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Abstract

Let G = (V, E) be a graph. A dominating set S ⊆ V (G) is an efficient dominating set
if S is a 2-packing set. The set S is a secure dominating set of G if for each u ∈ V \S there
exists a vertex v ∈ S such that uv belongs to the edge set of G and (S\{v}) ∪ {u} is a
dominating set of G. In this paper we introduce efficient secure domination in graphs. We
define and study the parameter efficient secure domination number of G.

Keywords: Efficient domination, secure domination, efficient secure domination.
AMS Subject Classification(2010): 05C69.

1 Introduction

We consider only finite simple undirected graphs G = (V, E) of order |V | = n. For any
vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E} and the
closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood is
N(S) =

∪
v∈S

N(v) and the closed neighborhood is N [S] = N(S)∪S. A set S ⊆ V is a dominating

set if N [S] = V , or equivalently, every vertex in V \S is adjacent to at least one vertex in S.
The domination number γ(G) is the minimum cardinality of a dominating set in G, and a
dominating set S of minimum cardinality is called a γ-set of G. A set S of vertices is called
2-packing, if for every pair of vertices u, v ∈ S, N [u] ∩ N [v] = ϕ.

Bange, Barkauskas and Slater [3, 4] introduced efficiency measure for a graph G. The
efficient domination number of a graph, denoted by F (G), is the maximum number of vertices
that can be dominated by a set S, that dominates each vertex at most once. A graph G of
order n = |V (G)| has an efficient dominating set if and only if F (G) = n. A vertex v of
deg(v) = |N(v)| dominates |N [v]| = 1 + deg(v) vertices. Grinstead and Slater [13], defined the
influence of a set of vertices S to be I(S) =

∑
v∈S

(1 + deg(v)), the total amount of domination

being done by S. Because S does not dominate any vertex more than once if and only if any two
vertices in S are at a distance at least 3 (that is, S is a 2-packing), we have F (G) = max{I(S) : S
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is a 2-packing}. A set S is an efficient dominating set if and only if |N(v)∩S| = 1 for all vertices
v ∈ V (G), or equivalently, S is an efficient dominating set if and only if S is a 2-packing with
I(S) = n = F (G). A graph G has an efficient dominating set if and only if F (G) = n.

For results in efficient domination one can refer to [1–4, 11–13, 16]. The set S is a secure
dominating set of G if for each u ∈ V \S there exists a vertex v ∈ S such that uv ∈ E(G) and
(S\{v}) ∪ {u} is a dominating set of G. In this case we say v-S defends u or v is an S-defender.
Secure domination in graphs has been studied in [5–10, 15, 17, 18].

Now we introduce the concept of efficient secure domination in graphs. Let S be a 2-packing.
We define the secured influence of S as Is(S) =

∑
v∈S

Iv, where Iv is the order of a maximum clique

containing v. The efficient secure domination number of a graph G denoted by Fs(G), is the
maximum number of vertices of G that can be defended by S. Hence Fs(G) = max{Is(S) : S is
a 2-packing}, called the efficient secure domination number of G. If Fs(G) = n, then G is said
to be efficiently secure dominatable or simply ESD. A 2-packing set S with maximum secured
influence Is(S) is called an Fs(G)-set.
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Figure 1: Fs(G1) = 10 and Fs(G2) = 8.

For the graphs G1 and G2 given in Figure 1, the set {v1, v5, v9, v11} is an Fs(G1)-set and the
set {v1, v5, v8} is an Fs(G2)-set. Now Fs(G1) = 10 and Fs(G2) = 8. Thus G1 is not ESD, but
G2 is ESD.

For any graph G, Fs(G) = n implies F (G) = n but not conversely. (Refer Figure 2).

G1 G2

Figure 2: F (G1) = n = 9, Fs(G1) = 8 and F (G2) = Fs(G2) = n = 10.
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In the following Section 2 we list out some definitions required for our study. In Section 3
certain classes of graphs which are efficiently secure dominatable are characterized. Finally in
Section 4 bounds in terms of edge independence number are obtained for triangle free graphs.

2 Notations

For notation and graph theory terminology, we follow [14]. Specifically, let G = (V, E) be
a simple and connected graph with the vertex set V of order n and edge set E of size m. We
denote the degree of v in G by degG(v) or simply deg(v), if the graph G is clear from context.
A vertex of degree 0 is called an isolated vertex. A leaf u or a pendant vertex u of G is a vertex
of degree one and the support vertex of the leaf u is the unique vertex v such that uv ∈ E.
A support with one leaf is called a weak support, where as with at least two leaves is called a
strong support. For a set S ⊆ V , the subgraph induced by S is denoted by G[S].

