

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

Ascending domination decomposition of subdivision of graphs

K. Lakshmiprabha¹, K. Nagarajan²

¹Research Scholar Department of Mathematics, Sri S.R.N.M.College Sattur - 626 203, Tamil Nadu, India. prabhalakshmi95@gmail.com

² Department of Mathematics, Sri S.R.N.M.College Sattur - 626 203, Tamil Nadu, India. k_nagarajan_srnmc@yahoo.co.in

Abstract

In this paper, the two major fields of graph theory namely decomposition and domination are connected and new concept called Ascending Domination Decomposition (ADD) of a graph G is introduced. An ADD of a graph G is a collection $\psi = \{G_1, G_2, \ldots, G_n\}$ of subgraphs of G such that, each G_i is connected, every edge of G is in exactly one G_i and $\gamma(G_i) = i, 1 \leq i \leq n$. In this paper, we prove the subdivision of some standard graphs admit ADD.

Keywords: Domination, decomposition, ascending domination decomposition, subdivision of graphs.

AMS Subject Classification(2010): 05C69, 05C70.

1 Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and multiple edges. The order and size of a graph are denoted by p and q respectively. For terms not defined here we refer to Harary [3].

The theory of domination is one of the fast growing areas in graph theory, which has been investigated by Walikar et. al. [7]. A set $D \subseteq V$ of vertices in a graph G is a dominating set if every vertex v in V - D is adjacent to a vertex in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$.

Another important area in graph theory is decomposition of graphs. A decomposition of a graph G is a collection ψ of edge disjoint subgraphs G_1, G_2, \ldots, G_n of G such that every edge of G is in exactly one G_i . If each G_i is isomorphic to a subgraph H of G, then ψ is called a H-decomposition. Several authors studied various types of decompositions by imposing conditions on G_i in the decomposition.

Using these two concepts, we introduced the concept called Ascending Domination Decomposition (ADD) [5] of a graph which is motivated by the concepts of Ascending Subgraph Decomposition (ASD) and Continuous Monotonic Decomposition (CMD) of a graph. The concept of Ascending Subgraph Decomposition was introduced by Alavi et al [1]. **Definition 1.1.** A decomposition of G into subgraphs G_i (not necessarily connected) such that $|E(G_i)| = i$ and G_i is isomorphic to a proper subgraph of G_{i+1} is called an Ascending subgraph decomposition.

Now we define Ascending Domination Decomposition (ADD) as follows.

Definition 1.2. [5] An ADD of a graph G is a collection $\psi = \{G_1, G_2, \ldots, G_n\}$ of subgraphs of G such that

- (i) Each G_i is connected.
- (ii) Every edge of G is in exactly one G_i and
- (iii) $\gamma(G_i) = i, \ 1 \le i \le n.$

If a graph G has an ADD, we say that G admits ADD.

Example 1.3. A graph G and its ADD are given in Figure 1(a) and 1(b) respectively.

Figure 1(b): ADD $\{G_1, G_2, G_3\}$ of G given in Figure 1(a).

We proved K_p , W_p , $K_{m,k}$, P_p , C_p , path corona P_p^+ , cycle corona C_p^+ and star corona $K_{1,p-1}^+$ admit *ADD* with certain conditions in [5].

Definition 1.4. A subdivision of a graph G is a graph obtained by inserting a new vertex in each edge of G and is denoted by S(G).

Example 1.5. Subdivision of the complete graph on 5 vertices, $S(K_5)$ is given in Figure 2.

Figure 2: Subdivision graph $S(K_5)$.

Definition 1.6. The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

The following theorem is used to prove that the subdivision of a path admits ADD into n-parts.

Theorem 1.7. [5] A path P_p has an $ADD \ \psi = \{G_1, G_2, \dots, G_n\}$ if and only if $\frac{3n^2 - 3n + 2}{2} \le q \le \frac{3n^2 + n}{2}$.

First we see that the subdivision of a path admits ADD into n-parts.

Note 1.8. In general, if P_p admits ADD, then $S(P_p)$ need not admit ADD and vice - versa, because we cannot apply the range of q as in Theorem 1.7 to $S(P_p)$.

2 Main results

Theorem 2.1. Let P_p be a (p,q)- path. $S(P_p)$ has an $ADD \quad \psi = \{G_1, G_2, \dots, G_n\}$ if and only if $\frac{n^2+3n-8}{2} \leq q \leq \frac{n^2+5n-10}{2}$.

Proof: Let $P_p = v_1 v_2 v_3 \dots v_p$ be a path. Then $S(P_p) \cong P_{2p-1}$ has 2p-2 edges.

