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Abstract

In this paper, the two major fields of graph theory namely decomposition and domination
are connected and new concept called Ascending Domination Decomposition (ADD) of a
graph G is introduced. An ADD of a graph G is a collection ¢ = {G1,Gs,...,G,} of
subgraphs of G such that, each G; is connected, every edge of G is in exactly one G; and
v(G;) =i, 1 < i < n. In this paper, we prove the subdivision of some standard graphs
admit ADD.
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1 Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and
multiple edges. The order and size of a graph are denoted by p and ¢ respectively. For terms
not defined here we refer to Harary [3] .

The theory of domination is one of the fast growing areas in graph theory, which has been
investigated by Walikar et. al. [7]. A set D C V of vertices in a graph G is a dominating
set if every vertex v in V — D is adjacent to a vertex in D. The minimum cardinality of a
dominating set of G is called the domination number of G and is denoted by v(G).

Another important area in graph theory is decomposition of graphs. A decomposition of a
graph G is a collection 9 of edge disjoint subgraphs G, Go,...,G, of G such that every edge
of G is in exactly one G;. If each G; is isomorphic to a subgraph H of G, then % is called
a H -decomposition . Several authors studied various types of decompositions by imposing
conditions on G in the decomposition.

Using these two concepts, we introduced the concept called Ascending Domination Decom-
position (ADD) [5] of a graph which is motivated by the concepts of Ascending Subgraph
Decomposition (ASD) and Continuous Monotonic Decomposition (CM D) of a graph. The

concept of Ascending Subgraph Decomposition was introduced by Alavi et al [1].
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Definition 1.1. A decomposition of G into subgraphs G; (not necessarily connected ) such
that |E(G;)| =i and G; is isomorphic to a proper subgraph of G;y; is called an Ascending

subgraph decomposition.
Now we define Ascending Domination Decomposition (ADD) as follows.

Definition 1.2. [5] An ADD of a graph G is a collection ¢ = {G1,Ga,...,Gy} of subgraphs
of G such that

(i) Each G; is connected.
(ii) Every edge of G is in exactly one G; and
(iii) v(G;) =i, 1 <i<n.
If a graph G has an ADD, we say that G admits ADD.

Example 1.3. A graph G and its ADD are given in Figure 1(a) and 1(b) respectively.

C d
G:
a b e f h i
Figure 1(a)
c d J
¢ d
a b b e f h i
Gl Gz G3

Figure 1(b): ADD {Gi,G2,G3} of G given in Figure 1(a).

We proved K,,, W), Ky, ., P, Cp, path corona P;r , cycle corona C;r and star corona K fr -1
admit ADD with certain conditions in [5].

Definition 1.4. A subdivision of a graph G is a graph obtained by inserting a new vertex in
each edge of G' and is denoted by S(G).
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Example 1.5. Subdivision of the complete graph on 5 vertices, S(Kj5) is given in Figure 2.

U1

Vs V2

V4 V3

Figure 2: Subdivision graph S(K5).

Definition 1.6. The corona G1® G2 of two graphs G1 and Gs is defined as a graph obtained
by taking one copy of Gy (which has p; vertices) and p; copies of G and joining the it"

vertex of G with an edge to every vertex in the i** copy of Gs.

The following theorem is used to prove that the subdivision of a path admits ADD into n-

parts.

Theorem 1.7. [5] A path P, has an ADD 1 = {G1,Ga,...,Gy} if and only if M <
q < 3n’4n
— 2 .

First we see that the subdivision of a path admits ADD into n-parts.

Note 1.8. In general, if P, admits ADD, then S(P,) need not admit ADD and vice - versa,

because we cannot apply the range of ¢ as in Theorem 1.7 to S(P,).

2 Main results

Theorem 2.1. Let P, be a (p,q)- path. S(P,) has an ADD ¢ ={G1,G2,...,Gy} if and
only if 7"2+3"78 <qg< 7n2+52"710 .

Proof: Let P, = vj v2 v3... v, be a path. Then S(P,) = Pa,—1 has 2p — 2 edges.

Suppose S(Pp,) = Pyp—1 admits ADD ¢ ={G1,G3,...,Gy }. From Theorem 1.7, P, admits
ADD if and only if Lﬁ"“ <gqg< 3”2% Now we can find the range of ¢ if and only if
S(Pp) admits ADD.