A unicyclic graph is a connected graph that contains precisely one cycle. A split graph is a
graph in which the vertices can be partitioned into a clique and an independent set. The edge
independence number β′(G) is the maximum cardinality among the independent sets of edges
of G. A complete binary tree is a rooted tree in which all leaves have the same depth and all
internal vertices have degree three except the root, which is of degree two. If T is a complete
binary tree with root vertex v, the set of all vertices with depth k are called vertices at level k.
A subtree of a rooted tree T is a tree S consisting of a vertex in T and all of its descendants in T .
The subtree corresponding to the root vertex is the entire tree and the subtree corresponding
to any other vertex is called a proper subtree.

A set S ⊆ V (G) is called a packing in G if N [u] ∩ N [v] = ϕ for every pair u, v ∈ S. In other
words, the shortest path between any pair of vertices in S is at least 3 in G. A perfect matching
of a graph G, if it exists is a matching of G containing all the vertices of G. A matching
M is a maximum matching of G if G has no matching M ′ with |M ′| > |M |. The vertices of
a graph which are not incident to the edges of a matching M are said to be unsaturated or
M -unsaturated vertices. The distance from a vertex u to a vertex v in a graph G is defined as
the length of a shortest u − v path and is denoted by d(u, v).

3 Efficiently Secure Dominatable Graphs

In this section we characterize triangle free graphs, split graphs and unicylic graphs which
are efficiently secure dominatable (ESD).

Theorem 3.1. For any graph G of order n, G is ESD if and only if V (G) can be partitioned
into cliques such that for each clique Kt, 1 < t ≤ n, there is a vertex v in Kt such that
degG(v) = t − 1.

Proof: If G is a complete graph, then Fs(G) = n. Otherwise, assume that V (G) is partitioned
into cliques Kt satisfying the hypothesis of the theorem.
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Let S = {v : v ∈ V (Kt) and degG(v) = t − 1, 1 < t ≤ n}. To prove Fs(G) = n, consider
any two vertices v1, v2 ∈ S. We now claim that d(v1, v2) ≥ 3. There exist cliques Kt1 and Kt2

containing the vertices v1 and v2, respectively. Now degG(vi) = ti − 1, i = 1, 2.
Let Q be the shortest (v1, v2) path in G. Then there exist vertices w1, w2 in Kt1 and Kt2 ,

respectively, such that w1, w2 ∈ Q (wi ̸= vi, i = 1, 2). If w1 ̸= w2 then the result is obvious.
If w1 = w2 and since degG(vi) = ti − 1, w1 is not adjacent to both v1 and v2. Therefore,
d(v1, v2) ≥ 3. Hence S is a 2-packing. Further, it is clear that Is(S) = n. Therefore, Fs(G) = n.

Conversely, let Fs(G) = n. Then there exists a 2-packing S, such that Is(S) = n. This

implies that
∑
v∈S

Iv = n, where Iv is the order of a maximum clique containing v. Now
|S|∑
i=1

Ivi = n.

Therefore, V (G) can be partitioned into cliques say Kti , 1 ≤ i ≤ |S|. Now we claim that for each
clique Kti there exists a v ∈ Kti such that deg(v) = ti − 1. If |S| = 1, G is a complete graph,
otherwise there exists a clique Ktj , such that degG(z) ≥ tj for all z ∈ Ktj . Since Fs(G) = n,
some member say xj in Ktj belongs to S. Also there exists a vertex y in some Ktℓ

such that
xj and y are adjacent. Let yℓ (the possibility that yℓ = y is not ruled out) be the vertex in
Ktℓ

such that yℓ ∈ S. Then since, y and yℓ are adjacent, we see that d(xj , yℓ) ≤ 2, which is a
contradiction.

Theorem 3.2. Let G be a triangle free graph. Then G is ESD if and only if every vertex v of
degree at least two is a weak support.

Proof: Assume that every vertex v of degG(v) > 1 is a weak support. By Theorem 3.1,
Fs(G) = n.

Conversely, let Fs(G) = n. Again by Theorem 3.1, V (G) can be partitioned into cliques
Kti such that each Kti contains a vertex vi with degG(vi) = ti − 1. Since G is triangle free, a
maximum clique in it is a K2. Hence ti = 2 for all i = 1, 2, . . . , k,1 < k < n and the vertices
v1, v2, . . . , vk are of degree one. Thus each vi is a pendant vertex. Hence the theorem.

Theorem 3.3. Let G be a split graph (X, Y ), where X is independent and G[Y ] is a clique.
Then G is ESD if and only if degG(y) = |Y | for all y ∈ Y .

Proof: Let G be ESD and S be an Fs(G)-set. Assume to the contrary that there exists a
vertex w ∈ Y such that degG(w) ̸= |Y |. Then either degG(w) > |Y | or degG(w) = |Y | − 1.

