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Abstract

Eternal 1-secure set of a graph G = (V, E) is defined as a set S0 ⊆ V that can defend
against any sequence of single-vertex attacks by means of single guard shifts along edges of
G. That is, for any k and any sequence v1, v2, . . . , vk of vertices, there exists a sequence
of guards u1, u2, . . . , uk with ui ∈ Si−1 and either ui = vi or uivi ∈ E, such that each set
Si = (Si−1 − {ui}) ∪ {vi} is dominating. It follows that each Si can be chosen to be an
eternal 1-secure set. The eternal 1-security number, denoted by σ1(G), is defined as the
minimum cardinality of an eternal 1-secure set. The Eternal m-security number σm(G) is
defined as the minimum number of guards to handle an arbitrary sequence of single attacks
using multiple-guard shifts. In this paper we characterize the class of trees and split graphs
for which σm(G) = γ(G). We also characterize the class of trees, unicyclic graphs and split
graphs for which σm(G) = β(G).
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1 Introduction

Burger et al. [2, 3], introduced a dynamic form of domination which has been designated
eternal security by Goddard et al. [6]. The concept calls for a fixed number of guards which are
positioned on the vertices of a graph G = (V, E), at most one to a vertex. A guard on a vertex
w can respond to an attack at a vertex v by moving along an edge from w to v (assuming v

does not already have a guard). Informally, if such a response can be made no matter what
vertex is attacked and if the changing position of the guards can continue to respond forever,
we say that the guards form an eternally secure set.

Two versions of the eternal security problem were considered. In the first version, which they
call 1-security, only one guard moves in response to an attack; in the second, which they call
m-security all guards can move in response to an attack. The first version was introduced by
Burger et al. [2, 3], though being able to withstand two attacks with a single-guard movement

115



116 P. Roushini Leely Pushpam and G. Navamani

was explored in [4, 5, 10–12]. On the other hand, the idea that all guards may move in response
to an attack appears to have been considered only in [12].

They defined an eternal 1-secure set of a graph G = (V, E) as a set S0 ⊆ V that can defend
against any sequence of single-vertex attacks by means of single-guard shifts along the edges
of G. That is, for any k and any sequence v1, v2, . . . , vk of vertices, there exists a sequence
of guards u1, u2, . . . , uk with ui ∈ Si−1 and either ui = vi or uivi ∈ E, such that each set
Si = (Si−1 − {ui}) ∪ {vi} is dominating. It follows that each Si can be chosen to be an eternal
1-secure set. They defined the eternal 1-security number, denoted by σ1(G), as the minimum
cardinality of an eternal 1-secure set. This parameter was introduced by Burger et al. [3] using
the notation γ∞.

In order to reduce the number of guards needed for eternal security, consider allowing more
guards to move. Suppose that in responding to each attack, every guard may shift along an
incident edge. The eternal m-security number σm(G) is defined as the minimum number of
guards to handle an arbitrary sequence of single attacks using multiple-guard shifts. A suitable
placement of the guards is called an eternal m-secure set, call such a set a σm-set of G. They
observed that σm(G) ≤ σ1(G), for all graphs G.

A set S is a dominating set if N [S] = V (G) or equivalently, every vertex in V −S is adjacent
to at least one vertex in S. The domination number γ(G) is the minimum cardinality of a
dominating set in G, and a dominating set S of minimum cardinality is called a γ-set of G. A
set S is a 2-dominating set if every vertex in V − S is dominated by at least two vertices in S.
The minimum cardinality of a 2-dominating set is called the 2-domination number γ2(G). A
set S of vertices is called independent if no two vertices in S are adjacent. The independence
number β(G) is the maximum cardinality of a independent set in G.

