International Journal of Mathematics and Soft Computing Vol.5, No.2. (2015), 75 - 82.

On anti fuzzy bi-ideals in near-rings

M. Himaya Jaleela Begum¹, S. Jeyalakshmi²

¹ Department of Mathematics Sadakathullah Appa College, Tirunelveli-11 Tamil Nadu, India.

² Department of Mathematics Sri Parasakthi College for Women, Courtallam Tamilnadu, India.

Abstract

In this paper we introduce the notion of anti fuzzy bi-ideals in near-rings and give some characterizations of anti fuzzy bi-ideals in near-rings.

Keywords: Near-ring, bi-ideal, fuzzy bi-ideal, anti fuzzy bi-ideal.

AMS Subject Classification (2010): 16Y30, 03E72, 08A72.

1 Introduction

The fundamental concept of fuzzy set was introduced by Zadeh [7]. Kuroki [5,6] studied fuzzy ideals, fuzzy bi-ideals in semigroup. In [1], R. Biswas introduced the concept of anti fuzzy subgroups of groups and K.H. Kim and Y.B. Jun[3] studied the notion of anti fuzzy R-subgroups of near-rings. In this paper, we introduced the notion of anti fuzzy bi-ideals of near-rings and investigate some properties.

2 Preliminaries

Definition 2.1. Let N be a near-ring. A fuzzy set μ of N is called a fuzzy subnear-ring of N if for all x, $y \in N$.

(*i*) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$

(ii) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$.

Definition 2.2. Let *N* be a near-ring. A fuzzy set μ of *N* is called a fuzzy bi-ideal of *N* if for all *x*, *y*, $z \in N$,

(*i*) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$

(ii) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}$.

Definition 2.3. Let *N* be a near-ring. A fuzzy set μ of *N* is called an anti fuzzy subnear-ring of *N* if for all *x*, $y \in N$,

(*i*) $\mu(x-y) \le max\{\mu(x), \mu(y)\},\$

(*ii*) $\mu(xy) \leq max\{\mu(x), \mu(y)\}$.

Definition 2.4. A family of fuzzy set $\{\mu_i / i \in \Lambda\}$ is a near-ring N, the union $\bigvee_{i \in \Lambda} \mu_i$ of $\{\mu_i / i \in \Lambda\}$ is defined by $(\bigvee_{i \in \Lambda} \mu_i)(x) = \sup\{\mu_i(x) / i \in \Lambda\}$ for each $x \in N$.

Definition 2.5. A family of fuzzy set $\{\mu_i/i \in \Lambda\}$ is a near-ring N, the intersection $\bigcap_{i \in \Lambda} \mu_i$ of $\{\mu_i/i \in \Lambda\}$ is defined by $(\bigcap_{i \in \Lambda} \mu_i)(x) = \inf\{\mu_i(x)/i \in \Lambda\}$ for each $x \in N$.

Definition 2.6. Let N and N' be two near-rings and f a function of N into N'.

- (i) If λ is a fuzzy set in N', then the pre image of λ under f is the fuzzy set in N defined by $f^{-1}(\lambda)(x) = \lambda(f(x))$ for each $x \in N$.
- (ii) If μ is a fuzzy set of N, then the image of μ under f is the fuzzy set in N' defined by $f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & \text{if } f^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases} \text{ for each } y \in N'.$

Definition 2.7. Let N and N' be two near-rings and 'f' a function of N into N'. If μ is a fuzzy set of N, then the anti image of μ under f is the fuzzy set $f_{-}(\mu)$ in N' defined by

$$f_{-}(\mu)(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \mu(x), & \text{if } f^{-1}(y) \neq \phi \\ 1, & \text{otherwise} \end{cases} \text{ for each } y \in N'.$$

Definition 2.8. A fuzzy bi-ideal μ of a near-ring N is said to be normal if $\mu(0) = 1$.

Definition 2.9. An anti fuzzy bi-ideal μ of a near-ring *N* is said to be complete if it is normal and there exists $z \in N$ such that $\mu(z) = 0$.

