International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 59 - 68.



ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

## Efficient secure domination in graphs

P. Roushini Leely Pushpam<sup>1</sup>, Chitra Suseendran<sup>2</sup>

<sup>1</sup> Department of Mathematics D.B. Jain College, Chennai 600 097, Tamil Nadu, India. roushinip@yahoo.com

<sup>2</sup> Department of Mathematics Ethiraj College for Women, Chennai 600 008, Tamil Nadu, India. chitrasuseendran@gmail.com

#### Abstract

Let G = (V, E) be a graph. A dominating set  $S \subseteq V(G)$  is an efficient dominating set if S is a 2-packing set. The set S is a secure dominating set of G if for each  $u \in V \setminus S$  there exists a vertex  $v \in S$  such that uv belongs to the edge set of G and  $(S \setminus \{v\}) \cup \{u\}$  is a dominating set of G. In this paper we introduce efficient secure domination in graphs. We define and study the parameter efficient secure domination number of G.

Keywords: Efficient domination, secure domination, efficient secure domination. AMS Subject Classification(2010): 05C69.

## 1 Introduction

We consider only finite simple undirected graphs G = (V, E) of order |V| = n. For any vertex  $v \in V$ , the open neighborhood of v is the set  $N(v) = \{u \in V : uv \in E\}$  and the closed neighborhood is the set  $N[v] = N(v) \cup \{v\}$ . For a set  $S \subseteq V$ , the open neighborhood is  $N(S) = \bigcup_{v \in S} N(v)$  and the closed neighborhood is  $N[S] = N(S) \cup S$ . A set  $S \subseteq V$  is a dominating set if N[S] = V, or equivalently, every vertex in  $V \setminus S$  is adjacent to at least one vertex in S. The domination number  $\gamma(G)$  is the minimum cardinality of a dominating set in G, and a dominating set S of minimum cardinality is called a  $\gamma$ -set of G. A set S of vertices is called

dominating set S of minimum cardinality is called a  $\gamma$ -set of G. A set S of vertices is called 2-packing, if for every pair of vertices  $u, v \in S$ ,  $N[u] \cap N[v] = \phi$ .

Bange, Barkauskas and Slater [3,4] introduced efficiency measure for a graph G. The efficient domination number of a graph, denoted by F(G), is the maximum number of vertices that can be dominated by a set S, that dominates each vertex at most once. A graph G of order n = |V(G)| has an efficient dominating set if and only if F(G) = n. A vertex v of deg(v) = |N(v)| dominates |N[v]| = 1 + deg(v) vertices. Grinstead and Slater [13], defined the influence of a set of vertices S to be  $I(S) = \sum_{v \in S} (1 + deg(v))$ , the total amount of domination being done by S. Because S does not dominate any vertex more than once if and only if any two vertices in S are at a distance at least 3 (that is, S is a 2-packing), we have  $F(G) = \max\{I(S) : S\}$ 

is a 2-packing}. A set S is an efficient dominating set if and only if  $|N(v) \cap S| = 1$  for all vertices  $v \in V(G)$ , or equivalently, S is an efficient dominating set if and only if S is a 2-packing with I(S) = n = F(G). A graph G has an efficient dominating set if and only if F(G) = n.

For results in efficient domination one can refer to [1-4, 11-13, 16]. The set S is a secure dominating set of G if for each  $u \in V \setminus S$  there exists a vertex  $v \in S$  such that  $uv \in E(G)$  and  $(S \setminus \{v\}) \cup \{u\}$  is a dominating set of G. In this case we say v-S defends u or v is an S-defender. Secure domination in graphs has been studied in [5-10, 15, 17, 18].

Now we introduce the concept of efficient secure domination in graphs. Let S be a 2-packing. We define the secured influence of S as  $I_s(S) = \sum_{v \in S} I_v$ , where  $I_v$  is the order of a maximum clique containing v. The efficient secure domination number of a graph G denoted by  $F_s(G)$ , is the maximum number of vertices of G that can be defended by S. Hence  $F_s(G) = max\{I_s(S) : S \text{ is}$ a 2-packing}, called the efficient secure domination number of G. If  $F_s(G) = n$ , then G is said to be efficiently secure dominatable or simply ESD. A 2-packing set S with maximum secured influence  $I_s(S)$  is called an  $F_s(G)$ -set.