Wayne Goddard et al. [6] have proved that γ(G) and β(G) are lower and upper bounds
of σm(G) respectively for any graph G. They have also proved that the 2-domination number
γ2(G) of a graph is also an upper bound for σm(G). Further they have found the value of
σm(G) when G is a path, cycle, complete graph, and complete bipartite graph. In [13] we have
obtained specific values of σm(G) for certain classes of graphs, namely, grid graphs, binary trees,
caterpillars, circulant graphs and generalized Petersen graphs. More results related to these
parameters σ1(G) and σm(G) are found in [1, 8, 9]. Wayne Goddard et al. [6] also have proved
that σm(G) = γ(G) when G is a Cayley graph and they have mentioned that σm(G) = γ(G)
is probably true for any vertex transitive graph. In this paper we give an example to disprove
this statement. Further we characterize trees and split graphs for which σm(G) = γ(G). We
also characterize trees, unicylic graphs and split graphs for which σm(G) = β(G).
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2 Notations

Let G = (V, E) be a simple and connected graph of order |V | = n. For graph theoretic
terminology we refer to Harary [7]. For any vertex v ∈ V , the open neighbourhood of v is the
set N(v) = {u ∈ V : uv ∈ E} and the closed neighbourhood is the set N [v] = N(v) ∪ {v}. For
a set S ⊆ V , the open neighbourhood is N(S) =

∪
v∈S

N(v) and the closed neighbourhood is

N [S] = N(S) ∪ S. The external private neighbourhood epn(v, S) of a vertex v ∈ S is defined by
epn(v, S) = {u ∈ V − S : N(u) ∩ S = {v}}. For any graph G, δ(G) = min{deg v : v ∈ V (G)}
and ∆(G) = max{deg v : v ∈ V (G)}.

A vertex of degree one in a graph is a pendant vertex. A vertex of G adjacent to pendant
vertices is called a support. We call a support vertex adjacent to exactly one pendant vertex a
weak support and a support vertex adjacent to at least two pendant vertices a strong support.

A unicylic graph is a graph with exactly one cycle. A connected graph having no cycle is
called a tree. A rooted tree is a tree in which one of the vertices is distinguished from others.
The distinguished vertex is called the root of the tree.

A graph G is k-partite, k ≥ 1 if it is possible to partition V (G) into k subsets V1, V2, . . . , Vk

(called partite set) such that every element of E(G) joins a vertex of Vi to a vertex of Vj , i ̸= j.
If G is a 1-partite graph of order n, then G = Kn. For k = 2, such graphs are called bipartite
graphs.

A split graph is a graph G, whose vertices can be partitioned into X and Y , where the
vertices in X are independent and the vertices in Y form a complete graph. For v ∈ Y , NX(v)
denotes the neighbours of v in X.

A graph G is vertex-transitive if and only if for any two vertices u and v of G, there exists
an automorphism ϕ of G such that ϕ (u) = v.

3 Eternal m-Security on Petersen Graph

Wayne Goddard et al. [6] have mentioned that σm(G) = γ(G) is probably true for every
vertex-transitive graph. Here we prove that for the Petersen graph G, which is a vertex transitive
graph, σm(G) > γ(G).

Theorem 3.1. For the Petersen graph G, σm(G) > γ(G).

Proof: Consider the Petersen graph G. Let ui, vi, 1 ≤ i ≤ 5 be the vertices on the inner and
outer cycles of G respectively. We know that γ(G) = 3 and any γ-set of G contains either 2
vertices from the inner cycle and 1 vertex from the outer cycle or 2 vertices from the outer cycle
and 1 vertex from the inner cycle.

Without loss of generality, let S = {v4, u1, u2} be a γ-set of G. Here u4 ∈ V − S is a
non-private neighbour of S. If there is an attack at u4, then the guard at either v4 or u1 or u2
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responds to it. In each case, there are two possibilities of movements of guards. We list the
possibilities in each case separately.

v1

v2v3

v4

u3

u4

u5

v5

u2

u1

Figure 1: Petersen Graph with σm(G) > γ(G).