3 Anti fuzzy bi-ideals

Definition 3.1. Let *N* be a near-ring. A fuzzy set μ of *N* is called an anti fuzzy bi-ideal of *N* if for all *x*, *y*, *z* $\in N$,

- (*i*) $\mu(x-y) \le max \{\mu(x), \mu(y)\},\$
- (ii) $\mu(xyz) \leq max\{\mu(x), \mu(z)\}$.

Example 3.2. Let $N = \{0, a, b, c\}$ be the Klein's four group. Define addition and multiplication in N as follows.

+	0	a	b	c	•	0	a	b	с
0	0	а	b	с	0	0	0	0	0
а	a	0	c	b	a	0	b	0	b
b	b	c	0	а	b	0	0	0	0
с	c	b	а	0	c	0	b	0	b

Then (N, +, .) is a near-ring. Define a fuzzy set $\mu: N \rightarrow [0,1]$ by $\mu(0)=0.6$, $\mu(a)=0.7$, $\mu(b) = \mu(c) = 0.8$. It is easy to verify that μ is an anti fuzzy bi-ideal of N. But, μ is not a fuzzy bi-ideal of N since $\mu(0)=\mu(b-b) \ge min\{\mu(b), \mu(b)\}$.

Theorem 3.3. Let $f: N \rightarrow N'$ be an onto homomorphism of near-rings.

- (i) If λ is a fuzzy bi-ideal in N', then $f^{-1}(\lambda)$ is a fuzzy bi-ideal in N
- (ii) If μ is a fuzzy bi-ideal in *N*, then $f(\mu)$ is a fuzzy bi-ideal in *N'*.

Proof: (i) Let λ be a fuzzy bi-ideal of N'.

For any $x, y, z \in N$,

$$f^{-1}(\lambda)(x-y) = \lambda(f(x-y))$$

$$= \lambda(f(x)-f(y))$$

$$\geq \min\{\lambda(f(x) \ , \lambda(f(y)))$$

$$= \min\{f^{-1}(\lambda)(x) \ , f^{-1}(\lambda)(y)\}$$
Therefore, $f^{-1}(\lambda)(x-y) \geq \min\{f^{-1}(\lambda)(x) \ , f^{-1}(\lambda)(y)\}$ and $f^{-1}(\lambda)(xyz) = \lambda(f(xyz))$

$$= \lambda(f(x)f(y)f(z))$$

$$\geq \min\{\lambda(f(x) \ , \lambda(f(z))\}$$

$$= \min\{f^{-1}(\lambda)(x) \ , f^{-1}(\lambda)(z)\}$$

Thus, $f^{-1}(\lambda)(xyz) \ge \min\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(z)\}$. Hence, $f^{-1}(\lambda)$ is a fuzzy bi-ideal in N.

(ii) Let μ be a fuzzy bi-ideal in N.

Let $y_1, y_2, y_3 \in N'$. Then we have $\{x/x \in f^{-1}(y_1 - y_2)\} \supseteq \{x_1 - x_2 / x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\}$, and hence $f(\mu)(y_1 - y_2) = \sup\{\mu(x) / x \in f^{-1}(y_1 - y_2)\}$ $\geq \sup\{\mu(x_1 - x_2) / x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\}$ $\geq \sup\{\min\{\mu(x_1), \mu(x_2)\} / x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\}$ $= \min\{\sup\{\mu(x_1) / x_1 \in f^{-1}(y_1)\} \text{ and } \sup\{\mu(x_2) / x_2 \in f^{-1}(y_2)\}\}$ $= \min\{f(\mu)(y_1), f(\mu)(y_2)\}$

