Ascending domination decomposition of subdivision of graphs

K. Lakshmiprabha ${ }^{1}$, K. Nagarajan ${ }^{2}$
${ }^{1}$ Research Scholar
Department of Mathematics, Sri S.R.N.M.College
Sattur - 626 203, Tamil Nadu, India. prabhalakshmi95@gmail.com
${ }^{2}$ Department of Mathematics, Sri S.R.N.M.College
Sattur - 626 203, Tamil Nadu, India.
k_nagarajan_srnmc@yahoo.co.in

Abstract

In this paper, the two major fields of graph theory namely decomposition and domination are connected and new concept called Ascending Domination Decomposition ($A D D$) of a graph G is introduced. An $A D D$ of a graph G is a collection $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of subgraphs of G such that, each G_{i} is connected, every edge of G is in exactly one G_{i} and $\gamma\left(G_{i}\right)=i, 1 \leq i \leq n$. In this paper, we prove the subdivision of some standard graphs admit $A D D$.

Keywords: Domination, decomposition, ascending domination decomposition, subdivision of graphs.
AMS Subject Classification(2010): 05C69, 05C70.

1 Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and multiple edges. The order and size of a graph are denoted by p and q respectively. For terms not defined here we refer to Harary [3] .

The theory of domination is one of the fast growing areas in graph theory, which has been investigated by Walikar et. al. [7]. A set $D \subseteq V$ of vertices in a graph G is a dominating set if every vertex v in $V-D$ is adjacent to a vertex in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$.

Another important area in graph theory is decomposition of graphs. A decomposition of a graph G is a collection ψ of edge disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ of G such that every edge of G is in exactly one G_{i}. If each G_{i} is isomorphic to a subgraph H of G, then ψ is called a H-decomposition. Several authors studied various types of decompositions by imposing conditions on G_{i} in the decomposition.

Using these two concepts, we introduced the concept called Ascending Domination Decomposition $(A D D)[5]$ of a graph which is motivated by the concepts of Ascending Subgraph Decomposition $(A S D)$ and Continuous Monotonic Decomposition ($C M D$) of a graph. The concept of Ascending Subgraph Decomposition was introduced by Alavi et al [1].

Definition 1.1. A decomposition of G into subgraphs G_{i} (not necessarily connected) such that $\left|E\left(G_{i}\right)\right|=i$ and G_{i} is isomorphic to a proper subgraph of G_{i+1} is called an Ascending subgraph decomposition.

Now we define Ascending Domination Decomposition ($A D D$) as follows.
Definition 1.2. [5] An ADD of a graph G is a collection $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of subgraphs of G such that
(i) Each G_{i} is connected.
(ii) Every edge of G is in exactly one G_{i} and
(iii) $\gamma\left(G_{i}\right)=i, 1 \leq i \leq n$.

If a graph G has an $A D D$, we say that G admits $A D D$.
Example 1.3. A graph G and its $A D D$ are given in Figure 1(a) and 1(b) respectively.

Figure 1(a)

Figure 1(b): $A D D\left\{G_{1}, G_{2}, G_{3}\right\}$ of G given in Figure 1(a).
We proved $K_{p}, W_{p}, K_{m, k}, P_{p}, C_{p}$, path corona P_{p}^{+}, cycle corona C_{p}^{+}and star corona $K_{1, p-1}^{+}$ admit $A D D$ with certain conditions in [5].

Definition 1.4. A subdivision of a graph G is a graph obtained by inserting a new vertex in each edge of G and is denoted by $S(G)$.

Example 1.5. Subdivision of the complete graph on 5 vertices, $S\left(K_{5}\right)$ is given in Figure 2.

Figure 2: Subdivision graph $S\left(K_{5}\right)$.

Definition 1.6. The corona $G 1 \odot G 2$ of two graphs G_{1} and G_{2} is defined as a graph obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

The following theorem is used to prove that the subdivision of a path admits $A D D$ into n parts.

Theorem 1.7. [5] A path P_{p} has an $A D D \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $\frac{3 n^{2}-3 n+2}{2} \leq$ $q \leq \frac{3 n^{2}+n}{2}$.

First we see that the subdivision of a path admits ADD into n-parts.
Note 1.8. In general, if P_{p} admits $A D D$, then $S\left(P_{p}\right)$ need not admit $A D D$ and vice - versa, because we cannot apply the range of q as in Theorem 1.7 to $S\left(P_{p}\right)$.