Figure 1:  $F_s(G_1) = 10$  and  $F_s(G_2) = 8$ .

For the graphs  $G_1$  and  $G_2$  given in Figure 1, the set  $\{v_1, v_5, v_9, v_{11}\}$  is an  $F_s(G_1)$ -set and the set  $\{v_1, v_5, v_8\}$  is an  $F_s(G_2)$ -set. Now  $F_s(G_1) = 10$  and  $F_s(G_2) = 8$ . Thus  $G_1$  is not ESD, but  $G_2$  is ESD.

For any graph G,  $F_s(G) = n$  implies F(G) = n but not conversely. (Refer Figure 2).



Figure 2:  $F(G_1) = n = 9$ ,  $F_s(G_1) = 8$  and  $F(G_2) = F_s(G_2) = n = 10$ .

In the following Section 2 we list out some definitions required for our study. In Section 3 certain classes of graphs which are efficiently secure dominatable are characterized. Finally in Section 4 bounds in terms of edge independence number are obtained for triangle free graphs.

## 2 Notations

For notation and graph theory terminology, we follow [14]. Specifically, let G = (V, E) be a simple and connected graph with the vertex set V of order n and edge set E of size m. We denote the degree of v in G by  $deg_G(v)$  or simply deg(v), if the graph G is clear from context. A vertex of degree 0 is called an *isolated* vertex. A leaf u or a pendant vertex u of G is a vertex of degree one and the support vertex of the leaf u is the unique vertex v such that  $uv \in E$ . A support with one leaf is called a *weak support*, where as with at least two leaves is called a strong support. For a set  $S \subseteq V$ , the subgraph induced by S is denoted by G[S].

A unicyclic graph is a connected graph that contains precisely one cycle. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. The edge independence number  $\beta'(G)$  is the maximum cardinality among the independent sets of edges of G. A complete binary tree is a rooted tree in which all leaves have the same depth and all internal vertices have degree three except the root, which is of degree two. If T is a complete binary tree with root vertex v, the set of all vertices with depth k are called vertices at level k. A subtree of a rooted tree T is a tree S consisting of a vertex in T and all of its descendants in T. The subtree corresponding to the root vertex is the entire tree and the subtree corresponding to any other vertex is called a proper subtree.

A set  $S \subseteq V(G)$  is called a *packing* in G if  $N[u] \cap N[v] = \phi$  for every pair  $u, v \in S$ . In other words, the shortest path between any pair of vertices in S is at least 3 in G. A *perfect matching* of a graph G, if it exists is a matching of G containing all the vertices of G. A matching M is a *maximum matching* of G if G has no matching M' with |M'| > |M|. The vertices of a graph which are not incident to the edges of a matching M are said to be *unsaturated* or M-unsaturated vertices. The distance from a vertex u to a vertex v in a graph G is defined as the length of a shortest u - v path and is denoted by d(u, v).

#### 3 Efficiently Secure Dominatable Graphs

In this section we characterize triangle free graphs, split graphs and unicylic graphs which are efficiently secure dominatable (ESD).

**Theorem 3.1.** For any graph G of order n, G is ESD if and only if V(G) can be partitioned into cliques such that for each clique  $K_t$ ,  $1 < t \leq n$ , there is a vertex v in  $K_t$  such that  $deg_G(v) = t - 1$ .

**Proof:** If G is a complete graph, then  $F_s(G) = n$ . Otherwise, assume that V(G) is partitioned into cliques  $K_t$  satisfying the hypothesis of the theorem.

Let  $S = \{v : v \in V(K_t) \text{ and } deg_G(v) = t - 1, 1 < t \leq n\}$ . To prove  $F_s(G) = n$ , consider any two vertices  $v_1, v_2 \in S$ . We now claim that  $d(v_1, v_2) \geq 3$ . There exist cliques  $K_{t_1}$  and  $K_{t_2}$ containing the vertices  $v_1$  and  $v_2$ , respectively. Now  $deg_G(v_i) = t_i - 1$ , i = 1, 2.