From Note 1.8, we cannot apply the above range for ¢ in P, to 2¢ in S(P,). Hence using
the range of ¢ in P, as in Theorem 1.7 to S(P,), we have the following possibilities for S(P,)
to admit ADD , which is shown in Table 1.
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Table 1
No. of decompositions n | No. of edges in P, | No. of edges in S(P,)
1 1 2
2 2
3
3 ) 10
6 12
7 14
4 10 20
11 22
12 24
13 26
5 16 32
17 34
18 36
19 38
20 40
6 23 46
24 48
25 50
26 52
27 54
28 56
7 31 62
32 64
33 66
34 68
35 70
36 72
37 74

We find the upper and lower bound of ¢ for P, such that S(F,) admits ADD, using Newton’s
forward difference table.

First we find the lower bound of ¢ using Table 1.
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n| q | Aq| A% | Adq
305

5
410 1

6 0
51 16 1

7 0
6| 23 1

8
7131

n = ng+zh

=z +3

r=n—3

¢ = qo+ = Ago+ 2 A2 4.

=5+ (n —3) (5)+ 2=2n=4) (1)
— n%+3n—8
Sn-8

Next we find the upper bound of ¢ using Table 1.

n| q | Aq| A%q | A¥g
317

6
4113 1

7 0
5120 1

8 0
6 | 28 1

9
7137

n = ng+ zh

=z +3

r=n—3

Qo+ x Aqo—l—% A2qy+. ..

2

— 7+ (n — 3)(6) + =5dn=d)
_ n245n—10 )

(1)

Table 2

Table 3
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We see that, if S(P,) an ADD, then W <q< W'

Conversely, suppose S(P,) does not admit ADD.
Consider the upper bound for ¢ as ¢ < W _

First we prove, if we add 1 or 2 edges to the upper bound for ¢, then it would not admit an
ADD.

For, if ¢ = + 2, then we have extra 1 or 2 edges in any one or

24+5n—10 _
%—i—lorq—

n%4+5n—10
2

two G;'s. Then ~(G;) # i for one or two i's.
This gives a contradiction to our assumption that ¢ < W.

Now, we prove, if we reduce 1 or 2 from the lower bound for ¢, then it would not admit an
ADD.

n?+4+3n—8

. 23,
For, if we have ¢ = == —1 or ¢ = W

— 2, then we remove 1 or 2 edges in one or
two G; s. Then we have v(G;) # i for one or two i's. Even if the edges are arranged in all
possible ways, it would not admit an ADD.
This gives a contradiction to our assumption that ¢ > W .

Thus, S(P,) admits an ADD. [ |

Note 2.2. If we add more than 3 edges, then the upper bound for ¢ becomes W +3
= ”2+g”—4 = (”+1)2+g(”+1)78, which is the lower bound for ¢ in which S(P,) admits ADD

into (n+ 1)- parts.

Theorem 2.3. Let C}, be a (p,q)- cycle. S(C,) has an ADD ¢ ={G1,Ga,...,G,} if and
only if %SQSW-

Proof: The proof is same as in Theorem 2.1 |

Theorem 2.4. If p:"Q%, then S(K,) admits ADD into n - parts.

Proof: Let V(K,) = {vi,v2,...,vp}. Let vj, vy,..., v, ,, be the subdivision of the edges
2
of K.
_ n(ntl)
Suppose p = —=

Let G1:< N[’Ul]
Go=< N[’Ug,’l)g] >
Gy3=< N[1)4,1)5,1)6] >

Gp=< Nluv,...vy] >, where | = %, p = nn+1)

2
n?—n+2
2

Here can be found using Newton’s forward difference formula as follows.

Table 4
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n| 1 | Al A2 | A3
11
1
2] 2 1
2 0
3] 4 1
3 0
4|7 1
4
5 11
n = ng+zh
=x+1
r=n—1
I = lo+ = Alg+22 A2 4.
—1+(n—1) (1)+ &=L=2) (q)
_n’ont2

Here G, is a neighbourhood of (”2%) - (% — 1)=mn vertices.
From the above decomposition, we see that v(G;) = i and ¢v= {G1,G2,...,G,} is an
ADD. [ |

Example 2.5. ADD of subdivision of a complete graph is given as follows.

Figure 3: ADD of SK,,.