Thus, $f(\mu)(y_1-y_2) \ge \min\{f(\mu)(y_1), f(\mu)(y_2)\}.$

Let $y_1, y_2, y_3 \in N'$. Then we have,

$$f(\mu)(y_1y_2y_3) = \sup\{\mu(x)/x \in f^{-1}(y_1y_2y_3)\}$$

$$\geq \sup\{\mu(x_1x_2x_3)/x_1 \in f^{-1}(y_1), x_2 \in f^{-1}(y_2), x_3 \in f^{-1}(y_3)\}$$

$$\geq \sup\{\min\{\mu(x_1), \mu(x_3)\}/x_1 \in f^{-1}(y_1) \text{ and } x_3 \in f^{-1}(y_3)\}$$

$$= \min\{\sup\{\mu(x_1)/x_1 \in f^{-1}(y_1)\} \text{ and } \sup\{\mu(x_3)/x_3 \in f^{-1}(y_3)\}\}$$

$$= \min\{f(\mu)(y_1), f(\mu)(y_3)\}$$

Thus, $f(\mu)(y_1y_2y_3) \ge \min\{f(\mu)(y_1), f(\mu)(y_3)\}$. Hence, $f(\mu)$ is a fuzzy bi-ideal of N'.

Proposition 3.4. Let *N* be a near-ring and μ be a fuzzy set in *N*. Then μ is an anti fuzzy bi-ideal in *N* if and only if μ^c is a fuzzy bi-ideal in *N*.

Proof: Let *N* be a near-ring and μ be an anti fuzzy bi-ideal in *N*.

For $x, y \in N$,

 $\mu^{c}(x-y) = 1 - \mu(x-y)$ $\geq 1 - max\{\mu(x), \mu(y)\}$ $= min\{1 - \mu(x), 1 - \mu(y)\}$ $= min\{\mu^{c}(x), \mu^{c}(y)\}$

Therefore, $\mu^{c}(x-y) \ge \min\{\mu^{c}(x), \mu^{c}(y)\}.$

For any $x, y, z \in N$,

$$\mu^{c}(xyz) = 1 - \mu(xyz)$$

$$\geq 1 - max\{\mu(x), \ \mu(z)\}$$

$$= min\{1 - \mu(x), 1 - \mu(z)\}$$

$$= min\{\mu^{c}(x), \ \mu^{c}(z)\}$$

Therefore, $\mu^{c}(xyz) \ge min\{\mu^{c}(x), \mu^{c}(z)\}$. Hence, μ^{c} is a bi-ideal in N.

Conversely, Suppose that μ^{c} is a bi-ideal in *N*.

For any *x*, $y \in N$,

 $\mu(x-y) = 1 - \mu^{e}(x-y)$ $\leq 1 - \min\{\mu^{e}(x), \ \mu^{e}(y)\}$ $= \max\{1 - \mu^{e}(x), \ 1 - \mu^{e}(y)\}$ $= \max\{\mu(x), \ \mu(y)\}$

Therefore, $\mu(x-y) \leq max\{\mu(x), \mu(y)\}.$

For any $x, y, z \in N$,

$$\mu(xyz) = 1 - \mu^{e}(xyz)$$

$$\leq 1 - \min\{\mu^{e}(x), \ \mu^{e}(z)\}$$

$$= \max\{1 - \mu^{e}(x), \ 1 - \mu^{e}(z)\}$$

$$= \max\{\mu(x), \ \mu(z)\}.$$

Therefore, $\mu(xyz) \le max\{\mu(x), \mu(z)\}$. Hence μ is an anti fuzzy bi-ideal in *N*.

Proposition 3.5. Let μ be a fuzzy set in a near-ring *N*. Then μ is an anti fuzzy bi-ideal of *N* if and only if the lower level cut $L(\mu; t)$ of *N* is a bi-ideal of N for each $t \in [\mu(0), 1]$.