Let Q be the shortest  $(v_1, v_2)$  path in G. Then there exist vertices  $w_1, w_2$  in  $K_{t_1}$  and  $K_{t_2}$ , respectively, such that  $w_1, w_2 \in Q$  ( $w_i \neq v_i, i = 1, 2$ ). If  $w_1 \neq w_2$  then the result is obvious. If  $w_1 = w_2$  and since  $deg_G(v_i) = t_i - 1$ ,  $w_1$  is not adjacent to both  $v_1$  and  $v_2$ . Therefore,  $d(v_1, v_2) \geq 3$ . Hence S is a 2-packing. Further, it is clear that  $I_s(S) = n$ . Therefore,  $F_s(G) = n$ .

Conversely, let  $F_s(G) = n$ . Then there exists a 2-packing S, such that  $I_s(S) = n$ . This implies that  $\sum_{v \in S} I_v = n$ , where  $I_v$  is the order of a maximum clique containing v. Now  $\sum_{i=1}^{|S|} I_{v_i} = n$ . Therefore, V(G) can be partitioned into cliques say  $K_{t_i}$ ,  $1 \le i \le |S|$ . Now we claim that for each clique  $K_{t_i}$  there exists a  $v \in K_{t_i}$  such that  $deg(v) = t_i - 1$ . If |S| = 1, G is a complete graph, otherwise there exists a clique  $K_{t_j}$ , such that  $deg_G(z) \ge t_j$  for all  $z \in K_{t_j}$ . Since  $F_s(G) = n$ , some member say  $x_j$  in  $K_{t_j}$  belongs to S. Also there exists a vertex y in some  $K_{t_\ell}$  such that  $x_j$  and y are adjacent. Let  $y_\ell$  (the possibility that  $y_\ell = y$  is not ruled out) be the vertex in  $K_{t_\ell}$  such that  $y_\ell \in S$ . Then since, y and  $y_\ell$  are adjacent, we see that  $d(x_j, y_\ell) \le 2$ , which is a contradiction.

**Theorem 3.2.** Let G be a triangle free graph. Then G is ESD if and only if every vertex v of degree at least two is a weak support.

**Proof:** Assume that every vertex v of  $deg_G(v) > 1$  is a weak support. By Theorem 3.1,  $F_s(G) = n$ .

Conversely, let  $F_s(G) = n$ . Again by Theorem 3.1, V(G) can be partitioned into cliques  $K_{t_i}$  such that each  $K_{t_i}$  contains a vertex  $v_i$  with  $deg_G(v_i) = t_i - 1$ . Since G is triangle free, a maximum clique in it is a  $K_2$ . Hence  $t_i = 2$  for all i = 1, 2, ..., k, 1 < k < n and the vertices  $v_1, v_2, ..., v_k$  are of degree one. Thus each  $v_i$  is a pendant vertex. Hence the theorem.

**Theorem 3.3.** Let G be a split graph (X, Y), where X is independent and G[Y] is a clique. Then G is ESD if and only if  $deg_G(y) = |Y|$  for all  $y \in Y$ .

**Proof:** Let G be ESD and S be an  $F_s(G)$ -set. Assume to the contrary that there exists a vertex  $w \in Y$  such that  $deg_G(w) \neq |Y|$ . Then either  $deg_G(w) > |Y|$  or  $deg_G(w) = |Y| - 1$ .

If  $deg_G(w) > |Y|$ , then there exists at least two neighbors say  $u_1, u_2$  of w in X. Either  $w \in S$ or  $w \in I(z)$  for some  $z \in S$ . If  $w \in S$  then clearly  $u_1$  or  $u_2$  does not belong to the influence of any member of S, which is a contradiction. If  $w \in I(z)$  then either  $z \in Y$  or  $z \in X$ , which is a contradiction.

If  $deg_G(w) = |Y| - 1$ , then either  $w \in S$  or  $w \in I(z)$  for some  $z \in S$ . Hence each member of Y has exactly one neighbor in X. In both the cases we see that  $F_s(G) < n$ , which is a contradiction.

62

Conversely, let  $deg_G(y) = |Y|$  for all  $y \in Y$ . Then every vertex in Y has exactly one neighbor in X and corresponding to each vertex of Y, the leaf vertex belongs to S. Hence  $F_s(G) = n$ . Therefore, G is ESD.

Corollary 3.4. Let G be a triangle free ESD graph. Then G has a perfect matching.