Suppose $S(P_p) \cong P_{2p-1}$ admits $ADD \ \psi = \{G_1, G_2, \dots, G_n\}$. From Theorem 1.7, P_p admits ADD if and only if $\frac{3n^2-3n+2}{2} \leq q \leq \frac{3n^2+n}{2}$. Now we can find the range of q if and only if $S(P_p)$ admits ADD.

From Note 1.8, we cannot apply the above range for q in P_p to 2q in $S(P_p)$. Hence using the range of q in P_p as in Theorem 1.7 to $S(P_p)$, we have the following possibilities for $S(P_p)$ to admit ADD, which is shown in Table 1.

No. of decompositions n	No. of edges in P_p	No. of edges in $S(P_p)$
1	1	2
2	2	4
	3	6
3	5	10
	6	12
	7	14
4	10	20
	11	22
	12	24
	13	26
5	16	32
	17	34
	18	36
	19	38
	20	40
6	23	46
	24	48
	25	50
	26	52
	27	54
	28	56
7	31	62
	32	64
	33	66
	34	68
	35	70
	36	72
	37	74

Table 1

We find the upper and lower bound of q for P_p such that $S(P_p)$ admits ADD, using Newton's forward difference table.

First we find the lower bound of q using Table 1.

n	q	Δq	$\Delta^2 q$	$\Delta^3 q$	
3	5				
		5			
4	10		1		
		6		0	
5	16		1		
		7		0	
6	23		1		
		8			
7	31				
$= n_0 + xh$					
= x	+3				
= n	-3				

Table 2

$$n = n_0 + xh$$

= x + 3
$$x = n - 3$$

$$q = q_0 + x \ \Delta q_0 + \frac{x(x-1)}{2!} \ \Delta^2 q_0 + \dots$$

= 5 + (n - 3) (5) + $\frac{(n-3)(n-4)}{2!}$ (1)
= $\frac{n^2 + 3n - 8}{2}$.

Next we find the upper bound of q using Table 1.

Table 3

n	q	Δq	$\Delta^2 q$	$\Delta^3 q$
3	7			
		6		
4	13		1	
		7		0
5	20		1	
		8		0
6	28		1	
		9		
7	37			

$$n = n_0 + xh$$

= x + 3
$$x = n - 3$$

$$q = q_0 + x \ \Delta q_0 + \frac{x(x-1)}{2!} \ \Delta^2 q_0 + \dots$$

= 7 + (n - 3)(6) + $\frac{(n-3)(n-4)}{2!}$ (1)
= $\frac{n^2 + 5n - 10}{2}$.

K. Lakshmiprabha and K. Nagarajan

We see that, if $S(P_p)$ an ADD, then $\frac{n^2+3n-8}{2} \le q \le \frac{n^2+5n-10}{2}$.

Conversely, suppose $S(P_p)$ does not admit ADD. Consider the upper bound for q as $q \leq \frac{n^2 + 5n - 10}{2}$. First we prove, if we add 1 or 2 edges to the upper bound for q, then it would not admit an ADD.

For, if $q = \frac{n^2 + 5n - 10}{2} + 1$ or $q = \frac{n^2 + 5n - 10}{2} + 2$, then we have extra 1 or 2 edges in any one or two $G_i's$. Then $\gamma(G_i) \neq i$ for one or two i's.

This gives a contradiction to our assumption that $q \leq \frac{n^2 + 5n - 10}{2}$.

Now, we prove, if we reduce 1 or 2 from the lower bound for $q\,,$ then it would not admit an $ADD\,.$

For, if we have $q = \frac{n^2+3n-8}{2} - 1$ or $q = \frac{n^2+3n-8}{2} - 2$, then we remove 1 or 2 edges in one or two $G_i's$. Then we have $\gamma(G_i) \neq i$ for one or two i's. Even if the edges are arranged in all possible ways, it would not admit an ADD.

This gives a contradiction to our assumption that $q \ge \frac{n^2 + 3n - 8}{2}$.

Thus, $S(P_p)$ admits an ADD.

Note 2.2. If we add more than 3 edges, then the upper bound for q becomes $\frac{n^2+5n-10}{2}+3 = \frac{n^2+5n-4}{2} = \frac{(n+1)^2+3(n+1)-8}{2}$, which is the lower bound for q in which $S(P_p)$ admits ADD into (n+1)- parts.

Theorem 2.3. Let C_p be a (p,q)- cycle. $S(C_p)$ has an $ADD \quad \psi = \{G_1, G_2, \dots, G_n\}$ if and only if $\frac{n^2+3n-8}{2} \leq q \leq \frac{n^2+5n-10}{2}$.