2 Main results

Theorem 2.1. Let P_{p} be a (p, q) - path. $S\left(P_{p}\right)$ has an $A D D \quad \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $\frac{n^{2}+3 n-8}{2} \leq q \leq \frac{n^{2}+5 n-10}{2}$.

Proof: Let $P_{p}=v_{1} v_{2} v_{3} \ldots v_{p}$ be a path. Then $S\left(P_{p}\right) \cong P_{2 p-1}$ has $2 p-2$ edges.
Suppose $S\left(P_{p}\right) \cong P_{2 p-1}$ admits $A D D \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$. From Theorem 1.7, P_{p} admits $A D D$ if and only if $\frac{3 n^{2}-3 n+2}{2} \leq q \leq \frac{3 n^{2}+n}{2}$. Now we can find the range of q if and only if $S\left(P_{p}\right)$ admits $A D D$.

From Note 1.8, we cannot apply the above range for q in P_{p} to $2 q$ in $S\left(P_{p}\right)$. Hence using the range of q in P_{p} as in Theorem 1.7 to $S\left(P_{p}\right)$, we have the following possibilities for $S\left(P_{p}\right)$ to admit $A D D$, which is shown in Table 1.

Table 1

No. of decompositions n	No. of edges in P_{p}	No. of edges in $S\left(P_{p}\right)$
1	1	2
2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$
3	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$
4	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & 24 \\ & 26 \end{aligned}$
5	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 32 \\ & 34 \\ & 36 \\ & 38 \\ & 40 \end{aligned}$
6	$\begin{aligned} & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 46 \\ & 48 \\ & 50 \\ & 52 \\ & 54 \\ & 56 \end{aligned}$
7	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \end{aligned}$	62 64 66 68 70 72 74

We find the upper and lower bound of q for P_{p} such that $S\left(P_{p}\right)$ admits $A D D$, using Newton's forward difference table.
First we find the lower bound of q using Table 1.

Table 2

n	q	Δq	$\Delta^{2} q$	$\Delta^{3} q$
3	5			
4	10		1	
5	16		1	
6	23		1	
7	31			

$$
\begin{aligned}
n & =n_{0}+x h \\
& =x+3 \\
x & =n-3 \\
q & =q_{0}+x \quad \Delta q_{0}+\frac{x(x-1)}{2!} \Delta^{2} q_{0}+\ldots \\
& =5+(n-3)(5)+\frac{(n-3)(n-4)}{2!}(1) \\
& =\frac{n^{2}+3 n-8}{2}
\end{aligned}
$$

Next we find the upper bound of q using Table 1.
Table 3

n	q	Δq	$\Delta^{2} q$	$\Delta^{3} q$
3	7			
4	13		1	
5	20		1	
6	28		1	
7	37			

$n=n_{0}+x h$
$=x+3$
$x=n-3$
$q=q_{0}+x \Delta q_{0}+\frac{x(x-1)}{2!} \Delta^{2} q_{0}+\ldots$
$=7+(n-3)(6)+\frac{(n-3)(n-4)}{2!}(1)$
$=\frac{n^{2}+5 n-10}{2}$.

We see that, if $S\left(P_{p}\right)$ an $A D D$, then $\frac{n^{2}+3 n-8}{2} \leq q \leq \frac{n^{2}+5 n-10}{2}$.
Conversely, suppose $S\left(P_{p}\right)$ does not admit $A D D$.
Consider the upper bound for q as $q \leq \frac{n^{2}+5 n-10}{2}$.
First we prove, if we add 1 or 2 edges to the upper bound for q, then it would not admit an $A D D$.

For, if $q=\frac{n^{2}+5 n-10}{2}+1$ or $q=\frac{n^{2}+5 n-10}{2}+2$, then we have extra 1 or 2 edges in any one or two $G_{i}{ }^{\prime} s$. Then $\gamma\left(G_{i}\right) \neq i$ for one or two $i^{\prime} s$.
This gives a contradiction to our assumption that $q \leq \frac{n^{2}+5 n-10}{2}$.
Now, we prove, if we reduce 1 or 2 from the lower bound for q, then it would not admit an $A D D$.

For, if we have $q=\frac{n^{2}+3 n-8}{2}-1$ or $q=\frac{n^{2}+3 n-8}{2}-2$, then we remove 1 or 2 edges in one or two $G_{i}{ }^{\prime} s$. Then we have $\gamma\left(G_{i}\right) \neq i$ for one or two $i^{\prime} s$. Even if the edges are arranged in all possible ways, it would not admit an $A D D$.
This gives a contradiction to our assumption that $q \geq \frac{n^{2}+3 n-8}{2}$.
Thus, $S\left(P_{p}\right)$ admits an $A D D$.
Note 2.2. If we add more than 3 edges, then the upper bound for q becomes $\frac{n^{2}+5 n-10}{2}+3$ $=\frac{n^{2}+5 n-4}{2}=\frac{(n+1)^{2}+3(n+1)-8}{2}$, which is the lower bound for q in which $S\left(P_{p}\right)$ admits $A D D$ into $(n+1)$ - parts.

