International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 29 - 37.



ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

## Graceful labeling of bi-partite related graphs

#### S. Sudha, V. Kanniga

Ramanujan Institute for Advanced Study in Mathematics University of Madras, Chennai-05, Tamilnadu, India. sudhasubramanian1955@gmail.com, kan15gemini@gmail.com

#### Abstract

In this paper we have shown that the splitting graph of the complete bi-partite graph  $K_{m,n}$  is graceful and the tensor product of the complete bi-partite graph  $K_{m,n}$  and a path graph  $P_k(k > 1)$  is also graceful.

**Keywords**: Graceful labeling, odd-even graceful labeling, splitting graph, tensor product. **AMS Subject Classification(2010):** 05C78.

#### 1 Introduction

In 1967, Rosa[3] introduced the concept of labeling the edges and Golomb[2] gave the name graceful for such labelings. Gallian[1] has given a dynamic survey of graph labeling. Many graceful graphs are constructed from standard graphs by using various operations. Sekar[4] proved that the splitting graph of a path  $P_k$  and the splitting graph of even cycle  $C_n$  are odd graceful graphs. Vaidya et al.[6] proved that the splitting graph of  $K_{1,n}$  as well as the tensor product of  $K_{1,n}$  and  $P_2$  admits odd graceful labeling. Sudha et al.[5] proved that the splitting graph of  $K_{1,n}$  admits graceful labeling and the tensor product of  $K_{1,n}$  and  $P_2$  admit odd-even graceful labeling.

In this paper we show that the splitting graph of the complete bi-partite graph  $K_{m,n}$  and the Tensor product of the complete bi-partite graph  $K_{m,n}$  and the path  $P_k$  for any integer values of m, n, k > 1 are graceful. Also we establish that the odd-even graceful labeling of the tensor product of  $K_{1,n}$  and  $P_k$  which is the generalization of the result in [5].

#### 2 Basic definitions

**Definition 2.1.** A graph G = (V(G), E(G)) with p vertices and q edges is said to admit graceful labeling if  $f : V(G) \longrightarrow \{0, 1, 2, ..., q\}$  such that distinct vertices receive distinct numbers and  $\{|f(u) - f(v)| | uv \in E(G)\} = \{1, 2, 3, ..., q\}.$ 

**Definition 2.2.** A graph G = (V(G), E(G)) with p vertices and q edges is said to admit *odd*even graceful labeling if  $f : V(G) \longrightarrow \{0, 1, 2, ..., 2q\}$  is injective and the induced function,  $f^* : E(G) \longrightarrow \{2, 4, 6, ..., 2q\}$  defined as  $f^*(uv) = |f(u) - f(v)|$  is bijective. It should be noted that the vertices take both odd and even labelings whereas the edges take only even labelings. That is the reason we call it as odd-even gracefulness.

**Definition 2.3.** For any graph G, the splitting graph is obtained by adding to each vertex v, a new vertex v' so that v' is adjacent to each and every vertex that is adjacent to v in G.

**Definition 2.4.** The tensor product of two graphs  $G_1$  and  $G_2$  denoted by  $G_1 \otimes G_2$  has the vertex set  $V(G_1 \otimes G_2) = V(G_1) \times V(G_2)$  and the edge set  $E(G_1 \otimes G_2) = \{(u_1, v_1)(u_2, v_2)/u_1u_2 \in E(G_1) \text{ and } v_1v_2 \in E(G_2)\}.$ 

#### 3 The splitting graph of the complete bi-partite graph $K_{m,n}$ is graceful

**Theorem 3.1.** The splitting graph of the complete bi-partite graph  $K_{m,n}$  is graceful.

**Proof:** Let  $u_1, u_2, \ldots, u_m$  and  $v_1, v_2, \ldots, v_n$  be the vertices of the complete bi-partite graph  $K_{m,n}$ .

Let G be the splitting graph of  $K_{m,n}$ . Let  $u'_1, u'_2, \ldots, u'_m$  and  $v'_1, v'_2, \ldots, v'_n$  be the newly added vertices in  $K_{m,n}$  to form G. G has 2(m+n) vertices and 3mn edges.