Case (i): The guard at v4 moves to u4.
(a) v4 → u4, u1 → v1, u2 → v2.
(b) v4 → u4, u1 → u3, u2 → v2.
In (a), u3 and u5 are left undefended whereas in (b), v5 is undefended.
(By an undefended vertex we mean a vertex which is neither equipped with a guard nor adjacent
to a vertex which is equipped with a guard).
Case (ii): The guard at u1 moves to u4.
(a) u1 → u4, v4 → v5, u2 → v2.
(b) u1 → u4, v4 → v3, u2 → u5.
In (a), u3 is left undefended and in (b), v1 is undefended.
Case (iii): The guard at u2 moves to u4.
(a) u2 → u4, u1 → v1, v4 → v3.
(b) u2 → u4, u1 → u3, v4 → v5.
In (a), u5 is left undefended and in (b), v1 is left undefended.

In all the above cases, we see that σm(G) > γ(G). In fact σm(G) = 4. To prove σm(G) = 4. G

contains two cycles C1 = (u1, u2, u3, u4, u5, u1) and C2 = (v1, v2, v3, v4, v5, v1) and we know that
σm(Cn) = ⌈n

3 ⌉. We have σm(C1) = ⌈5
3⌉ and σm(C2) = ⌈5

3⌉. Hence σm(G) = σm(C1)+σm(C2) =
⌈5

3⌉ + ⌈5
3⌉ = 4.

Remark 3.2. Let Gn be the graph obtained from the Petersen graph by expanding each vertex
to a complete graph Kn. Then Gn is a vertex-transitive graph with σm(Gn) > γ(Gn). Therefore
there exist infinitely many vertex-transitive graphs for which σm(G) > γ(G).

We give below a list of theorems proved by Wayne Goddard et al. [6] which will be useful
for our study.

Theorem 3.3. [6] For any graph G, γ(G) ≤ σm(G) ≤ β(G).
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Theorem 3.4. [6]

(a) σm(Kn) = 1

(b) σm(Kr,s) = 2 for r, s ≥ 1, r + s ≥ 3.

(c) σm(Pn) =
⌈

n
2

⌉
.

(d) σm(Cn) = γ(Cn) =
⌈

n
3

⌉
.

Theorem 3.5. [6] For any Cayley graph G, σm(G) = γ(G).

4 Graphs with σm(G) = γ(G)

First we prove that in a split graph G, σm(G) = γ(G) or σm(G) = γ(G) + 1.

Theorem 4.1. For any split graph G, σm(G) = γ(G) or σm(G) = γ(G) + 1.

Proof: Let G be a split graph with bipartition (X, Y ) with X is independent and G[Y ] is
complete and |X| = m and |Y | = n.

If deg(y) = n for each y ∈ Y then σm(G) = γ(G) = m. Otherwise, let S be any γ-set of G.
Then S ∩ Y ̸= ∅ and clearly |epn(v, S)| ≥ 1 for all v ∈ S ∩ Y . Further a member of S ∩ X and
a member of S ∩ Y cannot be adjacent. Suppose |epn(w, S)| ≥ 2 for some w ∈ S ∩ Y and if
there is an attack at z ∈ epn(w, S), then the guard at w responds to it whereas the members
of epn(w, S) − {z} are left undefended which implies that σm(G) > γ(G).

Suppose |epn(v, S)| = 1 for all v ∈ S ∩ Y . In this case, there exist at least two vertices
z1, z2 ∈ S ∩Y such that z1 and z2 have a common neighbour say z. Clearly z ̸∈ S. If there is an
attack at z, none of the members in S can respond to the attack, (since |epn(v, S)| = 1 for all
v ∈ S ∩ Y and z is a non-private neighbour of S) which implies that σm(G) > γ(G). Now, we
claim that σm(G) = γ(G) + 1. Choose a γ-set S such that S ⊆ Y . If S = Y then S′ = S ∪ {z}
is a σm-set of G for some z ∈ X. For, if there is an attack at some vertex x ∈ X, then the
guard at the vertex y ∈ Y which is adjacent to x responds to it. If z and y are adjacent, then
the guard at z moves to y. If z and y are not adjacent, then the guard at z moves to some
vertex w ∈ Y which is adjacent to z and the guard at w moves to y. Hence the guards in S′