**Proof:** The proof follows from Theorem 3.2.

**Corollary 3.5.** A triangle free k-regular graph is ESD if and only if k = 1.

**Proof:** Let G be a triangle free k-regular graph. By Theorem 3.1, V(G) can be partitioned into cliques  $K_t$ , t = 2 such that one of the vertices of each of  $K_t$ 's is of degree one. As G is k-regular, k = 1. Conversely, if k = 1,  $F_s(G) = n$ . Therefore, G is ESD.

As the proofs are straight forward, we state the following corollaries.

**Corollary 3.6.** Let G be a 4-regular circulant graph  $C_n(1,k)$ ,  $1 < k \leq \lfloor \frac{n}{2} \rfloor$ , without triangle. Then  $F_s(G) < n$ .

Corollary 3.7. Complete graphs are ESD.

Corollary 3.8. A triangle free ESD graph is of even order.

**Corollary 3.9.** A triangle free graph G, with  $\delta(G) > 1$  is not efficiently secure dominatable.

**Proof:** We have to prove  $F_s(G) < n$ . On contrary, assume that  $F_s(G) = n$ . Then by Theorem 3.1, G gets partitioned into cliques  $K_t$ , with each  $K_t$  containing a vertex of degree t - 1. Since G is triangle free, t = 2. Also by Theorem 3.1, G contains a vertex of degree t - 1, which is a contradiction to the hypothesis that  $\delta(G) > 1$ . Hence  $F_s(G) < n$ .

**Theorem 3.10.** A unicyclic graph G with a cycle  $C_3$  is ESD if and only if one of the following conditions hold.

- (i) Every vertex of degree at least 2 is a weak support.
- (ii) At least one vertex of  $C_3$  is of degree 2, the vertices in  $C_3$  of degree > 2 are not supports and every vertex not in  $C_3$  of degree > 1 is a weak support.

**Proof:** Let G be an ESD graph. By Theorem 3.1, there exists a partition  $W = \{V_1, V_2, \ldots, V_k\}$  of V(G) such that each  $G[V_i]$  is a complete graph  $K_t$ , t > 1 with at least one vertex of degree t-1. Since G is unicyclic with a cycle  $C_3$  one of the following conditions hold.

(a) Each  $G[V_i]$  is a  $K_2, 2 \le i \le k$ 

(b)  $G[V_1]$  is a  $K_3$  and  $G[V_i], 2 \le i \le k$  is a  $K_2$ .

If (a) holds then condition (i) follows. If (b) holds, by Theorem 3.1, at least one vertex of  $C_3$  is of degree 2.

Now we claim that the vertices in  $C_3$ , which are of degree > 2 are not supports. Let a vertex of  $C_3$ , say x be a support and z be the leaf adjacent to x. Then for some j,  $V_j = \{z\}$ , which is a contradiction, since t > 1.

Conversely, let the given conditions (i) and (ii) be true. If every vertex of degree at least two is a weak support, then clearly G is ESD. Now assume that the condition (ii) holds, then  $S = \{x : x \text{ is a leaf of } G\} \cup \{w\}$ , where w is the vertex of degree two in  $C_3$ . Hence S is an  $F_s(G)$ -set. Therefore, G is ESD.

# 4 Bounds for Triangle Free Graphs in terms of Edge Independence Number of the Graph

In a triangle free graph, a maximum clique is  $K_2$ . Hence an attempt is made to give a bound for  $F_s(G)$  of a triangle free graph G in terms of the edge independence number  $\beta'(G)$ , as any  $F_s(G)$  set is a 2-packing.

**Theorem 4.1.** For a triangle free graph G,  $2 \leq F_s(G) \leq 2\beta'(G)$ , where  $\beta'(G)$  is the edge independence number of the graph.

**Proof:** Let S be a 2-packing, such that  $I_s(S) = F_s(G)$ . Since G is triangle free, any maximum clique contained in it is a  $K_2$ . Let M be a maximum matching in G. Consider two elements say  $e_1$  and  $e_2$  in M such that  $e_1$  and  $e_2$  have a common neighbor say e. Then either an end vertex of  $e_1$  and an end vertex of  $e_2$  are in S or at most one end vertex of  $e_1$  or one end vertex of  $e_2$  is in S. Hence  $F_s(G) \leq 2\beta'(G)$ .

Now we characterize trees and unicylic graphs with cycle  $C_k$ ,  $k \ge 4$  for which  $F_s(G) = 2\beta'(G)$ . For convenience we define two supports  $x_1$  and  $x_2$  of G to be *consecutive* if at least one  $(x_1, x_2)$  path in G does not contain any support (Refer Figure 3).



