International Journal of Mathematics and Soft Computing Vol.5, No.2. (2015), 39 - 49.

Some new results on strongly prime graphs

S. Meena¹, P. Kavitha²

¹ Department of Mathematics, Government Arts College C-Mutlur, Chidambaram– 608 102, Tamil Nadu, India. meenasaravanan14@gmail.com

² Department of Mathematics, S.R.M University Chennai– 603 203, Tamil Nadu, India. kavithavps@gmail.com

Abstract

A graph G = (V, E) with *n* vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding *n* such that the label of each pair of adjacent vertices are relatively prime. A graph *G* which admits prime labeling is called a prime graph and a graph *G* is said to be a strongly prime graph if for any vertex *v* of *G* there exists a prime labeling *f* satisfying f(v)=1. In this paper we prove that the graphs $P_n \cup C_{bk}$, $C_{bk} \cup C_n^*$, $C_k \cup P_n$, $G \square K_1$ where *G* is a $C_n(C_n)$ graph and splitting graph of $K_{1,n}$ are strongly prime graphs.

Keywords: Prime labeling, prime graph, strongly prime graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

In this paper, we consider only simple, finite, undirected and non-trivial graph G = (V(G), E(G)) with vertex set V(G) and edge set E(G). The set of vertices adjacent to a vertex u of G is denoted by N(u). For notations and terminology we refer to Bondy and Murthy [1]. Two integers a and b are said to be relatively prime if their greatest common divisor is 1. The notion of a prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout [9]. H. Fu [4] have proved that path P_n on *n* vertices is a prime graph. Deresky. T [3] proved that the cycle C_n with *n* vertices is a prime graph. Lee.S [6] have proved that wheel W_n is a prime graph iff *n* is even. Around 1980, Roger Etringer conjectured that all trees having prime labeling which is not settled till today. S. K. Vaidya and K.K. Kanani [10] investigated the Prime labeling for some cycle related graph. In [7] and [8] S. Meena and K. Vaithiligam have investigated the prime labeling for some helm related graphs and prime labeling for some crown related graphs.

S.K.Vaidya and Udayan M.Prajapati[11] introduced strongly prime graph and proved C_n , P_n and $K_{1,n}$ are strongly prime graphs and W_n is a strongly prime graph for every even integer $n \ge 4$, in Some

new results on prime graph. C. David Raj and C. Jayasekaran [2] have proved some results on super harmonic mean graphs. For latest Dynamic survey on graph labeling we refer to Gallian [4]. We use the following definitions.

Definition 1.1. If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.

Definition 1.2. Let G = (V(G), E(G)) be a graph with p vertices. A bijection $f : V(G) \rightarrow \{1, 2, ..., p\}$ is called a prime labeling if for each edge $e = uv, gcd\{f(u), f(v)\} = 1$. A graph which admits prime labeling is called a prime graph.

Definition 1.3. A graph G is said to be a strongly prime graph if for any vertex v of G there exists a prime labeling f satisfying f(v)=1

Definition 1.4. The union of two graphs G_1 and G_2 is a graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Definition 1.5. The corona of a graph G on p vertices $v_1, v_2, ..., v_p$ is the graph obtained from G by adding p new vertices $u_1, u_2, ..., u_p$ and new edges $u_i v_i$ for $1 \le i \le p$ and is denoted by $G \square K_1$.

Definition 1.6. The graph $P_n \square K_1$ is called a comb C_{bn} .

Definition 1.7. The crown graph C_n^* is obtained from a cycle C_n by attaching a pendent edge at each vertex of the *n*-cycle.

Definition 1.8. If every edge of graph G is subdivided, then the resulting graph is called barycentric subdivision of graph G.

Definition 1.9. The barycentric subdivision of a cycle C_n in which each pair of newly inserted vertices of adjacent edges are joined by an edge is denoted by $C_n(C_n)$, as it looks like C_n inscribed in C_n .