can respond eternally to any sequence of attacks.
If S ⊂ Y then S′ = S ∪ {z} is a σm-set of G for some z ∈ Y − S. For, if there is an attack

at u ∈ Y ∩ (V − S′) then the guard at z responds to the attack and if there is an attack at
some member of epn(v, S) say v1,then the guard at v responds to the attack and the guard at
u moves to v to protect the rest of the external private neighbours of v. Further, if there is
a subsequent attack at another member of epn(v, S) (if any) then the guard at v responds to
the attack while the guard at v1 moves back to its original position (Refer figure 2). Hence the
guards in S′ can respond eternally to any sequence of attacks. Hence σm(G) = γ(G) + 1.
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uv
z

v1 vkv2 . . .

Figure 2: A Graph illustrating the proof of Theorem 4.1.

Now we characterize trees T , for which σm(T ) = γ(T ).

Theorem 4.2. For any tree T , σm(T ) = γ(T ) if and only if every vertex of degree at least two
is a weak support.

Proof: Suppose σm(T ) = γ(T ). Let S be any γ-set of T such that S contains all the supports
of T . Since σm(T ) = γ(T ), S is a σm-set of T . Let v ∈ V (T ) such that deg(v) > 1. If v is a
strong support of T , then clearly v ∈ S. Since S is a γ-set, for any z ∈ N(v) ∩ S, epn(z, S) ̸= ∅.
Hence, if there is an attack at a leaf say x adjacent to v then the guard at v responds to it
where as none of the guards at N(v) ∩ S can move to v in which case all the leaves other than
x adjacent to v are left undefended. Hence σm(G) > γ(G), a contradiction.

Now we claim that v is a weak support. Suppose not. Since deg(v) > 1, there exist two
vertices v1 and v2 which are adjacent to v. Suppose v ∈ S. Then we have the following cases.
Case (i): |epn(v, S)| ≥ 1.
If both v1, v2 ∈ epn(v, S) and there exists a vertex w ∈ S at a distance 2 from v2. Now, suppose
there is a sequence of attacks at v1 and v2 then the guard at v moves to v1 and the guard at
w moves two steps to respond to the attack at v2. Further there exists a (v2, z)- path say Q

in T such that deg(z) = 1 and the vertex adjacent to z in Q is of degree two and while the
guard at w responds to the attack at v2 and other guards at the vertices of (S ∩ Q) − {v} move
either one or two steps towards v2 which leaves the vertex z undefended which implies that
σm(T ) > γ(T ), a contradiction.

Suppose v1 ∈ epn(v, S) and v2 ̸∈ epn(v, S) and if there is a sequence of attacks at v1 and v2

then the guard at v moves to v1 and subsequently the guards at the vertices of S ∩ Q move one
step towards v2, which leaves z undefended. Hence σm(T ) > γ(T ), a contradiction.
Case (ii): epn(v, S) = ∅.
Suppose there is an attack at v1 and some member y (̸= v) in S with deg(y) > 1 has to respond
to this attack then as in Case (i),there exists a (v1, z′) - path say Q′ in T such that deg(z′) = 1
and the vertex adjacent to z′ in Q′ is of degree two and while the guard at y responds to the
attack at v1 and the other guards at the vertices of S ∩ Q′ move one step towards v1 which will
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leave z′ undefended, which implies that σm(T ) > γ(T ), a contradiction.
Now, if v has to respond to the attack at v1 and in addition if there is a second attack at

v2 then as in Case (i) the vertex z of Q is left undefended, a contradiction. Similarly if there
is an attack at v2 we get a contradiction. Hence v is a weak support. Converse of the theorem
is obvious.

5 Graphs with σm(G) = β(G)

In this section, we characterize the class of trees, unicyclic graphs and split graphs for which
σm(G) = β(G). For this purpose we first introduce two families of graphs T1 and T2 as follows.