If degG(w) > |Y |, then there exists at least two neighbors say u1, u2 of w in X. Either w ∈ S

or w ∈ I(z) for some z ∈ S. If w ∈ S then clearly u1 or u2 does not belong to the influence of
any member of S, which is a contradiction. If w ∈ I(z) then either z ∈ Y or z ∈ X, which is a
contradiction.

If degG(w) = |Y | − 1, then either w ∈ S or w ∈ I(z) for some z ∈ S. Hence each member
of Y has exactly one neighbor in X. In both the cases we see that Fs(G) < n, which is a
contradiction.
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Conversely, let degG(y) = |Y | for all y ∈ Y . Then every vertex in Y has exactly one neighbor
in X and corresponding to each vertex of Y , the leaf vertex belongs to S. Hence Fs(G) = n.
Therefore, G is ESD.

Corollary 3.4. Let G be a triangle free ESD graph. Then G has a perfect matching.

Proof: The proof follows from Theorem 3.2.

Corollary 3.5. A triangle free k-regular graph is ESD if and only if k = 1.

Proof: Let G be a triangle free k-regular graph. By Theorem 3.1, V (G) can be partitioned
into cliques Kt, t = 2 such that one of the vertices of each of Kt’s is of degree one. As G is
k-regular, k = 1. Conversely, if k = 1, Fs(G) = n. Therefore, G is ESD.

As the proofs are straight forward, we state the following corollaries.

Corollary 3.6. Let G be a 4-regular circulant graph Cn(1, k), 1 < k ≤
⌊

n
2

⌋
, without triangle.

Then Fs(G) < n.

Corollary 3.7. Complete graphs are ESD.

Corollary 3.8. A triangle free ESD graph is of even order.

Corollary 3.9. A triangle free graph G, with δ(G) > 1 is not efficiently secure dominatable.

Proof: We have to prove Fs(G) < n. On contrary, assume that Fs(G) = n. Then by Theorem
3.1, G gets partitioned into cliques Kt, with each Kt containing a vertex of degree t − 1. Since
G is triangle free, t = 2. Also by Theorem 3.1, G contains a vertex of degree t − 1, which is a
contradiction to the hypothesis that δ(G) > 1. Hence Fs(G) < n.

Theorem 3.10. A unicyclic graph G with a cycle C3 is ESD if and only if one of the following
conditions hold.

(i) Every vertex of degree at least 2 is a weak support.

(ii) At least one vertex of C3 is of degree 2, the vertices in C3 of degree > 2 are not supports
and every vertex not in C3 of degree > 1 is a weak support.

Proof: Let G be an ESD graph. By Theorem 3.1, there exists a partition W = {V1, V2, . . . , Vk}
of V (G) such that each G[Vi] is a complete graph Kt, t > 1 with at least one vertex of degree
t − 1. Since G is unicyclic with a cycle C3 one of the following conditions hold.
(a) Each G[Vi] is a K2, 2 ≤ i ≤ k

(b) G[V1] is a K3 and G[Vi], 2 ≤ i ≤ k is a K2.
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If (a) holds then condition (i) follows. If (b) holds, by Theorem 3.1, at least one vertex of C3

is of degree 2.
Now we claim that the vertices in C3, which are of degree > 2 are not supports. Let a vertex

of C3, say x be a support and z be the leaf adjacent to x. Then for some j, Vj = {z}, which is
a contradiction, since t > 1.

Conversely, let the given conditions (i) and (ii) be true. If every vertex of degree at least
two is a weak support, then clearly G is ESD. Now assume that the condition (ii) holds, then
S = {x : x is a leaf of G} ∪ {w}, where w is the vertex of degree two in C3. Hence S is an
Fs(G)-set. Therefore, G is ESD.

4 Bounds for Triangle Free Graphs in terms of Edge Independence Number
of the Graph

In a triangle free graph, a maximum clique is K2. Hence an attempt is made to give a
bound for Fs(G) of a triangle free graph G in terms of the edge independence number β′(G),
as any Fs(G) set is a 2-packing.

Theorem 4.1. For a triangle free graph G, 2 ≤ Fs(G) ≤ 2β′(G), where β′(G) is the edge
independence number of the graph.

Proof: Let S be a 2-packing, such that Is(S) = Fs(G). Since G is triangle free, any maximum
clique contained in it is a K2. Let M be a maximum matching in G. Consider two elements
say e1 and e2 in M such that e1 and e2 have a common neighbor say e. Then either an end
vertex of e1 and an end vertex of e2 are in S or at most one end vertex of e1 or one end vertex
of e2 is in S. Hence Fs(G) ≤ 2β′(G).

Now we characterize trees and unicylic graphs with cycle Ck, k ≥ 4 for which Fs(G) =
2β′(G). For convenience we define two supports x1 and x2 of G to be consecutive if at least one
(x1, x2) path in G does not contain any support (Refer Figure 3).

u2
u1

u5u

u4

u3

Figure 3: u1, u2, u3, u4, u5 are consecutive supports of u.