Definition 1.10. For a graph G, the splitting graph is obtained by adding to each vertex v, a new vertex v' so that v' is adjacent to every vertex that is adjacent to v in G.

Bertrand's Postulate 1.11. For every positive integer n > 1 there is a prime p such that n .

In this paper we investigate strongly prime labeling for some graphs related to cycle, path, comb, crown and star graph.

2 Main Results

Theorem 2.1. The graph $G = P_n \cup C_{bk}$ is a strongly prime graph for all integers $n, k \ge 2$.

Proof: Let *G* be the graph $P_n \cup C_{bk}$ with vertex set $V(G) = \{w_1, w_2, ..., w_n, v_1, v_2, ..., v_k, u_1, u_2, ..., u_k\}$ and edge set $E(G) = \{v_i u_i / 1 \le i \le k\} \cup \{v_i v_{i+1} / 1 \le i \le k-1\} \cup \{w_i w_{i+1} / 1 \le i \le n-1\}$. Here |V(G)| = 2k + n.

Let *a* be the vertex for which we assign label 1. We have the following two cases:

Case (i): When *a* is any vertex of C_{bk} .

Subcase (i): If $a = v_j$ for some $j \in \{1, 2, 3, \dots k\}$ then the function $f : V(G) \rightarrow \{1, 2, 3, \dots 2k + n\}$ defined by

$$\begin{split} f(v_i) &= \begin{cases} 2k+2i-2j+1 & \text{if } i=1,2,\dots j-1; \\ 2i-2j+1 & \text{if } i=j, j+1, j+2,\dots k, \end{cases} \\ f(u_i) &= \begin{cases} 2k+2i-2j+2 & \text{if } i=1,2,\dots j-1; \\ 2i-2j+2 & \text{if } i=j, j+1, j+2,\dots k, \end{cases} \\ f(w_i) &= 2k+i & \text{if } i=1,2,\dots n, \end{cases} \end{split}$$

is a prime labeling for G with $f(a) = f(v_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of v_j in C_{bk} .

Subcase (ii): If $a = u_j$ for some $j \in \{1, 2, 3, ..., k\}$, then define a labeling f_2 using the labeling f defined in subcase(i) as follows: $f_2(v_j) = f(u_j)$, $f_2(u_j) = f(v_j)$ for j = 1, 2, 3, ..., k and $f_2(v) = f(v)$ for all the remaining vertices. Then f_2 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of u_j in C_{bk} .

Case (ii): When *a* is any arbitrary vertex of P_n .

Subcase (i): When *n* is even.

If $a = w_i$ for some $j \in \{1, 2, 3, \dots n\}$ then the function $f: V(G) \rightarrow \{1, 2, 3, \dots 2k + n\}$ defined by

$$\begin{split} f(w_i) &= \begin{cases} n+i-j+1 & \text{if } i=1,2,\dots j-1; \\ i-j+1 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(v_i) &= n+2i-1 & \text{if } i=1,2,\dots k, \end{cases} \\ f(u_i) &= n+2i & \text{if } i=1,2,\dots k, \end{split}$$

is a prime labeling for G with $f(a) = f(w_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of w_j in P_n .

Subcase (ii): When *n* is odd.

If $a = w_j$ for some $j \in \{1, 2, 3, ...n\}$, then define a labeling f_3 using the labeling f defined in subcase(i) of case (ii) as follows: $f_3(u_i) = n + 2i - 1$, $f_3(v_i) = n + 2i$ for i = 1, 2, ...k, and $f_3(v) = f(v)$ for all the remaining vertices. Thus f_3 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of P_n and C_{bk} .

Thus $G = P_n \cup C_{bk}$ is a strongly prime graph for all integers $n, k \ge 2$.

Illustration 2.2. Prime labelings of $P_6 \cup C_{b7}$ and $P_6 \cup C_{b5}$ are given in Figure 1 and 2.

