -neighbourly irregular fuzzy graph and 3 -neighbourly totally irregular fuzzy graph.

Example 4.6. An m-neighbourly totally irregular fuzzy graph G need not be m-neighbourly irregular fuzzy graph. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$, such that $d_{m}(v)=k$, for all v in G. So, G is not an m-neighbourly irregular graph. If no two vertices of G have same membershiph value, then G is an m-neighbourly totally irregular graph.

Example 4.7. An m-neighbourly irregular fuzzy graph G need not be an m-neighbourly totally irregular fuzzy graph. For example, let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$ which is $\operatorname{Sub}\left(B_{2,2}\right)$.

Figure 2: A 3-neighbourly irregular but not 3-neighbourly totally irregular fuzzy graph.
Note that in Figure 2, $d_{3}\left(v_{1}\right)=0.5, d_{3}\left(w_{1}\right)=0.4, d_{3}(x)=0.5, d_{3}\left(w_{2}\right)=0.4, d_{3}\left(v_{2}\right)=0.2, d_{3}(s)=$ $0.8, d_{3}(y)=0.5, d_{3}\left(t_{1}\right)=0.4, d_{3}\left(u_{1}\right)=0.2, d_{3}\left(t_{2}\right)=0.4, d_{3}\left(u_{2}\right)=0.5$. Hence $d_{3}\left(v_{i}\right) \neq d_{3}\left(w_{i}\right)$, $(i=1,2) ; d_{3}\left(w_{i}\right) \neq d_{3}(x),(i=1,2) ; d_{3}(x) \neq d_{3}(s), d_{3}(s) \neq d_{3}(y), d_{3}\left(t_{i}\right) \neq d_{3}(y),(i=1,2)$ and $d_{3}\left(t_{i}\right) \neq d_{3}\left(u_{i}\right),(i=1,2)$. Hence G is a 3 -neighbourly irregular fuzzy graph. But $t d_{3}\left(v_{1}\right)=1.1, t d_{3}\left(w_{1}\right)=1.2, t d_{3}(x)=1, t d_{3}\left(w_{2}\right)=1, t d_{3}\left(v_{2}\right)=0.6, t d_{3}(s)=1.4, t d_{3}(y)=$ $1.2, t d_{3}\left(t_{1}\right)=1.2, t d_{3}\left(t_{2}\right)=1.2 t d_{3}\left(u_{1}\right)=0.8 \operatorname{andtd}_{3}\left(u_{2}\right)=1.1$. Hence $t d_{3}(x)=t d_{3}\left(w_{2}\right)$, and $t d_{3}\left(t_{i}\right)=t d_{3}(y),(i=1,2)$. Hence the fuzzy graph G is not a 3-neighbourly totally irregular.

Theorem 4.8. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If σ is a constant function, then G is an m-neighbourly totally irregular fuzzy graph if and only if G is an m-neighbourly irregular fuzzy graphs(m, a positive integer).

Proof: Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. Let u and v be any pair of adjacent vertices in the fuzzy graph $G:(\sigma, \mu)$. Let $G:(\sigma, \mu)$ be an m-neighbourly irregular fuzzy graph. Then the d_{m}-degree of every pair of adjacent vertices are distinct. This implies that $d_{m}(u)=k_{1}$ and $d_{m}(v)=k_{2}$, where $k_{1} \neq k_{2}$ and $\sigma(u)=\sigma(v)=c$, a constant where $c \in[0,1]$.
Now, $d_{m}(u) \neq d_{m}(v) \Rightarrow k_{1} \neq k_{2} \Rightarrow k_{1}+c \neq k_{2}+c \Rightarrow d_{m}(u)+\sigma(u) \neq d_{m}(v)+\sigma(v) \Rightarrow t d_{m}(u) \neq$ $t d_{m}(v)$.
Then $t d_{m}(u) \neq t d_{m}(v)$. Hence any two adjacent vertices u and v with distinct $d_{m^{-}}$degrees have their total d_{m} - degrees distinct, provided σ is a constant function. This is true for every pair of adjacent vertices in G.
Conversely, let $G:(\sigma, \mu)$ be an m-neighbourly totally irregular fuzzy graph. Then the total $d_{m^{-}}$degrees of every pair of adjacent vertices are distinct. Let u and v be pair of adjacent vertices with d_{m} - degrees k_{1} and k_{2}. Then $d_{m}(u)=k_{1}$ and $d_{m}(v)=k_{2}$.
Given that $\sigma(u)=\sigma(v)=c$, a constant where $c \in[0,1]$ and $t d_{m}(u) \neq t d_{m}(v)$. Hence, $t d_{m}(u) \neq t d_{m}(v) \Rightarrow d_{m}(u)+\sigma(u) \neq d_{m}(v)+\sigma(v) \Rightarrow k_{1}+c \neq k_{2}+c \Rightarrow k_{1} \neq k_{2} \Rightarrow d_{m}(u) \neq d_{m}(v)$. Hence any pair of adjacent vertices u and v with distinct total d_{m}-degrees have their d_{m}-degrees
distinct, provided σ is a constant function. This is true for every pair of adjacent vertices in G.