Let G be a graph with δ(G) = 1. We prune the vertices of G as follows. Corresponding to
each support vertex u, remove u and exactly one pendant vertex adjacent to u. Let G′ be the
resulting graph. Again corresponding to each support vertex w, remove w and one pendant
vertex adjacent to w. Let G′′ be the resulting graph. Repeat the above process until no such
vertices remain. Let G∗ be the final graph.

Now we define a family T1 of trees as follows. A tree T ∈ T1 if either T ∗ = ∅ or T ∗ ∼= K1

where T ∗ is obtained from T as discussed above (Refer Figure 5). We also define a family
of unicyclic graphs T2 as follows. A unicyclic graph G ∈ T2 if either G∗ = ∅ or G∗ ∼= K1 or
G∗ ∼= Cn, n = 3, 4, 5 or 7 (Refer Figure 5).

Figure 3: A tree T ∈ T1.

Figure 4: A unicyclic graph G ∈ T2.
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Remark 5.1. We see that any graph G ∈ T1 ∪ T2 has at most one strong support with exactly
two leaves.

Theorem 5.2. For any tree T , σm(T ) = β(T ) if and only if T ∈ T1.

Proof: If T ∈ T1, then by placing guards at each of the pendant vertices of the different trees
obtained during the pruning and a guard at T ∗ when T ∗ ∼= K1, we see that these guards can
safeguard the corresponding pendant vertices and the neighbouring support vertices.

Let S be the set of all pendant vertices removed during the pruning, then S or S ∪ {w} is a
σm-set according as T ∗ = ∅ or T ∗ ∼= K1, V (K1) = {w}. Hence σm(T ) = β(T ).

Conversely, suppose σm(T ) = β(T ). Let T ∗ be the final tree obtained by pruning T succes-
sively as in the definition of T ∗. We claim that T ∗ = ∅ or T ∗ ∼= K1. Suppose not. Then T ∗

contains at least two vertices say x1 and x2. Let T1 be the graph obtained from T by deleting
the vertices x1 and x2. Now β(T1) = σm(T1) and β(T ) = β(T1) + 2.
Case (i): x1 and x2 have a common neighbour.

Let v ∈ N(x1) ∩ N(x2) then there exists a vertex z which is adjacent to v in some T1 such
that removal of v and z would have left x1 and x2 isolated. (Refer Figure 5). In this case

σm(T ) = σm(T1) + 1

≤ β(T1) + 1

≤ β(T ) − 2 + 1

≤ β(T ) − 1

Hence σm(T ) < β(T ).

Case (ii): x1 and x2 do not have a common neighbour.

v

z

x1 x2

Figure 5: A subtree of T illustrating Case (i) of Theorem 5.2.

Let P be the (v1, v2)-path in T , where v1, v2 are the neighbours of x1 and x2 respectively. Let
w1 and w2 be the vertices adjacent to v1 and v2 respectively in P . Clearly w1 and w2 are pruned
already (otherwise by case (i) we get a contradiction) (Refer figure 5).

Let S be any σm-set of T1. Further the length of P is an even number say k. Hence S

contains k/2 vertices of P . Without loss of generality, let v1, v2 ∈ S. Now either S′ = S ∪ {x1}
(or S ∪ {x2}) is a σm-set of T . For, if there is an attack at x2 (or x1), the guard at v2 (or v1)
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. . .

x1

v1 w1

x2

v2w2

Figure 6: A subtree of T illustrating Case (ii) of Theorem 5.2.

will respond to it and the other guards in S′ move in such a way that no vertex is undefended.
Hence σm(T ) = σm(T1) + 1. This implies that σm(T ) < β(T ). Hence in both the cases we get
a contradiction. So either T ∗ = ∅ or T ∗ ∼= K1. Hence T ∈ T1.

We need the following Lemma to characterize unicyclic graphs G for which σm(G) = β(G).

Lemma 5.3. For cycles Cn, σm(Cn) = β(Cn) iff n = 3, 4, 5, 7.