Proof: Let μ be an anti fuzzy bi-ideal of N. Let $x, y \in L(\mu; t)$. Then $\mu(x) \le t$ and $\mu(y) \le t$. Now, $\mu(x-y) \le max\{\mu(x), \mu(y)\} = t$ which implies that $\mu(x-y) \le t$ and so $x-y \in L(\mu; t)$. Hence $L(\mu; t)$ is a subgroup of N. Let $x, z \in L(\mu; t)$ and $y \in N$. Then $\mu(x) \le t$ and $\mu(z) \le t$. Now, $\mu(xyz) \le max\{\mu(x), \mu(z)\} \le t$ which implies that $\mu(xyz) \le t$ and hence $xyz \in L(\mu; t)$. Hence, $L(\mu; t)$ is a bi-ideal of N.

Conversely, suppose that $L(\mu; t)$ is a bi-ideal of *N*. Suppose that $x, y \in N$ and $\mu(x-y) > max\{\mu(x), \mu(y)\}$. Choose *t* such that $\mu(x-y) > t > max\{\mu(x), \mu(y)\}$. Then we get $x, y \in L(\mu; t)$. But $x-y \notin L(\mu; t)$, a contradiction. Hence $\mu(x-y) \le max\{\mu(x), \mu(y)\}$. Similarly we can prove that $\mu(xyz) \le max\{\mu(x), \mu(z)\}$. Hence, μ is an anti fuzzy bi-ideal of *N*.

Proposition 3.6. If $\{\mu_i / i \in A\}$ is a family of anti fuzzy bi-ideals of a near-ring *N*, then $\bigvee_{i \in A} \mu_i$ is an anti fuzzy bi-ideal.

Proof: Let $\{\mu_i \mid i \in A\}$ be a family of anti fuzzy bi-ideals of *N* and *x*, *y*, *z* $\in N$. Then we have,

$$\left(\bigvee_{i \in \wedge} \mu_{i} \right) (x - y) = \sup \left\{ \mu_{i} (x - y) / i \in \wedge \right\}$$

$$\leq \sup \left\{ \max \left\{ \max \left\{ \mu_{i} (x), \mu_{i} (y) \right\} / i \in \wedge \right\} \right\}$$

$$= \max \left\{ \sup \left\{ \mu_{i} (x) / i \in \wedge \right\}, \sup \left\{ \mu_{i} (y) / i \in \wedge \right\} \right\}$$

$$= \max \left\{ \left(\bigvee_{i \in \wedge} \mu_{i} \right) (x), \left(\bigvee_{i \in \wedge} \mu_{i} \right) (y) \right\}$$
Therefore,
$$\left(\bigvee_{i \in \wedge} \mu_{i} \right) (x - y) \leq \max \left\{ \left(\bigvee_{i \in \wedge} \mu_{i} \right) (x), \left(\bigvee_{i \in \wedge} \mu_{i} \right) (y) \right\}$$

$$\left(\bigvee_{i \in \wedge} \mu_{i} \right) (xyz) = \sup \left\{ \mu_{i} (xyz) / i \in \wedge \right\}$$

$$= \max \left\{ \sup \left\{ \max \left\{ \mu_{i} (x), \mu_{i} (z) \right\} / i \in \wedge \right\} \right\}$$

$$= \max \left\{ \sup \left\{ \mu_{i} (x) / i \in \wedge \right\}, \sup \left\{ \mu_{i} (z) / i \in \wedge \right\} \right\}$$

$$= \max \left\{ \left(\bigvee_{i \in \wedge} \mu_{i} \right) (x), \left(\bigvee_{i \in \wedge} \mu_{i} \right) (z) \right\}$$
Therefore,
$$\left\{ (y, \mu_{i}) (xyz) \leq \max \right\} \left\{ (y, \mu_{i}) (x), \left((y, \mu_{i}) (y) \right\}$$

Therefore, $\left(\bigvee_{i\in\Lambda}\mu_i\right)(xyz) \le \max\left\{\left(\bigvee_{i\in\Lambda}\mu_i\right)(x), \left(\bigvee_{i\in\Lambda}\mu_i\right)(y)\right\}$.

Hence, $\bigvee_{i \in A} \mu_i$ is an anti fuzzy bi-ideal of *N*.

