International Journal of Mathematics and Soft Computing Vol.5, No.2. (2015), 51 - 57.

Total edge Lucas irregular labeling

A. Ponmoni¹, S. Navaneetha Krishnan², A. Nagarajan³

¹ Department of Mathematics C.S.I.College of Engineering, Ketti – 643215 Tamil Nadu, India. ponmonirpj@gmail.com

^{2, 3} Department of Mathematics V.O.C. College, Tuticorin-628008. Tamilnadu, India. snk.voc@gmail.com, nagarajan.voc@gmail.com

Abstract

For a graph G = (V, G), total edge Lucas irregular labeling $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., K\}$ is defined as a labeling on V(G) and E(G) in such a way that for any two different edges xy and x'y', their weights f(x) + f(xy) + f(y) and f(x') + f(x'y') + f(y') are distinct Lucas numbers. The total edge Lucas irregularity strength, tels(G), is defined as the minimum K for which G has total edge Lucas irregular labeling. In this paper we prove the graphs P_n , C_n , $K_{1,n}$ and Book (with 3 sides and 4 sides) admits total edge Lucas irregular labeling and we determine the total edge Lucas irregularity strength for those graphs.

Keywords: Total edge Lucas irregular labeling, prime labeling, prime graph, strongly prime graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

By a graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [3]. By labeling we mean any mapping that carries a set of graph elements to a set of numbers (usually positive integers), called labels. The concept of total vertex irregular labeling and Edge irregular total *K*-labeling were introduced by Baca et.al [2] and the definitions are given as follows:

A total vertex irregular labeling on a graph G with p vertices and q edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is, $wt(v)=\lambda(v) + \sum_{uv \in E} \lambda(uv)$. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments.

For a graph G = (V, E), define a labeling $f:V(G) \cup E(G) \rightarrow \{1, 2, ..., K\}$ to be an edge irregular total *K*-labeling of the graph G if for any two different edges xy and x'y' of G the edge weights wt(xy), wt(x'y') are distinct. The total edge irregularity strength, tels(G), is defined as the minimum *K* for which has an edge irregular total *K*- labeling.

Kristiana wijaya et al.[4] proved that $tvs(k_{n,n+1}) = 3$ for all $n \ge 3$, $tvs(k_{n,n}) = 3$ for all $n \ge 3$. Ali Ahmad and Martin Baca [1] proved that tes $(C_n \times P_m) = \left[\frac{2n(m-1)+2}{3}\right]$ for $m \ge 2$, $n \ge 4$ and m, n are even.

2 Total edge Lucas irregular labeling

Definition 2.1. A total edge Lucas irregular labeling $f:V(G) \cup E(G) \rightarrow \{1,2,...,K\}$ of a graph G = (V,G) is a labeling of vertices and edges of G in such a way that for any two different edges xy and x'y' their weights f(x) + f(xy) + f(y) and f(x') + f(x'y') + f(y') are distinct Lucas numbers where the Lucas series is given by the recurrence relation $L_n = L_{n-1} + L_{n-2}, n > 1$, $L_1 = 1$, $L_2 = 3$, $L_3 = 4$, $L_4 = 7$ and so on.

The total edge Lucas irregularity strength, tels (G) is defined as the minimum K for which G has total edge Lucas irregular labeling.

Observation 2.2. Since every edge is incident with two vertices, $wt(e) \neq L_1$ for every edge $e \in E(G)$ and the weights of E(G) are distinct Lucas numbers, $L_2 \leq wt(e) \leq L_{q+1}$ for every edge $e \in E(G)$. Also, $f(x) + f(xy) + f(y) \leq 3K$ this implies $K \geq \frac{1}{3}w(xy)$ for every $xy \in E(G)$. Therefore, $tels \geq \left\lfloor \frac{L_{q+1}}{3} \right\rfloor$.

Theorem 2.3. The path P_n of n vertices admits a total edge Lucas irregular labeling with $tels(P_n) = L_{n-2}$ if $n \ge 4$.