5 m -Neighbourly irregular fuzzy graph on a cycle with some specific membership functions

Theorems 5.1 and 5.3 provide m-neighbourly irregularity on fuzzy graph $G:(\sigma, \mu)$ on a cycle $G^{*}:(V, E)$.

Theorem 5.1. Let $G:(\sigma, \mu)$ be a fuzzy graph on a cycle $G^{*}:(V, E)$ of length $2 m+1$. If the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ are respectively $c_{1}, c_{2}, c_{3}, c_{4}, \ldots, c_{2 m+1}$ such that $c_{1}<c_{2}<c_{3}<\cdots<c_{2 m+1}$, then G is an m-neighbourly irregular fuzzy graph.

Proof: Let $G:(\sigma, \mu)$ be a fuzzy graph on a cycle $G^{*}:(V, E)$ of length $2 m+1$.
Let $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ be the edges of the cycle G^{*} in that order. Let the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ be $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m+1}$ such that $c_{1}<c_{2}<c_{3}<\cdots<c_{2 m+1}$. $d_{m}\left(v_{1}\right)=c_{1}+c_{m+2}$.
For, $i=2,3,4,5, \ldots, m+1$
$d_{m}\left(v_{i}\right)=c_{i}+c_{1}$.
$d_{m}\left(v_{m+2}\right)=c_{2}+c_{m+2}$.
For, $i=m+3, m+4, m+5, \ldots, 2 m+1$
$d_{m}\left(v_{i}\right)=c_{i-m}+c_{1}$.
Hence G is an m - neighbourly irregular fuzzy graph.
Remark 5.2. Even if the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m+1}$ such that $c_{1}<c_{2}<c_{3}<\cdots<c_{2 m+1}$, then G need not be an m - neighbourly totally irregular fuzzy graphs.

Theorem 5.3. Let $G:(\sigma, \mu)$ be a fuzzy graph on a cycle $G^{*}:(V, E)$ of length $2 m+1$. If the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ are respectively $c_{1}, c_{2}, c_{3}, c_{4} \ldots, c_{2 m+1}$ such that $c_{1}>c_{2}>c_{3}>\cdots>c_{2 m+1}$, then G is an m-neighbourly irregular fuzzy graph.

Proof: Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$ of length $2 m+1$. Let $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ be the edges of the cycle G^{*} in that order.

Let the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ be respectively $c_{1}, c_{2}, c_{3}, \ldots$, $c_{2 m+1}$ such that $c_{1}>c_{2}>c_{3}>\ldots,>c_{2 m+1}$.

$$
\begin{array}{ll}
\text { For }, i & =1,2,3,4,5, \ldots, m \\
d_{m}\left(v_{i}\right) & =c_{m+i-1}+c_{2 m+1} . \\
d_{m}\left(v_{m+1}\right) & =c_{m}+c_{2 m} . \\
\text { For }, i & =m+2, m+3, m+4, m+5, \ldots, 2 m+1 \\
d_{m}\left(v_{i}\right) & =c_{i-1}+c_{2 m+1} .
\end{array}
$$

Hence G is an m-neighbourly irregular fuzzy graph.

Remark 5.4. Even if the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m+1}$ such that $c_{1}>c_{2}>c_{3}>\cdots>c_{2 m+1}$, then G need not be an m-neighbourly totally irregular fuzzy graph.

Remark 5.5. Let $G:(\sigma, \mu)$ be a fuzzy graph on a cycle $G^{*}:(V, E)$ of length $2 m+1$. If the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m+1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m+1}$ and are distinct then G need not be an m-neighbourly irregular fuzzy graph.

6 m-Neighbourly irregular fuzzy graph on a path on 2 m vertices with specific membership functions

Theorem 7.1 provides a condition for m-neighbourly irregularity on fuzzy graph $G:(\sigma, \mu)$ on a path $G^{*}:(V, E)$ on $2 m$ vertices.

Theorem 6.1. Let $G:(\sigma, \mu)$ be a fuzzy graph on a path $G^{*}:(V, E)$ on $2 m$ vertices. If the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m-1}$ such that $c_{1}<c_{2}<c_{3}<\cdots<c_{2 m-1}$, then G is an m-neighbourly irregular fuzzy graph.