Proof: Proof follows from Theorem 3.4(d) and the fact that β(Cn) =
⌊

n
2

⌋
.

Theorem 5.4. For any unicyclic graph G with ∆(G) ≥ 3, σm(G) = β(G) if and only if
G ∈ T1 ∪ T2.

Proof: Let Cn = {v1, v2, . . . , vn, v1} be the unique cycle in G. Suppose G ∈ T1 ∪ T2.
Let S be the set of all pendant vertices removed during the pruning of G and let G∗ be the

resulting graph.
Case (i): If G∗ = ∅, then S is a σm-set of G.
Case (ii): If G∗ ∼= K1, then S ∪ {x} is a σm-set of G where V (K1) = {x}.
Case (iii): If G∗ ∼= Cn, n = 3, 4, 5, 7 then define

S′ =


S ∪ {v1} if n = 3

S ∪ {v1, v3} if n = 4, 5

S ∪ {v1, v3, v5} if n = 7.

Hence S′ is a σm-set of G. In all the above cases, we clearly see that the respective σm-sets are
the β-sets of G. Hence σm(G) = β(G).

Conversely, suppose σm(G) = β(G). We claim that either G∗ = ∅ or G∗ ∼= K1 or G∗ ∼= Cn,
n = 3, 4, 5, 7. Suppose not. Then either G∗ contains at least two vertices and does not have
a cycle or G∗ is a cycle Ck with k ̸= 3, 4, 5, 7. In the former case, as in the proof of Theorem
5.2, we get a contradiction. In the latter case, we see that by Lemma 5.3, σm(G∗) < β(G∗), a
contradiction.

Next we characterize split graphs for which σm(G) = β(G).
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For a split graph G with bipartition (X, Y ) where X is independent and G[Y ] is complete,
we define two families G1 and G2 as follows,

A split graph G ∈ G1 if each vertex in Y has at most one neighbour in X.
A split graph G ∈ G2 if the following conditions hold.

(i) deg(y) ≤ |Y | + 1 for every y ∈ Y .

(ii) If Y ′ = {y ∈ Y |deg(y) = |Y | + 1}, then Y ′ ̸= ∅ and for some vertex v ∈ Y ′, every vertex
in Y − {v} has exactly one neighbour in X − NX(v). If Y ′ has a support then v is so
chosen such that v is a support.

Theorem 5.5. Let G be a split graph with bipartition (X, Y ) where X is independent and
G[Y ] is complete. Then σm(G) = β(G) if and only if either G ∈ G1 or G ∈ G2.

Proof: Suppose either G ∈ G1 or G ∈ G2. If G ∈ G1 then each vertex in Y has at most one
neighbour in X. Hence, clearly σm(G) = β(G) = |X|, if deg(y) = |Y | for every y ∈ Y and
σm(G) = β(G) = |X| + 1, otherwise.

If G ∈ G2, let Y ′ = {y ∈ Y |deg(y) = |Y | + 1}. Now every vertex in Y − {v} has exactly one
neighbour in X − NX(v) where v ∈ Y ′ is a vertex as mentioned in the definition of G2. Hence
σm(G) = 2 + |X| − 2 = |X| = β(G).

Conversely, suppose σm(G) = β(G). If each vertex in Y has at most one neighbour in X,
then G ∈ G1. Otherwise, let Y ′ = {y ∈ Y |deg(y) = |Y | + 1}, clearly Y ′ ̸= ∅. Let v ∈ Y ′. If Y ′

has a support, then v is so chosen such that v is a support. Now we claim that each vertex in
Y − {v} has exactly one neighbour in X − NX(v).

In this case, either β(G) = |X| + 1 or |X| and σm(G) = 2 + k, k ≥ 0.
If β(G) = |X| + 1 then σm(G) ≤ 2 + |X| − 2 = |X|, which is a contradiction. If β(G) = |X|,

then σm(G) = β(G) which implies that k = |X| − 2. This is possible only when, each vertex in
Y − {v} has exactly one neighbour in X − NX(v). Hence G ∈ G2.
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