Theorem 2.3. Let C_{p} be a (p, q) - cycle. $S\left(C_{p}\right)$ has an $A D D \quad \psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ if and only if $\frac{n^{2}+3 n-8}{2} \leq q \leq \frac{n^{2}+5 n-10}{2}$.

Proof: The proof is same as in Theorem 2.1
Theorem 2.4. If $p=\frac{n^{2}+n}{2}$, then $S\left(K_{p}\right)$ admits $A D D$ into n-parts.
Proof: Let $V\left(K_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{\frac{p(p-1)}{\prime}}^{\prime}$ be the subdivision of the edges of K_{p}.

Suppose $p=\frac{n(n+1)}{2}$
Let $\quad G_{1}=<N\left[v_{1}\right]$

$$
G_{2}=<N\left[v_{2}, v_{3}\right]>
$$

$$
G_{3}=<N\left[v_{4}, v_{5}, v_{6}\right]>
$$

.

$$
G_{n}=<N\left[v_{l}, \ldots v_{p}\right]>\text {, where } l=\frac{n^{2}-n+2}{2}, p=\frac{n(n+1)}{2}
$$

Here $\frac{n^{2}-n+2}{2}$ can be found using Newton's forward difference formula as follows.

n	l	Δl	$\Delta^{2} l$	$\Delta^{3} l$
1	1			
2	2		1	
3	4		1	
4	7		1	
5	11			

$$
\begin{aligned}
n & =n_{0}+x h \\
& =x+1 \\
x & =n-1 \\
l & =l_{0}+x \quad \Delta l_{0}+\frac{x(x-1)}{2!} \Delta^{2} l_{0}+\ldots \\
& =1+(n-1)(1)+\frac{(n-1)(n-2)}{2!}(1) \\
& =\frac{n^{2}-n+2}{2} .
\end{aligned}
$$

Here G_{n} is a neighbourhood of $\left(\frac{n^{2}+n}{2}\right)-\left(\frac{n^{2}-n+2}{2}-1\right)=n$ vertices.
From the above decomposition, we see that $\gamma\left(G_{i}\right)=i$ and $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$.

Example 2.5. $A D D$ of subdivision of a complete graph is given as follows.

Figure 3: ADD of $S K_{p}$.

Here,
G_{1} is an edge induced subgraph whose edges are denoted by dotted lines, G_{2} is an edge induced subgraph whose edges are denoted by dashed lines, G_{3} is an edge induced subgraph whose edges are denoted by dash parameters and
G_{4} is an edge induced subgraph whose edges are denoted by plain lines.

The converse of Theorem 2.4 is not true. It is explained in the following example.
Example 2.6. $S\left(K_{p}\right)$ admits $A D D$ into n - parts even if $p \neq \frac{n(n+1)}{2}$.
Theorem 2.7. If $p=\frac{n^{2}+n}{2}$, then $S\left(W_{p}\right)$ admits $A D D$ into n-parts.
Proof: Let $V\left(W_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{2(p-1)}^{\prime}$ be the subdivision of the edges of W_{p}.

Suppose $p=\frac{n(n+1)}{2}$
Let $\quad G_{1}=<N\left[v_{1}\right]>$
$G_{2}=<N\left[v_{2}, v_{3}\right]>$
$G_{3}=<N\left[v_{4}, v_{5}, v_{6}\right]>$
$G_{n}=<N\left[v_{l}, \ldots v_{p}\right]>$, where $l=\frac{n^{2}-n+2}{2}, p=\frac{n(n+1)}{2}$
Here $\frac{n^{2}-n+2}{2}$ can be found using Newton's forward difference formula as in Table-4.
Here G_{n} is a neighbourhood of $\left(\frac{n^{2}+n}{2}\right)-\left(\frac{n^{2}-n+2}{2}-1\right)=n$ vertices.
From the above decomposition, we see that $\gamma\left(G_{i}\right)=i$ and $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$.

Example 2.8. $A D D$ of subdivision of a wheel graph.

Figure 4: ADD of $S W_{p}$.