Define  $f: V(G) \longrightarrow \{0, 1, 2, \dots, 3mn\}$  as follows:

| $f(u_{i}^{'})=i-1,$             | $1 \leq i \leq m$ |
|---------------------------------|-------------------|
| $f(v_i) = (3n+1-i)m,$           | $1 \leq i \leq n$ |
| $f(u_i) = mn + (i-1),$          | $1 \leq i \leq m$ |
| $f(v_{i}^{'}) = (2n + 1 - i)m,$ | $1 \leq i \leq n$ |

The above defined function f is a graceful labeling for the splitting graph of the complete bi-partite graph  $K_{m,n}$ .

Hence, the splitting graph of the complete bi-partite graph  $K_{m,n}$  is graceful.

**Illustration 3.2.** The splitting graph of the complete bi-partite graph  $K_{5,7}$  consists of 24 vertices and 105 edges. A graceful labeling of  $K_{5,7}$  is given in Figure 1.

Graceful labeling of bi-partite related graphs



Figure 1. Splitting graph of  $K_{5,7}$ 

# 4 Gracefulness of the tensor product of the complete bi-partite graph $K_{m,n}$ with the path $P_2$ and $P_3$

**Theorem 4.1.** The tensor product of the complete bi-partite graph  $K_{m,n}$  for m, n > 1 and the path  $P_2$  admits graceful labeling.

**Proof:** Let  $u_1, u_2, \ldots, u_{m+n}$  be the vertices of the complete bi-partite graph  $K_{m,n}$  and let  $v_1, v_2$  be the vertices of the path graph  $P_2$ . The tensor product of the complete bi-partite graph  $K_{m,n}$  and the path  $P_2$  is denoted by  $K_{m,n} \otimes P_2$ .

Let  $G = K_{m,n} \otimes P_2$ . Then G consists of 2(m+n) vertices and 2mn edges. We divide the vertices of  $K_{m,n} \otimes P_2$  into two disjoint sets

$$V_1 = \{(u_i, v_1) / i = 1, 2, \dots, m+n\}$$
$$V_2 = \{(u_j, v_2) / j = 1, 2, \dots, m+n\}$$

Define  $f: V(G) \longrightarrow \{0, 1, 2, \dots, 2mn\}$  by

$$f(u_i, v_1) = \begin{cases} (i-1)n, & 1 \le i \le m \\ m(n+1)+2-i, & m+1 \le i \le m+n \end{cases}$$
$$f(u_j, v_2) = \begin{cases} (j-1)n+1, & 1 \le j \le m \\ q+m-j+1, & m+1 \le j \le m+n \end{cases}$$

The function f defined above is a graceful labeling for the tensor product of complete bipartite graph  $K_{m,n}$  and the path  $P_2$ . Hence,  $K_{m,n} \otimes P_2$  is a graceful graph.

**Illustration 4.2.** Consider the complete bi-partite graph  $K_{3,4}$  and the path  $P_2$ . The resultant

graph  $K_{3,4} \otimes P_2$  consists of 14 vertices and 24 edges. A graceful labeling of  $K_{3,4} \otimes P_2$  is given in Figure 2.



Figure 2. Tensor product of  $K_{3,4}$  and  $P_2$ 

**Theorem 4.3.** The tensor product of the complete bi-partite graph  $K_{m,n}$  for m, n > 1 and the path  $P_3$  admits graceful labeling.

**Proof:** Let  $u_1, u_2, \ldots, u_{m+n}$  be the vertices of the complete bi-partite graph  $K_{m,n}$  and let  $v_1, v_2$  and  $v_3$  be the vertices of the path graph  $P_3$ . The tensor product of the complete bipartite graph  $K_{m,n}$  and the path  $P_3$  is denoted by  $K_{m,n} \otimes P_3$ .

Let  $G = K_{m,n} \otimes P_3$ . Then G consists of 3(m+n) vertices and 4mn edges. We divide the vertices of  $K_{m,n} \otimes P_3$  into three disjoint sets for each vertex in  $P_3$  as  $V_1, V_2$  and  $V_3$  and they are given as

$$V_1 = \{(u_i, v_1) / i = 1, 2, \dots, m+n\}$$
$$V_2 = \{(u_j, v_2) / j = 1, 2, \dots, m+n\}$$
$$V_3 = \{(u_k, v_3) / k = 1, 2, \dots, m+n\}$$