Proof: The proof is same as in Theorem 2.1

Theorem 2.4. If $p = \frac{n^2 + n}{2}$, then $S(K_p)$ admits ADD into n - parts.

Proof: Let $V(K_p) = \{v_1, v_2, \dots, v_p\}$. Let $v'_1, v'_2, \dots, v'_{\frac{p(p-1)}{2}}$ be the subdivision of the edges of K_p .

Suppose
$$p = \frac{n(n+1)}{2}$$

Let $G_1 = \langle N[v_1]$
 $G_2 = \langle N[v_2, v_3] \rangle$
 $G_3 = \langle N[v_4, v_5, v_6] \rangle$
 \vdots
 $G_n = \langle N[v_l, \dots v_p] \rangle$, where $l = \frac{n^2 - n + 2}{2}$, $p = \frac{n(n+1)}{2}$
Here $\frac{n^2 - n + 2}{2}$ can be found using Newton's forward difference formula as follows.

Table 4

110

	n	l	Δl	$\Delta^2 l$	$\Delta^3 l$	
	1	1				
			1			
	2	2		1		
			2		0	
	3	4		1		
			3		0	
	4	7		1		
			4			
	5	11				
20			h			
π	- 11() + x	ı			
	=x -	+1				
x :	= n	-1				
<i>l</i> =	= l ₀ -	+ x	$\Delta l_0 +$	$-\frac{x(x-1)}{2!}$	$\frac{1}{2}\Delta^2 l_0$	$+\ldots$
:	=1+	- (n –	- 1) (1	$(1) + \frac{(n-1)^2}{(n-1)^2}$	$\frac{-1)(n-2}{2!}$	(1)
	$\underline{n^2}$	-n+2				

Here G_n^2 is a neighbourhood of $(\frac{n^2+n}{2}) - (\frac{n^2-n+2}{2} - 1) = n$ vertices.

From the above decomposition, we see that $\gamma(G_i) = i$ and $\psi = \{G_1, G_2, \dots, G_n\}$ is an ADD.

Example 2.5. ADD of subdivision of a complete graph is given as follows.

Figure 3: ADD of SK_p .

Here,

 G_1 is an edge induced subgraph whose edges are denoted by dotted lines,

 G_2 is an edge induced subgraph whose edges are denoted by dashed lines,

 G_3 is an edge induced subgraph whose edges are denoted by dash parameters and

 G_4 is an edge induced subgraph whose edges are denoted by plain lines.

The converse of Theorem 2.4 is not true. It is explained in the following example.

Example 2.6. $S(K_p)$ admits ADD into n - parts even if $p \neq \frac{n(n+1)}{2}$.

Theorem 2.7. If $p = \frac{n^2 + n}{2}$, then $S(W_p)$ admits ADD into n - parts.

Proof: Let $V(W_p) = \{v_1, v_2, \ldots, v_p\}$. Let $v'_1, v'_2, \ldots, v'_{2(p-1)}$ be the subdivision of the edges of W_p .

Suppose
$$p = \frac{n(n+1)}{2}$$

Let $G_1 = \langle N[v_1] \rangle$
 $G_2 = \langle N[v_2, v_3] \rangle$
 $G_3 = \langle N[v_4, v_5, v_6] \rangle$
 \vdots
 $G_n = \langle N[v_l, \dots v_p] \rangle$, where $l = \frac{n^2 - n + 2}{2}$, $p = \frac{n(n+1)}{2}$
Here $\frac{n^2 - n + 2}{2}$ are before during Negative formula difference formula or is

Here $\frac{n^2-n+2}{2}$ can be found using Newton's forward difference formula as in Table-4.

Here G_n is a neighbourhood of $(\frac{n^2+n}{2}) - (\frac{n^2-n+2}{2} - 1) = n$ vertices.

From the above decomposition, we see that $\gamma(G_i) = i$ and $\psi = \{G_1, G_2, \dots, G_n\}$ is an *ADD*.

Example 2.8. ADD of subdivision of a wheel graph.

Figure 4: ADD of SW_p .

Here

 G_1 is an edge induced subgraph whose edges are denoted by dotted lines,

 G_2 is an edge induced subgraph whose edges are denoted by dashed lines,

 G_3 is an edge induced subgraph whose edges are denoted by dash parameters and

 G_4 is an edge induced subgraph whose edges are denoted by plain lines.

The converse of Theorem 2.7 is not true. It is explained in the following example.

Example 2.9. $S(W_p)$ admits ADD into n - parts even if $p \neq \frac{n(n+1)}{2}$.