Figure 3:  $u_1, u_2, u_3, u_4, u_5$  are consecutive supports of u.

**Theorem 4.2.** Let G be a tree. Then  $F_s(G) = 2\beta'(G)$  if and only if the distance between any two consecutive supports is 1, 2 or 4.

**Proof:** Assume that  $F_s(G) = 2\beta'(G)$ . Let u be an arbitrary support and x be a leaf which is adjacent to u. Let  $u_1, u_2, \ldots, u_k$  be the consecutive supports of u. We claim that  $\ell(Q_i) =$ 1, 2 or 4,  $0 \le i \le k$  where  $Q_i$  is the  $(u, u_i)$  path in T and  $\ell(Q_i)$  denotes the length of  $Q_i$ . Suppose not, then there exists some j such that  $\ell(Q_j) = 3$  or  $\ell(Q_j) > 4$ . Let  $w_1, w_2, \ldots, w_k$  be the internal vertices of  $Q_j$ . Let y be a leaf adjacent to  $u_j$  and H be the subgraph induced by  $V(G) \setminus \{x, u, w_1, w_2, \ldots, w_k, u_j, y\}$ .

Now  $\beta'(G) = 4 + \beta'(H)$  and  $F_s(G) = 6 + F_s(H)$ . Hence  $F_s(G) = 2\beta'(G)$  implies that  $F_s(H) = 2 + 2\beta'(H)$ , which is a contradiction. Hence the distance cannot be more than 4 or equal to 3.

Conversely, let the distance between the consecutive supports be 1, 2 or 4. Let  $u_1$  and  $u_2$  be any two consecutive supports and  $x_1$  and  $x_2$  be the leaves adjacent to  $u_1$  and  $u_2$  respectively. **Case (i):**  $d(u_1u_2) \leq 2$ .

Clearly  $x_i$ , i = 1, 2 belong to some  $F_s(G)$  set and the edges  $u_i x_i$  belong to some  $\beta'(G)$  set. (Refer Figure 4).



Figure 4

Case (ii):  $d(u_1u_2) = 4$ .

Let  $w_1, w_2, w_3$  be the internal vertices in the path joining  $u_1$  and  $u_2$ . Then the edges  $x_1u_1, w_1w_2, w_3u_2$  belong to any  $\beta'(G)$  set and the vertices  $x_1, w_2, x_2$  belong to any  $F_s(G)$  set. We see that  $F_s(G) = 2\beta'(G)$ . (Refer Figure 5).



### Figure 5

**Corollary 4.3.** Let G be a complete binary tree of level k. Then  $F_s(G) = 2\beta'(G)$  if and only if  $k \leq 3$ .

**Proof:** Let k > 3. In a binary tree we see that any two supports are consecutive. Let  $v_1$  and  $v_2$  be the two descendants of the root vertex of the tree and  $T_1$  and  $T_2$  be the two subtrees corresponding to the vertices  $v_1$  and  $v_2$  respectively. Now we see that  $d(x, y) \ge 6$  where x and y are supports of  $T_1$  and  $T_2$  respectively, which is a contradiction to Theorem 4.2.

Conversely, let  $k \leq 3$ . Again by Theorem 4.2, it follows that  $F_s(G) = 2\beta'(G)$ , since the distance between any two consecutive supports is 2 or 4. (Refer Figure 4).



**Figure 6:** A complete binary tree with  $F_s(G) = 2\beta'(G)$ .

**Theorem 4.4.** Let G be a unicyclic graph with a cycle  $C_k$ ,  $k \ge 4$  and  $\Delta(G) \ge 3$ . Then  $F_s(G) = 2\beta'(G)$  if and only if the following conditions hold.

- (a) Between every pair of consecutive supports, the length of every path is 1, 2 or 4.
- (b) When k > 4,  $C_k$  contains at least 2 vertices of degree at least 3 and when k = 4,  $C_k$  contains at least 1 vertex of degree at least 3.