Proposition 3.7. If $\{\mu_i/i \in A\}$ is a family of anti fuzzy bi-ideals of a near-ring *N*, then $\bigcap_{i \in A} \mu_i$ is an anti fuzzy bi-ideal.

Proof: The proof is similar to Proposition 3.6.

Theorem.3.8. Let $f: N \rightarrow N'$ be an onto homomorphism of near-rings. Then we have that

(i) If λ is an anti fuzzy bi-ideal of N', then $f^{-1}(\lambda)$ is an anti fuzzy bi-ideal in N.

(ii) If μ is an anti fuzzy bi-ideal of N, then $f(\mu)$ is an anti fuzzy bi-ideal of N'.

Proof: Let λ be an anti fuzzy bi-ideal of N'.

Let x, y, $z \in N$,

$$f^{-1}(\lambda)(x-y) = \lambda(f(x-y))$$

$$= \lambda(f(x)-f(y))$$

$$\leq max\{\lambda(f(x), \lambda(f(y))\}$$

$$= max\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(y)\}$$
Therefore, $f^{-1}(\lambda)(x-y) \leq max\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(y)\}$ and
$$f^{-1}(\lambda)(xyz) = \lambda(f(xyz))$$

$$= \lambda(f(x)f(y)f(z))$$

 $\leq \max\{\lambda(f(x), \lambda(f(z))) \\ = \max\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(z)\}\}$

Therefore, $f^{-1}(\lambda)(xyz) \le max\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(z)\}$. Hence, $f^{-1}(\lambda)$ is an anti fuzzy bi-ideal in N.

(ii) Let μ be an anti fuzzy bi-ideal in N

Let $y_1, y_2, y_3 \in N'$. Then we have $\{x \mid x \in f^1(y_1 - y_2)\} \supseteq \{x_1 - x_2 \mid x_1 \in f^1(y_1) \text{ and } x_2 \in f^1(y_2)\}$ and hence $f_{-}(\mu)(y_1 - y_2) = \inf\{\mu(x) \mid x \in f^1(y_1 - y_2)\}$

$$\leq \inf\{\mu(x_1-x_2) / x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\}$$

$$\leq \inf\{\max\{\mu(x_1), \mu(x_2)\} / x_1 \in f^{-1}(y_1) \text{ and } x_2 \in f^{-1}(y_2)\}$$

$$= \max\{\inf\{\mu(x_1) / x_1 \in f^{-1}(y_1)\} \text{ and } \inf\{\mu(x_2) / x_2 \in f^{-1}(y_2)\}\}$$

$$= \max\{f_{-1}(\mu)(y_1), f_{-1}(\mu)(y_2)\}$$

Therefore, $f_{-}(\mu)(y_1 - y_2) \le max\{f_{-}(\mu)(y_1), f_{-}(\mu)(y_2)\}.$

Let y_1 , y_2 , $y_3 \in N'$. Then we have

$$f_{-}(\mu)(y_{1}y_{2}y_{3}) = \inf \{ \mu(x)/x \in f^{-1}(y_{1}y_{2}y_{3}) \}$$

$$\leq \inf \{ \mu(x_{1}x_{2}x_{3})/x_{1} \in f^{-1}(y_{1}), x_{2} \in f^{-1}(y_{2}), x_{3} \in f^{-1}(y_{3}) \}$$

$$\leq \inf \{ \max\{\mu(x_{1}), \mu(x_{3})\}/x_{1} \in f^{-1}(y_{1}) \text{ and } x_{3} \in f^{-1}(y_{3}) \}$$

$$= \max \{ \inf \{ \mu(x_{1})/x_{1} \in f^{-1}(y_{1}) \} \text{ and } \inf \{ \mu(x_{3})/x_{3} \in f^{-1}(y_{3}) \}$$

$$= \max \{ f_{-}(\mu)(y_{1}), f_{-}(\mu)(y_{3}) \}$$

Therefore, $f_{-}(\mu)(y_1y_2y_3) \le max\{f_{-}(\mu)(y_1), f_{-}(\mu)(y_3)\}$. Hence, $f_{-}(\mu)$ is an anti fuzzy bi-ideal of N'.