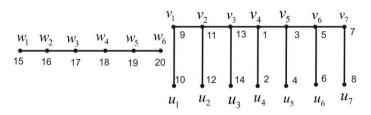


Figure 1: A prime labeling of $P_6 \cup C_{b7}$ having v_4 as label 1.

Figure 2: A prime labeling of $P_6 \cup C_{b5}$ having w_4 as label 1.

Theorem 2.3. The graph $G = C_{bk} \cup C_n^*$ is a strongly prime graph for all integers $n \ge 3$ and $k \ge 2$.

Proof: Let *G* be the graph $C_{bk} \cup C_n^*$ with vertex set $V(G) = \{v_1, v_2, ..., v_k, v_1, v_2, ..., v_k, u_1, u_2, ..., u_n, u_1, u_2, ..., u_n\}$. and edge set $E(G) = \{v_i v_i / 1 \le i \le k\} \cup \{v_i v_{i+1} / 1 \le i \le k-1\} \cup \{u_i u_i / 1 \le i \le n\} \cup \{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{u_1 u_n\}$.

Here |V(G)| = 2k + 2n. Let *a* be the vertex for which we assign label 1 in our labeling method. Then we have the following two cases:

Case (i): When *a* is any arbitrary vertex of C_{bk} .

Subcase (i): If $a = v_j$ for some $j \in \{1, 2, 3, \dots k\}$ then the function $f: V(G) \rightarrow \{1, 2, 3, \dots 2k + 2n\}$ defined by

$$\begin{split} f(v_i) &= \begin{cases} 2k+2i-2j+1 & \text{if } i=1,2,\dots j-1; \\ 2i-2j+1 & \text{if } i=j,j+1,j+2,\dots k, \end{cases} \\ f(v_i^{'}) &= \begin{cases} 2k+2i-2j+2 & \text{if } i=1,2,\dots j-1; \\ 2i-2j+2 & \text{if } i=j,j+1,j+2,\dots k, \end{cases} \\ f(u_i) &= 2k+2i-1 & \text{if } i=1,2,\dots n, \end{cases} \\ f(u_i^{'}) &= 2k+2i & \text{if } i=1,2,\dots n, \end{cases} \end{split}$$

If $f(u_1)$ is a multiple of $f(u_n)$ then interchange $f(u_n)$ and $f(u_n)$.

Now this mapping is a prime labeling for G with $f(a) = f(v_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of v_j in C_{bk} .

Subcase (ii): If $a = v_j$ for some $j \in \{1, 2, 3, ..., k\}$, then define a labeling f_2 using the labeling f defined in subcase (i) as follows: $f_2(v_j) = f(v_j)$, $f_2(v_j) = f(v_j)$ for j = 1, 2, 3, ..., k and $f_2(v) = f(v)$ for all the remaining vertices. Then the resulting labeling f_2 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of v'_j in C_{bk} ...

Case (ii): When *a* is any arbitrary vertex of C_n^*

Subcase (i): If $a = u_i$ for some $j \in \{1, 2, 3, \dots n\}$ then the function $f: V(G) \rightarrow \{1, 2, 3, \dots 2k + 2n\}$ defined by

$$\begin{split} f(u_i) &= \begin{cases} 2(n+i-j)+1 & \text{if } i=1,2,\dots j-1; \\ 2(i-j)+1 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(u_i) &= \begin{cases} 2(n+i-j)+2 & \text{if } i=1,2,\dots j-1; \\ 2(i-j)+2 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(v_i) &= 2n+2i-1 & \text{if } i=1,2,\dots k, \end{cases} \\ f(v_i) &= 2n+2i & \text{if } i=1,2,\dots k, \end{cases} \end{split}$$

is a prime labeling for G with $f(a) = f(u_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of u_j in C_n^* .