**Proof:** Let  $F_s(G) = 2\beta'(G)$ . To prove condition (a), consider  $x_1$  and  $x_2$  to be any two consecutive supports. If there is a unique path between  $x_1$  and  $x_2$ , then as in Theorem 4.2,  $\ell = 1, 2$  or 4, where  $\ell$  is the length of the unique path between  $x_1$  and  $x_2$ . If there are 2 paths say,  $Q_1$  and  $Q_2$  between  $x_1$  and  $x_2$  with lengths  $\ell_1$  and  $\ell_2$  respectively, we claim  $\ell_1$  and  $\ell_2 = 1, 2$  or

4. Assume that there exists at least one of  $\ell_1$  or  $\ell_2$ , such that either  $\ell_i = 3$  or  $\ell_i > 4$ , i = 1, 2. Without loss of generality, let  $\ell_1 = 3$  or  $\ell_1 > 4$ . Let  $w_1$  and  $w_2$  be leaves which are adjacent to  $x_1$  and  $x_2$  respectively. Consider  $(w_1, w_2)$  path containing  $Q_1$ , say R. Then  $F_s(R) < 2\beta'(R)$ , which is a contradiction. Hence condition (a) holds.

To prove condition (b) we have two cases.

**Case (i):** When k > 4. Suppose  $C_k$  contains exactly one vertex of degree at least 3,  $F_s(C_k) < 2\beta'(C_k)$ . Also any subgraph H in G not contained in  $C_k$  is a tree. By Theorem 4.2  $F_s(H) < 2\beta'(H)$ . Hence we get a contradiction.

**Case (ii):** When k = 4. Suppose  $C_k$  does not contain any vertex of degree more than 2, then G is isomorphic to a cycle  $C_4$ , which is a contradiction to  $\Delta(G) \ge 3$ .

Converse follows from the conditions (a) and (b).

## References

- Anne Sinko and Peter J. Slater, *Efficient domination in knights graphs*, AKCE J. Graphs Combin, 3(2) (2006), 193–204.
- [2] D.W. Bange, A.E. Barkauskas, L. Host and P.J. Slater, *Efficient near domination of grid graphs*, Congress. Numer., 58 (1987), 83–92.
- [3] D.W. Bange, A.E. Barkauskas and P.J. Slater, *Disjoint dominating sets in trees*, Sandia Laboratories Report SAND, 78–1087J(1978).
- [4] D.W. Bange, A.E. Barkauskas and P.J. Slater, *Efficient dominating sets in graphs*, Applications of Discrete Mathematics, SIAM, Philadelphia (1988), 189–199.
- [5] S. Benecke, E.J. Cockayne and C.M. Mynhardt, Secure total domination in graphs, Utilitas Mathematica, 74 (2007), 247–259.
- [6] A.P. Burger, E.J. Cockayne, W.R. Grundlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, *Finite order domination in graphs*, J. Combin. Math. Combin. Comput., 49 (2004), 159–175.
- [7] A.P. Burger, E.J. Cockayne, W.R. Grundlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, *Infinite order domination in graphs*, J. Combin. Math. Combin. Comput., 50 (2004), 179–194.
- [8] E.J. Cockayne, Irredundance, Secure domination and maximum degree in trees, Discrete Math., 307 (2007), 12–17.
- [9] E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl., 39 (2003), 87–100.

- [10] E.J. Cockayne, P.J.P. Grobler, W. Grundlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Utilitas Math., 67 (2005) 19–32.
- [11] I.J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Applied Mathematics, 129(2-3) (2003), 319–328.
- [12] W. Goddard, O. Roellermann, P.J. Slater and H. Swart, Bounds on the total redundance and efficiency of a graph, Ars Combinatoria, 54 (2000), 129–138.
- [13] Grinstead and Slater, Fractional domination and fractional packing in graphs, Congress Numerantum, 71 (1990), 19–32.
- [14] F. Harary, Graph Theory, Addison-Wesley, Reading Massachusetts, 1972.
- [15] C.M. Mynhardt, H.C. Swart and E. Ungerer, Excellent trees and secure domination, Util. Math., 67 (2005), 255–267.
- [16] Nened Obradovic, Joseph Peters and Goran Ruzic, Efficient domination in circulant graphs with two chord lengths, Information Processing Letters, 102(6) (2007), 253–358.
- [17] P. Roushini Leely Pushpam and Chitra Suseendran, Further results in secure restrained domination in graphs, Journal of Discrete Mathematical Sciences and Cryptography - to appear.
- [18] P. Roushini Leely Pushpam and Chitra Suseendran, Secure restrained domination in graphs, Mathematics in Computer Science to appear.