Define  $f: V(G) \longrightarrow \{0, 1, 2, \dots, 4mn\}$  by

$$f(u_i, v_1) = \begin{cases} m + ni + 1, & 1 \le i \le m \\ q - m(i - m - 1), & m + 1 \le i \le m + n \end{cases}$$

$$f(u_j, v_2) = \begin{cases} j - 1, & 1 \le j \le m \\ j, & m + 1 \le j \le m + n \end{cases}$$

$$f(u_k, v_3) = \begin{cases} n(m + k) + (m + 1), & 1 \le k \le m \\ q - mn - m(k - m - 1), & m + 1 \le k \le m + n \end{cases}$$

The function f defined above provides graceful labeling for the tensor product of the complete bi-partite graph  $K_{m,n}$  and the path  $P_3$  that is,  $K_{m,n} \otimes P_3$  is a graceful graph.

**Illustration 4.4.** Consider the complete bi-partite graph  $K_{2,3}$  and the path  $P_3$ . The resultant graph  $K_{2,3} \otimes P_3$  consists of 15 vertices and 24 edges. A graceful labeling of  $K_{2,3} \otimes P_3$  is shown in Figure 3.



Figure 3. Tensor product of  $K_{2,3}$  and  $P_3$ 

## 5 Generalization of the tensor product of $K_{m,n}$ with $P_k$

**Theorem 5.1.** The tensor product of the complete bi-partite graph  $K_{m,n}$  for m, n > 1 and the path  $P_k$  where k > 3 admits graceful labeling.

**Proof:** Let  $u_1, u_2, \ldots, u_{m+n}$  be the vertices of the complete bi-partite graph  $K_{m,n}$  and let  $v_1, v_2, \ldots, v_k$  be the vertices of the path graph  $P_k$ . The tensor product of the complete bipartite graph  $K_{m,n}$  and the path  $P_k$  is denoted by  $K_{m,n} \otimes P_k$ .

Let  $G = K_{m,n} \otimes P_k$ . Then G consists of k(m+n) vertices and 2(k-1)mn edges. We divide the vertices of  $K_{m,n} \otimes P_k$  into k disjoint sets

$$V_j = \{(u_i, v_j) \mid i = 1, 2, \dots, m + n \text{ and } j = 1, 2, \dots, k\}$$

We prove the theorem in two cases.

Case 1: k is even.

Define  $f: V(G) \longrightarrow \{0, 1, 2, \dots, 2(k-1)mn\}$  as follows: For odd j,

$$f(u_i, v_j) = \begin{cases} q + m - \left(\frac{k}{2}\right)mn - \left(\frac{j-1}{2}\right)mn - \left(\frac{k}{2} - 1\right)mn - n(i-1), & 1 \le i \le m, \\ q + m - \left(\frac{j-1}{2}\right)mn - m(i-m), & m+1 \le i \le m+n. \end{cases}$$

For even j,

$$f(u_i, v_j) = \left(\frac{j-2}{2}\right)mn + (i-1); \quad 1 \le i \le m+n.$$

Then f is a graceful labeling for G and hence G is graceful. Case 2: k is odd.

Define  $f: V(G) \longrightarrow \{0, 1, 2, \dots, 2(k-1)mn\}$  as follows: For odd j,

$$f(u_i, v_j) = \begin{cases} q + m - \left(\frac{k+1}{2}\right)mn - \left(\frac{j-1}{2}\right)mn - \left(\frac{k-1}{2} - 1\right)mn - n(i-1), & 1 \le i \le m, \\ q + m - \left(\frac{j-1}{2}\right)mn - m(i-m), & m+1 \le i \le m+n. \end{cases}$$

For even j,

$$f(u_i, v_j) = \left(\frac{j-2}{2}\right)mn + (i-1); \quad 1 \le i \le m+n.$$

Then f is a graceful labeling for G.

From both the cases, we have the tensor product of the complete bi-partite graph  $K_{m,n}$  and the path  $P_k$  is graceful.

**Illustration 5.2.** A graceful labeling of the tensor product  $K_{4,4} \otimes P_4$  is shown in Figure 4.



**Illustration 5.3.** A graceful labeling of the tensor product  $K_{4,5} \otimes P_5$  is shown in Figure 5.



Figure 5. Tensor product of  $K_{4,5}$  and  $P_5$ 

## 6 Odd-even graceful labeling of the tensor product of $K_{1,n}$ with $P_k$

**Theorem 6.1.** The tensor product of the complete bi-partite graph  $K_{1,n}$  and the path  $P_k$  where n, k > 1 admits odd-even graceful labeling.