Subcase (ii): If $a = u_j$ for some $j \in \{1, 2, 3, ..., n\}$, then define a labeling f_3 using the labeling f defined in subcase (i) of case (ii) as follows: $f_3(u_j) = f(u_j)$, $f_3(u_j) = f(u_j)$ for j = 1, 2, 3, ..., k and $f_3(v) = f(v)$ for all the remaining vertices. Then the resulting graph G is a prime graph and also it is possible to assign label 1 to any arbitrary vertex of u_j . Hence, G is a strongly prime graph.

Illustration 2.4. A prime labeling of $C_{b6} \cup C_6^*$ is given in Figure 3.

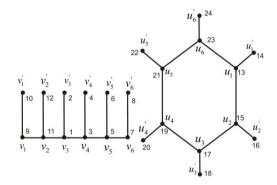


Figure 3: A prime labeling of $C_{b6} \cup C_6^*$ having v_3 as label 1.

Theorem 2.5. The graph $G = C_k \cup P_n$ is a strongly prime graph $n \ge 2$ and even $k \ge 4$.

Proof: Let *G* be the graph $C_k \cup P_n$ with vertex set $V(G) = \{v_1, v_2, ..., v_k, u_1, u_2, ..., u_n\}$ and edge set $E(G) = \{v_i v_{i+1} / 1 \le i \le k - 1\} \cup \{v_1 v_k\} \cup \{u_i u_{i+1} / 1 \le i \le n\}$. Here, |V(G)| = k + n.

Let a be the vertex for which we assign label 1 in our labeling method. Then we have the following two cases:

Case (i): When *a* is any vertex of C_k .

If $a = v_i$ for some $j \in \{1, 2, 3, \dots, k\}$ then the function $f: V(G) \rightarrow \{1, 2, 3, \dots, k+n\}$ defined by

$$f(v_i) = \begin{cases} k+i-j+1 & \text{if } i = 1, 2, \dots j-1; \\ i-j+1 & \text{if } i = j, j+1, j+2, \dots k, \end{cases}$$

$$f(u_i) = k+i & \text{if } i = 1, 2, \dots n, \end{cases}$$

is a prime labeling for G with $f(a) = f(v_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of v_j in C_k .

Case (ii): When *a* is any arbitrary vertex of P_n .

If $a = u_j$ for some $j \in \{1, 2, 3, \dots, n\}$ then the function $f: V(G) \rightarrow \{1, 2, 3, \dots, k+n\}$ defined by

$$\begin{split} f(u_j) &= 1 \,, \\ f(u_i) &= \begin{cases} k+n+i-j+1 & \text{if } i = 1,2,\dots j-1; \\ k+i-j+1 & \text{if } i = j+1, j+2,\dots n \end{cases} \\ f(v_i) &= i+1 & \text{if } i = 1,2,\dots k \,, \end{split}$$

is a prime labeling for G with $f(a) = f(u_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of u_j in P_n , when k is even. Thus from all the cases described above G is a strongly prime graph if k is even.

Illustration 2.6. A prime labeling of $C_8 \cup P_7$ is given in Figure 4.

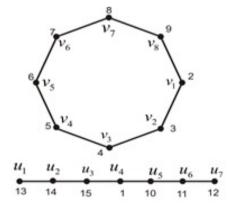


Figure 4: A prime labeling of $C_8 \cup P_7$ having u_4 as label 1.

Theorem 2.7. The graph $G \square K_1$ is a strongly prime graph where $G = C_n(C_n)$ for all integers $n \ge 3$. **Proof:** Let *G* be the graph with vertices $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$. Let $\{u_1, u_2, ..., u_n\}$ and $\{v_1, v_2, ..., v_n\}$ be the corresponding new vertices, join $u_i u_i$ and $v_i v_i$ in *G*. We get the graph $G_1 = G \square K_1$ where $G = C_n(C_n)$. Now the vertex set and edge set of G_1 are given by $V(G_1) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and $E(G_1) = \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_i, u_i, u_i, v_i v_i / 1 \le i \le n\} \cup \{v_i u_{i+1} / 1 \le i \le n-1\}$. Then, $|V(G_1)| = 4n$.