Theorem.3.9. Let μ be an anti fuzzy bi-ideal of a near-ring *N* and μ^* be a fuzzy set in *N* defined by $\mu^*(x) = \mu(x) + 1 - \mu(0) \forall x \in N$. Then μ^* is a normal anti fuzzy bi-ideal of *N* containing μ .

Proof: Let μ be an anti fuzzy bi-ideal of a near-ring *N*.

For any *x*, $y \in N$,

$$\mu^{*}(x-y) = \mu(x-y) + 1 - \mu(0)$$

$$\leq max\{\mu(x), \mu(y)\} + 1 - \mu(0)$$

$$= max\{\mu(x) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$$

$$= max\{\mu^{*}(x), \mu^{*}(y)\}$$

Therefore, $\mu^{*}(x-y) \le max\{\mu^{*}(x), \mu^{*}(y)\}.$

For any *x*, *y*, $z \in N$,

$$\mu^{*}(xyz) = \mu(xyz) + 1 - \mu(0)$$

$$\leq max\{\mu(x), \mu(z)\} + 1 - \mu(0)$$

$$= max\{\mu(x) + 1 - \mu(0), \mu(z) + 1 - \mu(0)\}$$

$$= max\{\mu^{*}(x), \mu^{*}(z)\}$$

Therefore, $\mu^*(xyz) \le max\{\mu^*(x), \mu^*(z)\}$. Clearly $\mu^*(0) = \mu(0) + 1 - \mu(0) = 1$ and hence μ^* is normal. Hence, μ^* is a normal anti fuzzy bi-ideal of *N*, and obviously $\mu \subseteq \mu^*$. **Theorem.3.10.** If μ is an anti fuzzy bi-ideal of a near-ring *N*, then $(\mu^*)^* = \mu^*$.

Proof: For any $x \in N$, we have

$$(\mu^*)^*(x) = \mu^*(x) + 1 - \mu^*(0)$$

= $[\mu(x) + 1 - \mu(0)] + 1 - [\mu(0) + 1 - \mu(0)]$
= $\mu(x) + 1 - \mu(0) + 1 - \mu(0) - 1 + \mu(0)$
= $\mu(x) + 1 - \mu(0)$
= $\mu^*(x)$

Therefore, $(\mu^*)^* = \mu^*$.

Theorem 3.11. If μ is normal anti fuzzy bi-ideal of a near-ring *N* if and only if $\mu^* = \mu$.

Proof: The sufficient part is obvious. To prove the necessary part, let us suppose that μ is normal anti fuzzy bi-ideal of a near-ring N. Let $x \in N$. Since μ is normal, $\mu^*(x) = \mu(x) + 1 - \mu(0) = \mu(x) + 1 - 1 = \mu(x)$. Hence $\mu^* = \mu$.

Theorem 3.12. Let μ be an anti fuzzy bi-ideal of a near-ring *N*, and t be fixed element of *N* such that $\mu(0) \neq \mu(t)$. Define a fuzzy set μ^* in N by $\mu^*(x) = \frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}$ for all $x \in N$. Then μ^* is a normal anti fuzzy bi-ideal of the near-ring *N*.

Proof: Let μ be an anti fuzzy bi-ideal of a near-ring *N*. For any *x*, $y \in N$,

$$\mu^{*}(x-y) = \frac{\mu(x-y)-\mu(t)}{\mu(0)-\mu(t)}$$

$$\leq \frac{max\{\mu(x),\mu(y)\}-\mu(t)}{\mu(0)-\mu(t)}$$

$$= max\{\frac{\mu(x)-\mu(t)}{\mu(0)-\mu(t)}, \frac{\mu(y)-\mu(t)}{\mu(0)-\mu(t)}\}$$