Here,
(G1is an edge induced subgraph whose edges are denoted by dotted lines,
(G2 is an edge induced subgraph whose edges are denoted by dashed lines,

(G3is an edge induced subgraph whose edges are denoted by dash parameters and
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G4 is an edge induced subgraph whose edges are denoted by plain lines.

The converse of Theorem 2.4 is not true. It is explained in the following example.

Example 2.6. S(K,) admits ADD into n - parts even if p # Ln;l) .

Theorem 2.7. If p= "2;" , then S(W,) admits ADD into n - parts.

Proof: Let V(W) = {vi,v2,...,vp}. Let v}, v5,..., vé(p_l) be the subdivision of the edges
of Wp.
Suppose p = "(n;l)

Let Gi=< N[’Ul] >
Gy=< N[vg,vg] >
G3=< N[U4,U5,U6] >

Gn=< Nluv,...vp] >, where | = %, p = n(";l)
Here % can be found using Newton’s forward difference formula as in Table-4.

Here G,, is a neighbourhood of ("2%) - (% — 1)=n vertices.
From the above decomposition, we see that v(G;) =i and Y= {G1,G2,...,G,} is an
ADD. [ |

Example 2.8. ADD of subdivision of a wheel graph.

w
. \,‘QU3
CAS .
ey |
. - \} (7
* /
N\ b4
N
P s

Figure 4: ADD of SW,.

Here
(G1is an edge induced subgraph whose edges are denoted by dotted lines,
G2 is an edge induced subgraph whose edges are denoted by dashed lines,
GG3is an edge induced subgraph whose edges are denoted by dash parameters and

(G4is an edge induced subgraph whose edges are denoted by plain lines.
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The converse of Theorem 2.7 is not true. It is explained in the following example.
Example 2.9. S(W,) admits ADD into n - parts even if p # n( "H

Theorem 2.10. Let P, be a (p,q)- path. If p = %2_2% and n = 1(mod4) or 2”2_#,
n = 2(mod4), n > 2 then the subdivision of P} admits ADD into n - parts.

Proof: Let P, : (v1 v2 v3...v,) bea path. If we attach the vertices v} ,v5... v, to v1,vz,.

S Up
respectively, then we get Pp+ and up,u2,...,Unwr1) are subdivision vertices of P]DJr .
Let Gi=< Nui] > i
G2=< NUQ,Ug] >
G3s=< N|uy u5,u6] >

G4—<N
Gs=< N

w7, ug, ug, Uip) >

U1, U2, U13, Uld, Uls) >

Gn=< Nlug,...u;] >, where k = M, | = nof)

2 2
Here % can be found as in Table - 4 and @ can be found using Newton’s forward
difference formula as follows.
Table 5
n| 1 | Al | A%l | A%
1 1
2
21 3 1
3 0
3| 6 1
4 0
4110 1
9
5|15
n = ng+zh
=1+
r=mn-—1
I = lo+ = Alp+ 22 A2 4
=1+(n—1) (2 >+w )
Here G,, is a neighbourhood of (2 +”) ((" —nt2) _ 1)=n vertices.
From the above decomposition, we see that 'y(G )=1i,i=1,2,..,nand v={G1,Ga,...,Gp}

isan ADD.
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If n = 1(mod4) or n = 2(mod4), then P admits ADD into n - parts. Otherwise p is

not an integer.

For, p = 2”2_25"+7 = 2("_1)2_25(”_1)+4 is possible only if n — 1 = 0(mod4) and p =

m2—Tntl1d _ 2(n—2)2-5(n—2)+4
2 = 2

is possible only if n — 2 = 0(mod4). [ |

Example 2.11. ADD of S(P,) is given as follows:

V1 Uz V2 Ug V3 Ug V4 U U5 Ulg V6 Uiz VT Uiy U8
e--0---9— o —r —e — - --@--0--9

:
.
:
)

1
1 1 1
1 1 1
B I I 1
N 1 1 1
Uje U3e Us ¢ (g uie U13 u15®
I I 1
I | ! 1
1 I 1
[l 1 1
° ) b . °
’
/ / / v / / / /
Ul U2 'U3 4 '1)5 1)6 'UY US

Figure 5: ADD of SPf.

Here,
(G1is an edge induced subgraph whose edges are denoted by dotted lines,
(G2 is an edge induced subgraph whose edges are denoted by dashed lines,
(G3is an edge induced subgraph whose edges are denoted by dash parameters and

(G4is an edge induced subgraph whose edges are denoted by plain lines.
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