Let a be the vertex for which we assign label 1. Then we have the following four cases: **Case (i):** When a is of degree 3.

Let $a = u_j$ for some $j \in \{1, 2, 3, ..., n\}$ then the function $f : V(G_1) \rightarrow \{1, 2, 3, ..., 4n\}$ defined by

$$\begin{split} f(u_i) &= \begin{cases} 4n+4i-4j+1 & \text{if } i=1,2,\dots j-1; \\ 4i-4j+1 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(v_i) &= \begin{cases} 4n+4i-4j+3 & \text{if } i=1,2,\dots j-2; \\ 4i-4j+3 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(u_i') &= \begin{cases} 4n+4i-4j+2 & \text{if } i=1,2,3,\dots j-1; \\ 4i-4j+2 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \\ f(v_i') &= \begin{cases} 4n+4i-4j+4 & \text{if } i=1,2,3,\dots j-2; \\ 4i-4j+4 & \text{if } i=j, j+1, j+2,\dots n, \end{cases} \end{split}$$

 $f(v_{j-1}) = \begin{cases} 4n, & \text{if } 4n-1 \text{ is a multipleof 3} \\ 4n-1, & \text{if } 4n-1 \text{ is not a multipleof 3} \end{cases}$

$$f(v_{j-1}) = \begin{cases} 4n-1, & \text{if } 4n-1 \text{ is a multipleof 3} \\ 4n, & \text{if } 4n-1 \text{ is not a multipleof 3} \end{cases}$$

is a prime labeling for G_1 with $f(a) = f(u_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of degree 3 in G_1 .

Case (ii): Let $a = u_j$ for some $j \in \{1, 2, 3, ..., n\}$, then define a labeling f_2 using the labeling f defined in Case (i) as follows: $f_2(u_j) = f(u_j)$, $f_2(u_j) = f(u_j)$ for j = 1, 2, 3, ..., k and $f_2(v) = f(v)$ for all the remaining vertices. Then the resulting labeling f_2 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex of $a = u_j$ in G_1 .

Case (iii): Let $a = v_i$ for some $j \in \{1, 2, 3, ..., n\}$ then the function $f: V(G_1) \rightarrow \{1, 2, 3, ..., 4n\}$ defined by

$$\begin{split} f\left(u_{i}\right) &= \begin{cases} 4n+4i-4j-1 & \text{if } i=1,2,\ldots j;\\ 4i-4j-1 & \text{if } i=j+1,j+2,\ldots n, \end{cases} \\ f\left(u_{i}^{'}\right) &= \begin{cases} 4n+4i-4j & \text{if } i=1,2,3,\ldots j;\\ 4i-4j & \text{if } i=j+1,j+2,\ldots n, \end{cases} \\ f\left(v_{i}\right) &= \begin{cases} 4n+4i-4j+1 & \text{if } i=1,2,\ldots j-1;\\ 4i-4j+1 & \text{if } i=j,j+1,j+2,\ldots n, \end{cases} \\ f\left(v_{i}^{'}\right) &= \begin{cases} 4n+4i-4j+2 & \text{if } i=1,2,3,\ldots j-1;\\ 4i-4j+2 & \text{if } i=j,j+1,j+2,\ldots n, \end{cases} \end{split}$$

is a prime labeling for G_1 with $f(a) = f(v_j) = 1$. Thus f is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex $a = v_j$ for $j \in \{1, 2, 3, ..., n\}$ in G_1 .