Here
G_{1} is an edge induced subgraph whose edges are denoted by dotted lines,
G_{2} is an edge induced subgraph whose edges are denoted by dashed lines,
G_{3} is an edge induced subgraph whose edges are denoted by dash parameters and
G_{4} is an edge induced subgraph whose edges are denoted by plain lines.

The converse of Theorem 2.7 is not true. It is explained in the following example.
Example 2.9. $S\left(W_{p}\right)$ admits $A D D$ into n - parts even if $p \neq \frac{n(n+1)}{2}$.
Theorem 2.10. Let P_{p} be a (p, q) - path. If $p=\frac{2 n^{2}-5 n+7}{2}$ and $n \cong 1(\bmod 4)$ or $\frac{2 n^{2}-7 n+14}{2}$, $n \cong 2(\bmod 4), n>2$ then the subdivision of P_{p}^{+}admits $A D D$ into n - parts.

Proof: Let $P_{p}:\left(v_{1} v_{2} v_{3} \ldots v_{p}\right)$ be a path. If we attach the vertices $v_{1}^{\prime}, v_{2}^{\prime} \ldots v_{p}^{\prime}$ to $v_{1}, v_{2}, \ldots, v_{p}$ respectively, then we get P_{p}^{+}and $u_{1}, u_{2}, \ldots, u_{\frac{n(n+1)}{2}}$ are subdivision vertices of P_{p}^{+}.

Let $\quad G_{1}=<N\left[u_{1}\right]>$
$G_{2}=<N\left[u_{2}, u_{3}\right]>$
$G_{3}=<N\left[u_{4}, u_{5}, u_{6}\right]>$
$G_{4}=<N\left[u_{7}, u_{8}, u_{9}, u_{10}\right]>$
$G_{5}=<N\left[u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\right]>$
$G_{n}=<N\left[u_{k}, \ldots u_{l}\right]>$, where $k=\frac{n^{2}-n+2}{2}, l=\frac{n(n+1)}{2}$.
Here $\frac{n^{2}-n+2}{2}$ can be found as in Table -4 and $\frac{n(n+1)}{2}$ can be found using Newton's forward difference formula as follows.

Table 5

$$
\begin{aligned}
& \hline n \\
& \hline 1 \\
& \hline
\end{aligned}
$$

Here G_{n} is a neighbourhood of $\left(\frac{n^{2}+n}{2}\right)-\left(\frac{\left(n^{2}-n+2\right)}{2}-1\right)=n$ vertices.
From the above decomposition, we see that $\gamma\left(G_{i}\right)=i, i=1,2, \ldots, n$ and $\psi=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is an $A D D$.

If $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$, then P_{p}^{+}admits $A D D$ into n - parts. Otherwise p is not an integer.

For, $p=\frac{2 n^{2}-5 n+7}{2}=\frac{2(n-1)^{2}-5(n-1)+4}{2}$ is possible only if $n-1 \equiv 0(\bmod 4)$ and $p=$ $\frac{2 n^{2}-7 n+14}{2}=\frac{2(n-2)^{2}-5(n-2)+4}{2}$ is possible only if $n-2 \equiv 0(\bmod 4)$.

Example 2.11. $A D D$ of $S\left(P_{p}^{+}\right)$is given as follows:

Figure 5: ADD of $S P_{p}^{+}$.
Here,
G_{1} is an edge induced subgraph whose edges are denoted by dotted lines, G_{2} is an edge induced subgraph whose edges are denoted by dashed lines, G_{3} is an edge induced subgraph whose edges are denoted by dash parameters and G_{4} is an edge induced subgraph whose edges are denoted by plain lines.

References

[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdos and O. R. Oellermann, The Ascending Subgraph Decomposition Problem, Cong. Numer., 58(1987), 7-14.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs,Chapman Hall CRC (2004).
[3] F. Harary, Graph Theory, Addison - Wesley publishing Company Inc, USA, (1969).
[4] Juraj Bosak, Decomposition of Graphs, Kluwer Academic Publishers, 1990.
[5] K. Lakshmiprabha and K. Nagarajan, Ascending Domination Decomposition of Graphs, International Journal of Mathematics and Soft Computing, Vol.4, No.1(2014), 199-128.
[6] K. Lakshmiprabha and K. Nagarajan, Ascending Domination Decomposition of Some Special Graphs, Proceedings of the National seminar on Current Trends in Mathematics, S. B. K. College, Aruppukkottai, February, (2014).
[7] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developements in the theory of domination in graphs MRI Lecture Notes No 1, The Mehta Research Institute (1979).