Proof: Consider a path *P_n* with *n* vertices. Let V (P_n) = {*v*₁, *v*₂, *v*₃,..., *v_n*}; E (P_n) = {*e*₁, *e*₂, *e*₃,..., *e_{n-1}*}. Here, *q* = *n*-1. Define *f*: *V*(G) ∪E (G) → {1, 2,..., L_{n-2}} as follows: $f(v_1) = 1$ $f(v_2) = 1$ $f(v_3) = 2$ $f(v_i) = L_{i-2}$, $4 \le i \le n$ $f(e_1) = 1$ $f(e_2) = 1$ $f(e_3) = 2$ $f(e_i) = L_{i-1}$, $4 \le i \le n$ -1 By this labeling, $wt(e_1) = f(v_1) + f(e_1) + f(v_2)$ = 1 + 1 + 1 = 3

$$= L_2$$

$$wt(e_2) = f(v_2) + f(e_2) + f(v_3)$$

$$= 1 + 1 + 2 = 4$$

$$= L_3$$

$$wt(e_3) = f(v_3) + f(e_3) + f(v_4)$$

$$= 2 + 2 + 3 = 7$$

$$= L_4$$

In general,

$$wt(e_i) = f(v_i) + f(e_i) + f(v_{i+1})$$

= $L_{i-2} + L_{i-1} + L_{i-1}$
= $L_i + L_{i-1}$
= $L_{(i+1)-2} + L_{(i+1)-1}$
= $L_{(i+1)}$, $4 \le i \le n-1$

Thus, the weights of $e_1, e_2, e_3, \dots, e_{n-1}$ are $L_2, L_3, L_4, \dots, L_n$ respectively.

Therefore, the path P_n of n vertices admits a total edge Lucas irregular labeling. Also, $tels(P_n) = L_{n-2}$ if $n \ge 4$.

Theorem 2.4. The cycle C_n of length n admits a total edge Lucas irregular labeling with $tels(C_n) = L_{n+1} - L_{n-2} - 1$ if $n \ge 4$.

Proof: Consider a cycle C_n of length n.

Let
$$V(C_n) = \{v_1, v_2, v_3, \dots, v_n\}$$
; $E(C_n) = \{e_1, e_2, e_3, \dots, e_n\}.$
Define $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, L_{n+1} - L_{n-2} - 1\}$
 $f(v_1) = 1$
 $f(v_2) = 1$
 $f(v_3) = 2$
 $f(v_i) = L_{i-2}$, $4 \le i \le n$
 $f(e_1) = 1$
 $f(e_2) = 1$
 $f(e_3) = 2$
 $f(e_i) = L_{i-1}$, $4 \le i \le n-1$
 $f(e_n) = L_{n+1} - L_{n-2} - 1$
By this labeling,
 $wt(e_1) = f(v_1) + f(e_1) + f(v_2)$
 $= 1 + 1 + 1 = 3$
 $= L_2$
 $wt(e_2) = f(v_2) + f(e_2) + f(v_3)$
 $= 1 + 1 + 2 = 4$
 $= L_3$

$$wt(e_3) = f(v_3) + f(e_3) + f(v_4)$$

= 2 + 2 + 3 = 7
= L_4

In general,

$$wt(e_i) = f(v_i) + f(e_i) + f(v_{i+1})$$

= $L_{i-2} + L_{i-1} + L_{i-1}$
= $L_i + L_{i-1}$
= $L_{(i+1)-2} + L_{(i+1)-1}$
= $L_{(i+1)}$, $4 \le i \le n-1$
 $wt(e_n) = f(v_1) + f(e_n) + f(v_n)$
= $1 + L_{n+1} - L_{n-2} - 1 + L_{n-2}$
= L_{n+1}

Thus, the weights of $e_1, e_2, e_3, \dots, e_n$ are $L_2, L_3, L_4, \dots, L_{n+1}$ respectively. Therefore, the cycle C_n of length *n* admits a total edge Lucas irregular labeling.

Also, $tels(C_n) = L_{n+1} - L_{n-2} - 1$ if $n \ge 4$.

Theorem 2.5. The star $K_{1,n}$ of n+1 vertices admits a total edge Lucas irregular labeling with $tels(K_{1,n}) = \left\lfloor \frac{L_{n+1}-1}{2} \right\rfloor$ for all n.

Proof: Consider the star $K_{1,n}$ with n+ 1 vertex.

Let $V(K_{1,n}) = \{v_0, v_1, v_2, \dots, v_n\}$; $E(K_{1,n}) = \{e_1, e_2, e_3, \dots, e_n\}$ Here, q = n.