Case (iv): Let $a = v_j$ for some $j \in \{1, 2, 3, ..., n\}$, then define a labeling f_3 using the labeling f defined in case (iii) as follows: $f_3(v_j) = f(v_j)$, $f_3(v_j) = f(v_j)$, for j = 1, 2, 3, ..., k and $f_3(v) = f(v)$ for all remaining vertices. Then f_3 is a prime labeling and also it is possible to assign label 1 to any arbitrary vertex $a = v_j$ in G_1 . Hence, G_1 is a strongly prime graph.

Illustration 2.8. A prime labeling of $G \square K_1$ where $G = C_7(C_7)$ is given in Figure 5.

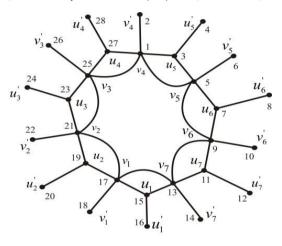


Figure 5: A prime labeling of $G \square K_1$ where $G = C_7(C_7)$ having v_4 as label 1.

Theorem 2.9. The splitting graph of a star is a strongly prime graph.

Proof: Let $v_0, v_1, v_2, ..., v_n$ be the vertices of star graph $K_{1,n}$ with v_0 be the apex vertex. Let G be the splitting graph of $K_{1,n}$ and $v'_0, v'_1, v'_2, ..., v'_n$ be the newly added vertices to $K_{1,n}$ to form G. Let x be the vertex for which we assign label 1. Then we have the following four cases:

Case (i): If x is the first apex vertex $x = v_0$, then the function $f: V(G) \rightarrow \{1, 2, 3, \dots, 2(n+1)\}$ defined by

$$f(v_i) = i+1$$
 for $i = 0, 1, 2, ..., n$,

$$f(v_0) = p,$$

where *p* is the largest prime less than or equal to 2(n+1). According to Bertrand's postulate such a prime exists with n+1 .

$$f(v_i) = i$$
 for $i = \{1, 2, \dots, n\} - \{p\}$,

Then clearly f is an injection. For an arbitrary edge e = ab of G we claim that gcd(f(a), f(b)) = 1. **Subcase (i):** If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(1, f(v_i)) = 1$.

Subcase (ii): If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(1, f(v_i)) = 1$.

Subcase (iii): If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(p, f(v_i)) = 1$

as *p* is Co-prime to every integer from $\{1, 2, ..., n+1\}$. Hence this function *f* is a prime labeling on *G* with $f(x) = f(v_0) = 1$.

Case (ii): If x is the second apex vertex $x = v_0^{'}$, then define a labeling f_2 using the labeling f defined in Case (i) as follows: $f_2(v_0) = f(v_0^{'})$, $f_2(v_0^{'}) = f(v_0)$ for j = 1, 2, 3, ...k and $f_2(v) = f(v)$ for all the remaining vertices. Then the resulting labeling f_2 is a prime labeling.

Case (iii): When v is of degree 2 ($x = v_i$).

If $x = v_j$ for some $j \in \{1, 2, 3, ...n\}$, then define the function $f: V(G) \rightarrow \{1, 2, 3, ...2(n+1)\}$ as $f(v_0) = p_1$, where p_1 is the largest prime less than or equal to n+1, $f(v_0) = p_2$, where p_2 is the largest prime less than or equal to 2(n+1). According to Bertrand's postulate,

$$f(v_i) = \begin{cases} i & \text{for } i = 1, 2, 3, \dots, p_1 - 1; \\ i + 1 & \text{for } i = p_1, p_1 + 1, \dots, n, \end{cases}$$

$$f(v_i) = \begin{cases} n+i+1 & \text{for } i = 1, 2, 3, \dots \left(\frac{p_2 - 1}{2} - 1\right); \\ n+i+2 & \text{for } i = \frac{p_2 - 1}{2}, \frac{p_2 - 1}{2} + 1, \dots n, \end{cases}$$

Then clearly f is an injection. For an arbitrary edge e = ab of G we claim that gcd(f(a), f(b)) = 1. To prove our claim the following cases are to be considered.