Efficient secure domination in graphs 65

Theorem 4.2. Let G be a tree. Then Fs(G) = 2β′(G) if and only if the distance between any
two consecutive supports is 1, 2 or 4.

Proof: Assume that Fs(G) = 2β′(G). Let u be an arbitrary support and x be a leaf which
is adjacent to u. Let u1, u2, . . . , uk be the consecutive supports of u. We claim that ℓ(Qi) =
1, 2 or 4, 0 ≤ i ≤ k where Qi is the (u, ui) path in T and ℓ(Qi) denotes the length of Qi.
Suppose not, then there exists some j such that ℓ(Qj) = 3 or ℓ(Qj) > 4. Let w1, w2, . . . , wk be
the internal vertices of Qj . Let y be a leaf adjacent to uj and H be the subgraph induced by
V (G)\{x, u, w1, w2, . . . , wk, uj , y}.

Now β′(G) = 4 + β′(H) and Fs(G) = 6 + Fs(H). Hence Fs(G) = 2β′(G) implies that
Fs(H) = 2 + 2β′(H), which is a contradiction. Hence the distance cannot be more than 4 or
equal to 3.

Conversely, let the distance between the consecutive supports be 1, 2 or 4. Let u1 and u2 be
any two consecutive supports and x1 and x2 be the leaves adjacent to u1 and u2 respectively.
Case (i): d(u1u2) ≤ 2.
Clearly xi, i = 1, 2 belong to some Fs(G) set and the edges uixi belong to some β′(G) set.
(Refer Figure 4).

x2

u2

x1

u1

x1
x2

u1
u2

Figure 4

Case (ii): d(u1u2) = 4.
Let w1, w2, w3 be the internal vertices in the path joining u1 and u2. Then the edges
x1u1, w1w2, w3u2 belong to any β′(G) set and the vertices x1, w2, x2 belong to any Fs(G) set.
We see that Fs(G) = 2β′(G). (Refer Figure 5).
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Corollary 4.3. Let G be a complete binary tree of level k. Then Fs(G) = 2β′(G) if and only
if k ≤ 3.

Proof: Let k > 3. In a binary tree we see that any two supports are consecutive. Let v1 and
v2 be the two descendants of the root vertex of the tree and T1 and T2 be the two subtrees
corresponding to the vertices v1 and v2 respectively. Now we see that d(x, y) ≥ 6 where x and
y are supports of T1 and T2 respectively, which is a contradiction to Theorem 4.2.

Conversely, let k ≤ 3. Again by Theorem 4.2, it follows that Fs(G) = 2β′(G), since the
distance between any two consecutive supports is 2 or 4. (Refer Figure 4).

k = 2

k = 1

k = 0

k = 3

x y

Figure 6: A complete binary tree with Fs(G) = 2β′(G).

Theorem 4.4. Let G be a unicyclic graph with a cycle Ck, k ≥ 4 and ∆(G) ≥ 3. Then
Fs(G) = 2β′(G) if and only if the following conditions hold.

(a) Between every pair of consecutive supports, the length of every path is 1, 2 or 4.

(b) When k > 4, Ck contains at least 2 vertices of degree at least 3 and when k = 4, Ck

contains at least 1 vertex of degree at least 3.

Proof: Let Fs(G) = 2β′(G). To prove condition (a), consider x1 and x2 to be any two
consecutive supports. If there is a unique path between x1 and x2, then as in Theorem 4.2, ℓ =
1, 2 or 4, where ℓ is the length of the unique path between x1 and x2. If there are 2 paths say,
Q1 and Q2 between x1 and x2 with lengths ℓ1 and ℓ2 respectively, we claim ℓ1 and ℓ2 = 1, 2 or
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4. Assume that there exists at least one of ℓ1 or ℓ2, such that either ℓi = 3 or ℓi > 4, i = 1, 2.
Without loss of generality, let ℓ1 = 3 or ℓ1 > 4. Let w1 and w2 be leaves which are adjacent to
x1 and x2 respectively. Consider (w1, w2) path containing Q1, say R. Then Fs(R) < 2β′(R),
which is a contradiction. Hence condition (a) holds.

To prove condition (b) we have two cases.
Case (i): When k > 4. Suppose Ck contains exactly one vertex of degree at least 3, Fs(Ck) <

2β′(Ck). Also any subgraph H in G not contained in Ck is a tree. By Theorem 4.2 Fs(H) <

2β′(H). Hence we get a contradiction.
Case (ii): When k = 4. Suppose Ck does not contain any vertex of degree more than 2, then
G is isomorphic to a cycle C4, which is a contradiction to ∆(G) ≥ 3.

Converse follows from the conditions (a) and (b).
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