Proof: Let $G:(\sigma, \mu)$ be a fuzzy graph on a path $G^{*}:(V, E)$ on $2 m$ vertices. Let $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ be the edges of the path G^{*} in that order. Let membership value of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ be respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m-1}$ such that $c_{1}<c_{2}<c_{3}, \ldots,<c_{2 m-1}$.
For, $i=1,2,3,4,5, \ldots, m$
$d_{m}\left(v_{i}\right)=\left\{\mu\left(e_{i}\right) \wedge \mu\left(e_{i+1}\right) \wedge \ldots \mu\left(e_{i+m-2}\right) \wedge \mu\left(e_{i+m-1}\right)\right\}$
$d_{m}\left(v_{i}\right)=\left\{c_{i} \wedge c_{i+1} \wedge \ldots c_{i+m-2} \wedge c_{i+m-1}\right\}$
$=c_{i}$.
For, $i=m+1, m+2, m+3 \ldots, 2 m$
$d_{m}\left(v_{i}\right)=\left\{\mu\left(e_{i-1}\right) \wedge \mu\left(e_{i-2}\right) \ldots \mu\left(e_{i-(m-1)} \wedge \mu\left(e_{i-m}\right)\right\}\right.$
$d_{m}\left(v_{i}\right)=\left\{c_{i-1} \wedge c_{i-2} \ldots c_{i-(m-1)} \wedge c_{i-m}\right\}$
$=c_{i-m}$
Hence G is an m-neighbourly irregular fuzzy graph.

Remark 6.2. Even if the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ are respectively $c_{1}, c_{2}, c_{3}, c_{4} \ldots, c_{2 m-1}$ such that $c_{1}<c_{2}<c_{3}<\cdots<c_{2 m-1}$, then G need not be an m neighbourly totally irregular fuzzy graph.

Theorem 6.3. Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$, a path on $2 m$ vertices. If the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m-1}$ such that $c_{1}>c_{2}>c_{3}>\ldots,>c_{2 m-1}$, then G is an m-neighbourly irregular fuzzy graph.

Proof: Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$, a path on n vertices. Let $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ be the edges of the path G^{*} in that order. Let membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$

```
are respectively \(c_{1}, c_{2}, c_{3}, \ldots, c_{2 m-1}\) such that \(c_{1}>c_{2}>c_{3}>\cdots>c_{2 m-1}\).
For, \(i=1,2,3,4,5, \ldots, m\)
\(d_{m}\left(v_{i}\right)=\left\{\mu\left(e_{i}\right) \wedge \mu\left(e_{i+1}\right) \wedge \ldots \mu\left(e_{i+m-2}\right) \wedge \mu\left(e_{i+m-1}\right)\right\}\)
\(d_{m}\left(v_{i}\right)=\left\{c_{i} \wedge c_{i+1} \wedge \ldots c_{i+m-2} \wedge c_{i+m-1}\right\}\)
    \(=c_{i+m-1}\).
For, \(i=m+1, m+2, m+3 \ldots, 2 m\)
\(d_{m}\left(v_{i}\right)=\left\{\mu\left(e_{i-1}\right) \wedge \mu\left(e_{i-2}\right) \ldots \mu\left(e_{i-(m-1)} \wedge \mu\left(e_{i-m}\right)\right\}\right.\)
\(d_{m}\left(v_{i}\right)=\left\{c_{i-1} \wedge c_{i-2} \ldots c_{i-(m-1)} \wedge c_{i-m}\right\}\)
    \(=c_{i-1}\)
```

Hence G is an m-neighbourly irregular fuzzy graph.
Remark 6.4. Even if the membership values of the edges $e_{1}, e_{2}, e_{3}, \ldots, e_{2 m-1}$ are respectively $c_{1}, c_{2}, c_{3}, \ldots, c_{2 m-1}$ such that $c_{1}>c_{2}>c_{3}>\ldots,>c_{2 m-1}$, then G need not be an m-neighbourly totally irregular fuzzy graph.

Acknowledgement: This work is supported by F.No:4-4/2014-15, MRP- 5648/15 of the University Grant Commission, SERO, Hyderabad.

References

[1] A. Nagoor Gani and S. R. Latha, On Irregular Fuzzy graphs,Applied Mathematical Sciences, 6(2012), 517-523.
[2] A. Nagoor Gani and K. Radha, On Regular Fuzzy graphs, Journal of Physical Science, 12(2008), 33-40.
[3] A. Rosenfeld, Fuzzy Graphs, In:L.A.Zadeh,K.S.Fu, M.Shimura,Eds., Fuzzy Sets and Their Applications, Academic press (1975), 77-95.
[4] N. R. Santhi Maheswari and C. Sekar, Semi Neighbourly Irregular graphs, International Journal of Combinatorial Graph Theory and Applications, 5(2) (2012), 135-144.
[5] N. R. Santhi Maheswari and C. Sekar, On ($2, k$)-regular fuzzy graphs and totally $(2, k)$-regular fuzzy graphs, International Journal of Mathematics and Soft Computing, 4(2)(2014), 59-69.
[6] N. R. Santhi Maheswari and C. Sekar, $(r, 2, k)$-regular fuzzy graphs, accepted in JCMCC.
[7] N. R. Santhi Maheswari and C. Sekar, 2-Neighbourly Irregular fuzzy graphs, accepted in Utilitas.
[8] N. R. Santhi Maheswari and C. Sekar, A Study on Distance d-regular and Neighbourly Irregular fuzzy graphs, Ph.D Thesis Manonmaniam Sundaranar University, Tirunelveli (2014) (Submitted)