Theorem 2.10. Let P_p be a (p,q)- path. If $p = \frac{2n^2-5n+7}{2}$ and $n \cong 1 \pmod{4}$ or $\frac{2n^2-7n+14}{2}$, $n \cong 2 \pmod{4}$, n > 2 then the subdivision of P_p^+ admits ADD into n - parts.

Proof: Let P_p : $(v_1 \ v_2 \ v_3 \dots v_p)$ be a path. If we attach the vertices $v'_1, v'_2 \dots v'_p$ to v_1, v_2, \dots, v_p respectively, then we get P_p^+ and $u_1, u_2, \dots, u_{\frac{n(n+1)}{2}}$ are subdivision vertices of P_p^+ .

Let
$$G_1 = \langle N[u_1] \rangle$$

 $G_2 = \langle N[u_2, u_3] \rangle$
 $G_3 = \langle N[u_4, u_5, u_6] \rangle$
 $G_4 = \langle N[u_7, u_8, u_9, u_{10}] \rangle$
 $G_5 = \langle N[u_{11}, u_{12}, u_{13}, u_{14}, u_{15}] \rangle$
 \vdots
 $G_n = \langle N[u_k, \dots u_l] \rangle$, where $k = \frac{n^2 - n + 2}{2}$, $l = \frac{n(n+1)}{2}$.

Here $\frac{n^2-n+2}{2}$ can be found as in Table - 4 and $\frac{n(n+1)}{2}$ can be found using Newton's forward difference formula as follows.

n	l	Δl	$\Delta^2 l$	$\Delta^3 l$	
1	1]
		2			
2	3		1		
		3		0	
3	6		1		
		4		0	
4	10		1		
		5			
5	15				
$= n_0$	x + x	h			-
=1 -	+x				
= n	- 1				
$= l_0 -$	+ x	$\Delta l_0 +$	$\frac{x(x-1)}{2}$	$\frac{1}{2}\Delta^2 l_0$	+
=1+	- (n –	- 1) (2	$(2) + \frac{2!}{(n-1)}$	$\frac{-1)(n-2}{2!}$	$\frac{2}{2}$ (1
$=\frac{n(r)}{r}$	(+1)	/ (, .	<i>Z</i> !	`

n

xl

Table 5

Here G_n^2 is a neighbourhood of $(\frac{n^2+n}{2}) - (\frac{(n^2-n+2)}{2} - 1) = n$ vertices.

From the above decomposition, we see that $\gamma(G_i) = i, i = 1, 2, ..., n$ and $\psi = \{G_1, G_2, ..., G_n\}$ is an *ADD*.

If $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$, then P_p^+ admits ADD into n - parts. Otherwise p is not an integer.

For, $p = \frac{2n^2 - 5n + 7}{2} = \frac{2(n-1)^2 - 5(n-1) + 4}{2}$ is possible only if $n - 1 \equiv 0 \pmod{4}$ and $p = \frac{2n^2 - 7n + 14}{2} = \frac{2(n-2)^2 - 5(n-2) + 4}{2}$ is possible only if $n - 2 \equiv 0 \pmod{4}$.

Example 2.11. ADD of $S(P_p^+)$ is given as follows:

Figure 5: ADD of SP_p^+ .

Here,

 G_1 is an edge induced subgraph whose edges are denoted by dotted lines,

 G_2 is an edge induced subgraph whose edges are denoted by dashed lines,

 ${\cal G}_3$ is an edge induced subgraph whose edges are denoted by dash parameters and

 G_4 is an edge induced subgraph whose edges are denoted by plain lines.

References

- Y. Alavi, A. J. Boals, G. Chartrand, P. Erdos and O. R. Oellermann, *The Ascending Subgraph Decomposition Problem*, Cong. Numer., 58(1987), 7 14.
- [2] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Chapman Hall CRC (2004).
- [3] F. Harary, *Graph Theory*, Addison Wesley publishing Company Inc, USA, (1969).
- [4] Juraj Bosak, *Decomposition of Graphs*, Kluwer Academic Publishers, 1990.
- [5] K. Lakshmiprabha and K. Nagarajan, Ascending Domination Decomposition of Graphs, International Journal of Mathematics and Soft Computing, Vol.4, No.1(2014), 199 - 128.
- [6] K. Lakshmiprabha and K. Nagarajan, Ascending Domination Decomposition of Some Special Graphs, Proceedings of the National seminar on Current Trends in Mathematics, S. B. K. College, Aruppukkottai, February, (2014).
- [7] H. B. Walikar, B. D. Acharya and E. Sampathkumar, *Recent developments in the theory* of domination in graphs MRI Lecture Notes No 1, The Mehta Research Institute (1979).