**Proof:** Let  $u_1, u_2, \ldots, u_{n+1}$  be the vertices of the complete bi-partite graph  $K_{1,n}$  and let  $v_1, v_2, \ldots, v_k$  be the vertices of the path graph  $P_k$ . The tensor product of the complete bipartite graph  $K_{1,n}$  and the path  $P_k$  is denoted by  $K_{1,n} \otimes P_k$ .

Let  $G = K_{1,n} \otimes P_k$ . Then G consists of k(n+1) vertices and 2n(k-1) edges. We divide the vertices of  $G = K_{1,n} \otimes P_k$  into k disjoint sets

$$V_j = \{(u_i, v_j) \mid i = 1, 2, \dots, n+1 \text{ and } j = 1, 2, \dots, k\}$$

We prove the theorem in two cases.

Case 1: k is odd.

Define  $f: V(G) \longrightarrow \{0, 2, 4, \dots, 2q\}$  where q = 2n(k-1) as follows:

$$f(u_1, v_{2j-1}) = 2n(j-1) + 1, \qquad 1 \le j \le \frac{k+1}{2}$$
  
$$f(u_1, v_{2j}) = 2n(j-1), \qquad 1 \le j \le \frac{k-1}{2}$$

For  $2 \le i \le n+1$ ,  $1 \le j \le k$ ,

$$f(u_i, v_j) = \begin{cases} 2q - n(j-1) + 2 - 2(i-1), & \text{for odd j} \\ 2n(k-1) + 3 - n(j-2) - 2(i-1), & \text{for even j} \end{cases}$$

Then f is a graceful labeling for G. Case 2: k is even. Define  $f: V(G) \longrightarrow \{0, 2, 4, \dots, 2q\}$  where q = 2n(k-1) as follows:

$$f(u_1, v_{2j-1}) = 2n(j-1) + 1, 1 \le j \le \frac{k}{2}$$
$$f(u_1, v_{2j}) = 2n(j-1), 1 \le j \le \frac{k}{2}$$

For  $2 \leq i \leq n+1, \ 1 \leq j \leq k$ ,

$$f(u_i, v_j) = \begin{cases} 2q - n(j-1) + 2 - 2(i-1), & \text{for odd j,} \\ 2n(k-1) + 3 - n(j-2) - 2(i-1), & \text{for even j.} \end{cases}$$

Then f is a graceful labeling for G. From both the cases, tensor product of the complete bipartite graph  $K_{1,n}$  and the path  $P_k$  where n, k > 1 admits an odd-even graceful labeling.

**Illustration 6.2.** Consider the complete bi-partite graph  $K_{1,4}$  and the path  $P_7$ . The resultant graph  $K_{1,4} \otimes P_7$  consists of 35 vertices and 48 edges. An odd-even graceful labeling of  $K_{1,4} \otimes P_7$  is shown in Figure 6.



Figure 6. Tensor product of  $k_{1,4}$  and  $P_7$ 

**Illustration 6.2** Consider the complete bi-partite graph  $K_{1,5}$  and the path  $P_6$ . The resultant graph  $K_{1,5} \otimes P_6$  consists of 36 vertices and 50 edges. An odd-even graceful labeling of  $K_{1,5} \otimes P_6$  is shown in Figure 7.

36



Figure 7. Tensor product of  $K_{1,5}$  and  $P_6$ 

### References

- J. A. Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18, #DS6, 2011.
- [2] S. W. Golomb, *How to number a graph*. In: Graph Theory and Computing(R. C. Read. Ed.) Academic Press, New York, 23 - 37.
- [3] A. Rosa, On Certain Valuations of the Vertices of a Graph, In: Theory of Graphs, (International Symposium, Rome, July 1966). Gordon and Breach, N.Y. and Dunod Paris, 349 - 355.
- [4] C. Sekar, Studies in Graph Theory. Ph.D. Thesis, Madurai Kamaraj University, Madurai, 2002.
- [5] S. Sudha and V. Kanniga, Gracefulness of Some New Class of Graphs, Engineering Sciences International Research Journal, Vol 1, Issue 1(2013), 81 - 83.
- [6] S. K. Vaidya and Lekha Bijukumar, Odd graceful labeling of some new graphs, Modern Applied Science, Vol(4), No.10(2010), 65 - 70.