$$= max\{\mu^{*}(x), \mu^{*}(y)\}.$$

Therefore, $\mu^{*}(x-y) \le max\{\mu^{*}(x), \mu^{*}(y)\}.$

For any *x*, *y*, $z \in N$,

$$\mu^{*}(xyz) = \frac{\mu(xyz) - \mu(t)}{\mu(0) - \mu(t)}$$

$$\leq \frac{max\{\mu(x), \mu(z)\} - \mu(t)}{\mu(0) - \mu(t)}$$

$$= max\{\frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}, \frac{\mu(z) - \mu(t)}{\mu(0) - \mu(t)}$$

$$= max\{\mu^{*}(x), \mu^{*}(z)\}.$$

Therefore, $\mu^*(xyz) \le max\{\mu^*(x), \mu^*(z)\}$. Hence μ^* is an anti fuzzy bi-ideal of N.

}

Also $\mu^*(0) = \frac{\mu(0) - \mu(t)}{\mu(0) - \mu(t)} = 1$, μ^* is normal.

Since $t \in N$ and $\mu^*(t) = \frac{\mu(t) - \mu(t)}{\mu(0) - \mu(t)} = 0$ we have μ^* is a complete anti fuzzy bi-ideals on *N*.

Theorem.3.13. Let μ be an anti fuzzy bi-ideal of a near-ring N and let $f: [0, \mu(0)] \rightarrow [0, 1]$ be an increasing function. Then the fuzzy set $\mu_f: N \rightarrow [0, 1]$ defined by $\mu_f(x) = f(\mu(x))$ is an anti fuzzy bi-ideal of N. In particular, if $f[\mu(0)] = 1$ then μ_f is normal and if $f(t) \ge t$ for all $t \in [0, \mu(0)]$, then $\mu \subseteq \mu_f$.

Proof: For any $x, y \in N$,

$$\mu_{f}(x-y) = f(\mu(x-y))$$

$$\leq f(max\{\mu(x), \ \mu(y)\})$$

$$= max\{f(\mu(x), \ f(\mu(y))\}$$

$$= max\{\mu_{f}(x), \ \mu_{f}(y)\}$$

Therefore, $\mu_f(x-y) \le max \{\mu_f(x), \mu_f(y)\}$. For any *x*, *y*, $z \in N$,

 μ_{f}

$$(xyz) = f(\mu(xyz))$$

$$\leq f(max\{\mu(x), \mu(z)\})$$

$$= max\{f(\mu(x)), f(\mu(z))\}$$

$$= max\{\mu_f(x), \mu_f(z)\}$$

Therefore, $\mu_f(xyz) \le max\{\mu_f(x), \mu_f(z)\}$. Hence μ_f is an anti fuzzy bi-ideal of *N*. If $f[\mu(0)]=1$, then $\mu_f(0) = 1$. Thus μ_f is normal. Assume that $f(t) = f[\mu(x)] \ge \mu(x)$, for any $x \in N$ which implies $\mu \subseteq \mu_f$.

References

- [1] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Sys, 35(1990),121-124.
- [2] T. Nagaiah, Anti fuzzy bi-Γ- ideals in Γ-semigroups, International Journal of Algebra, Vol. 5, No. 28 (2011), 1387-1394.
- [3] K.H. Kim and Y.B. Jun, *Anti fuzzy R-subgroups of near-rings*, Scientiae Mathematicae, 2, 2 (1999), 147-153.
- [4] K. H. Kim and Y. B. Jun and Y.H. Yon, On anti fuzzy ideals in near-rings ,Iranian Journal of Fuzzy System, Vol. 2, No. 2(2005), 71-80.
- [5] N. Kuroki, *Fuzzy ideals and fuzzy bi-ideals in semi-groups*, Fuzzy Sets and Systems, 5(1981), 203-215.
- [6] N. Kuroki, Fuzzy bi-ideals in semirings, Comment. Math. Univ. S. t. paul, 28(1980), 17-21.
- [7] L.A. Zadeh, Fuzzy sets Information and control, 8(1965), 338-353.