Define $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, \left\lceil \frac{L_{n+1}-1}{2} \right\rceil\}$ as follows:

$$\begin{split} f(v_0) &= 1\\ f(v_i) &= \left\lceil \frac{L_{i+1}-1}{2} \right\rceil , \ 1 \leq i \leq n\\ f(e_i) &= L_{i+1} - 1 - \left\lceil \frac{L_{i+1}-1}{2} \right\rceil , \ 1 \leq i \leq n \end{split}$$

Now,

$$\begin{split} wt(e_i) &= f(v_0) + f(e_i) + f(v_i) \\ &= 1 + L_{i+1} - 1 - \left\lceil \frac{L_{i+1} - 1}{2} \right\rceil + \left\lceil \frac{L_{i+1} - 1}{2} \right\rceil \\ &= L_{(i+1)} \quad , \quad 1 \le i \le n \end{split}$$

Thus, the weights of $e_1, e_2, e_3, \dots, e_n$ are $L_2, L_3, L_4, \dots, L_{n+1}$ respectively.

Therefore, the star $K_{1,n}$ of n+1 vertices admits a total edge Lucas irregular labeling. Also, $tels(K_{1,n}) = \left\lfloor \frac{L_{n+1}-1}{2} \right\rfloor$ for all n.

Theorem 2.6. Books with 3 sides (*n* copies of C_3 with an edge is common) admits a total edge Lucas irregular labeling and its total edge Lucas irregularity strength is $\leq \left[\frac{L_{2n+2}}{2}\right] - 1$ for all *n*.

Proof: Consider a book with 3 sides (*n* copies of C_3 with an edge is common).

Let $V = \{u, v, u_1, u_2, ..., u_n\}$ be the vertex set and $E = \{e = uv, x_i = uu_i, y_i = vu_i, i = 1, 2, ..., n\}$ be the edge set.

Here,
$$|V| = n + 2$$
 and $|E| = 2n + 1$.
Define $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, \left\lceil \frac{L_{2n+2}}{2} \right\rceil - 1\}$ as follows:
 $f(u) = 1$
 $f(v) = 2$
 $f(u_1) = 1$
 $f(u_i) = \left\lceil \frac{L_{2n+2}}{2} \right\rceil - 1, \quad 2 \le i \le n$
 $f(e) = 1$
 $f(x_1) = 1$
 $f(x_1) = L_{2i+1} - \left\lceil \frac{L_{2i+2}}{2} \right\rceil, \quad 2 \le i \le n$
 $f(y_1) = 4$
 $f(y_i) = L_{2i+2} - \left\lceil \frac{L_{2i+2}}{2} \right\rceil - 1, \quad 2 \le i \le n$
By this labeling.

sy this labeling,

$$wt(e) = f(u) + f(e) + f(v)$$

= 1+1+2 = 4
= L₃
$$wt(x_1) = f(u) + f(x_1) + f(u_1)$$

= 1+1+1 = 3
= L₂
$$wt(x_i) = f(u) + f(x_i) + f(u_i)$$

= 1+ L_{2i+1} - $\left[\frac{L_{2i+2}}{2}\right] + \left[\frac{L_{2i+2}}{2}\right] - 1$
= L_{2i+1}, 2 ≤ i ≤ n

Thus, the weights of $x_{2}, x_{3}, x_{4}, \dots, x_{n}$ are $L_{5}, L_{7}, L_{9}, \dots, L_{2n+1}$. $wt(y_1) = f(v) + f(y_1) + f(u_1)$ = 2 + 4 + 7 = 13 $= L_{4}$ $wt(y_i) = f(v) + f(y_i) + f(u_i)$ $=2+L_{2i+2}-\left[\frac{L_{2i+2}}{2}\right]-1+\left[\frac{L_{2i+2}}{2}\right]-1$ $= L_{2i+2} \quad , \qquad 2 \leq i \leq n$

Thus, the weights of $y_{2}, y_{3}, y_{4}, \dots, y_{n}$ are $L_{6}, L_{8}, L_{10}, \dots, L_{2n+2}$.

Hence the weights of $x_1, e, y_1, x_2, y_2, x_3, y_3, \dots, x_n, y_n$ are $L_2, L_3, L_4, \dots, L_{2n+1}, L_{2n+2}$ respectively.

Therefore, books with 3 sides (*n* copies of C_3 with an edge is common) admits a total edge Lucas irregular labeling.

-

Also, total edge Lucas irregularity strength is $\leq \left[\frac{L_{2n+2}}{2}\right] - 1$ for all *n*.