Subcase (i): If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(p_2, f(v_i)) = 1$ as p_2 is Coprime to every integer from $\{1, 2, ..., n+1\} - \{p_1\}$.

Subcase (ii): If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(p_2, f(v_i)) = 1$ as p_2 is Coprime to every integer from $\{n+2, n+3, ..., 2n+2\} - \{p_2\}$.

Subcase (iii): If $e = v_0 v_i$ for some $i \in \{1, 2, ..., n\}$ then $gcd(f(v_0), f(v_i)) = gcd(p_1, f(v_i)) = 1$ as p_1 is Coprime to every integer from $\{1, 2, ..., n+1\} - \{p_1\}$. Then f is a prime labeling for G with $f(x) = f(v_j) = 1$.

Case (iv): When v is of degree 2 ($x = v_i$).

If $x = v_j^{'}$ for some $j \in \{1, 2, 3, ..., n\}$, then define a labeling f_3 using the labeling f defined in case (iii) as follows: $f_3(v_1) = f(v_1)$, $f_3(v_1) = f(v_1)$ and for j = 1, 2, 3, ..., k and $f_3(v) = f(v)$ for all remaining vertices. Then f_3 is a prime labeling for G. Hence, G is a strongly prime graph.

Illustration 2.10. Prime labelings of the splitting graph of $K_{1.5}$ is given in Figure 6 and 7.

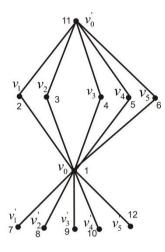


Figure 6: A prime labeling of the splitting graph of $K_{1,5}$ having the first apex vertex(v_0) as label 1.

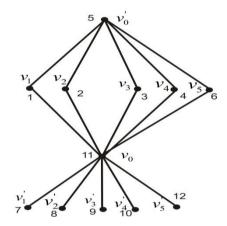


Figure 7: A prime labeling of the splitting graph of $K_{1,5}$ having v is of degree 2 ($x = v_i$) as label 1.

Acknowledgment: The authors are highly thankful to the anonymous referees for their kind suggestions and comments.

References

- [1] J.A. Bondy and U.S.R.Murthy, *Graph Theory and Applications* (North-Holland), New York, 1976.
- [2] C. David Raj and C. Jayasekaran, Some Results on Super Harmonic Mean Graphs, International Journal of Mathematics Trends and Technology, Vol.6 (2014), 215-224.
- [3] T. Deretsky, S.M. Lee and J. Mitchem, *On Vertex Prime Labeling of Graphs in Graph Theory*, Combinatorics and Applications, Vol. 1(1991), 359-369.

- [4] H.C. Fu and K.C.Huang, On Prime labeling Discrete Math, 127(1994), 181-186.
- [5] Gallian J. A, *A dynamic survey of graph labeling*, The Electronic Journal of Combinations 16 # DS6, 2009.
- [6] S.M.Lee, L.Wui and J.Yen *On the amalgamation of Prime graphs Bull*, Malaysian Math.Soc.(Second Series), 11(1988), 59 67.
- [7] S. Meena and K. Vaithilingam, *Prime labeling for some helm related graphs*, International Journal of Innovative Research in Science, Engineering and Technology Vol.2, Issue 4(2013), 1075-1085.
- [8] S. Meena and K. Vaithilingam, *Prime labeling for some crown related graphs*, International Journal of Scientific& Technology Research, Vol.2, Issue 3(2013), 92 95.
- [9] A.Tout A.N.Dabboucy and K.Howalla, *Prime labeling of graphs*, Nat. Acad. Sci letters 11(1982), 365-368.
- [10] S.K.Vaidya and K.K. Kanani, Prime labeling for some cycle related graphs, Journal of Mathematics Research, Vol.2. No.2 (2010), 98-104.
- [11] S.K.Vaidya and Udayan M.Prajapati, Some new results on prime graph, Open Journal of Discrete Mathematics (2012), 99-104.