Theorem 2.7. Books with four sides (*n* copies of C_4 with an edge is common) admits a total edge Lucas irregular labeling and its total edge Lucas irregularity strength is $\left[\frac{L_{3n+2}}{3}\right]$ for all *n*.

Proof: Consider a book with four sides (n copies of C_4 with an edge is common).

Let $V = \{u, v, u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ be the vertex set and $= \{e = uv, e_i = u_i v_i, x_i = u_i v_i, x_i$ $uu_i, y_i = vv_i, i = 1, 2, \dots, n$ be the edge set. Here |V| = 2n + 2 and |E| = 3n + 1. Define $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, \lfloor \frac{L_{3n+2}}{2} \rfloor\}$ as follows: f(u) = 5f(v) = 1 $f(u_1) = f(v_1) = 1$ $f(u_i) = f(v_i) = \left[\frac{L_{3i+2}}{2}\right] \quad 2 \le i \le n$ f(e) = 5 $f(e_1) = 1$ $f(e_i) = L_{3i+2} - 2\left[\frac{L_{3i+2}}{3}\right], \ 2 \le i \le n$ $f(x_1) = 1$ $f(x_i) = L_{3i+1} - 5 - \left[\frac{L_{3i+2}}{2}\right], \quad 2 \le i \le n$ $f(y_1) = 2$ $f(y_i) = L_{3i} - 1 - \left[\frac{L_{3i+2}}{3}\right], \quad 2 \le i \le n$ By this labeling, wt(e) = f(u) + f(e) + f(v)= 5+5+1 = 11 $=L_{5}$ $wt(e_1) = f(u_1) + f(e_1) + f(v_1)$ = 1+1+1=3 $=L_2$

$$wt(e_i) = f(u_i) + f(e_i) + f(v_i)$$

= $\left[\frac{L_{3i+2}}{3}\right] + L_{3i+2} - 2\left[\frac{L_{3i+2}}{3}\right] + \left[\frac{L_{3i+2}}{3}\right]$
= L_{3i+2} , $2 \le i \le n$

Thus, the weights of e_2 , e_3 , e_4 ,, e_n , are L_8 , L_{11} , L_{14} ,, L_{3n+2} . $wt(x_1) = f(u) + f(x_1) + f(u_1)$ = 5+1+1=7 $= L_4$ $wt(x_i) = f(u) + f(x_i) + f(u_i)$ $= 5+L_{3i+1} - 5 - \left[\frac{L_{3i+2}}{3}\right] + \left[\frac{L_{3i+2}}{3}\right]$ $= L_{3i+1}$, $2 \le i \le n$ Thus the weights of $x_2, x_3,, x_n$, are $L_7, L_{10}, L_{13},, L_{3n+1}$ $wt(y_1) = f(v) + f(y_1) + f(v_1)$ = 1+2+1=4

$$= 1+2+1 = 4$$

= L_3
wt(y_i) = $f(v) + f(y_i) + f(v_i)$
= $1+ L_{3i} - 1 - \left[\frac{L_{3i+2}}{3}\right] + \left[\frac{L_{3i+2}}{3}\right]$
= L_{3i} , $2 \le i \le n$

Thus, the weights of $y_{2}, y_{3}, y_{4}, \dots, y_{n}$ are $L_{6}, L_{9}, L_{12}, \dots, L_{3n}$.

Hence, the weights of $e_1, y_1, e, y_2, x_2, e_2, \dots, x_n$, e_n are $L_3, L_4, L_5, L_6, L_7, L_8 \dots L_{3n}, L_{3n+1}, L_{3n+2}$ respectively. Therefore, books with four sides (*n* copies of C_4 with an edge is common) admits a total edge Lucas irregular labeling. Also, total edge Lucas irregularity strength is $\left[\frac{L_{3n+2}}{3}\right]$.

References

- [1] Ali Ahmed and Martin Baca, *Edge irregular total labeling of certain family of graphs*, AKCE J. Combin, 6,No.(2009), 21-29.
- M. Baca, m Stanislav Jendrol, Mirka Miller and Joseph Ryan, On irregular total labeling, Discrete Math., 307(2007), 1378 -138.
- [3] F. Harary, Graph theory, Addition Wesley reading, Mass, 1972.
- [4] Kristinana Wijaya, Slamin, Surahmat and Stanislav Jendrol, *Total vertex irregular labeling of complete bipartite graphs*, JCMCC, 5(2007), 129 136.