Graceful labeling of bi-partite related graphs

S. Sudha, V. Kanniga
Ramanujan Institute for Advanced Study in Mathematics
University of Madras, Chennai-05, Tamilnadu, India.
sudhasubramanian1955@gmail.com, kan15gemini@gmail.com

Abstract

In this paper we have shown that the the splitting graph of the complete bi-partite graph $K_{m, n}$ is graceful and the tensor product of the complete bi-partite graph $K_{m, n}$ and a path graph $P_{k}(k>1)$ is also graceful.

Keywords: Graceful labeling, odd-even graceful labeling, splitting graph, tensor product. AMS Subject Classification(2010): 05C78.

1 Introduction

In 1967, Rosa[3] introduced the concept of labeling the edges and Golomb[2] gave the name graceful for such labelings. Gallian[1] has given a dynamic survey of graph labeling. Many graceful graphs are constructed from standard graphs by using various operations. Sekar[4] proved that the splitting graph of a path P_{k} and the splitting graph of even cycle C_{n} are odd graceful graphs. Vaidya et al.[6] proved that the splitting graph of $K_{1, n}$ as well as the tensor product of $K_{1, n}$ and P_{2} admits odd graceful labeling. Sudha et al.[5] proved that the splitting graph of $K_{1, n}$ admits graceful labeling and the tensor product of $K_{1, n}$ and P_{2} admit odd-even graceful labeling.

In this paper we show that the splitting graph of the complete bi-partite graph $K_{m, n}$ and the Tensor product of the complete bi-partite graph $K_{m, n}$ and the path P_{k} for any integer values of $m, n, k>1$ are graceful. Also we establish that the odd-even graceful labeling of the tensor product of $K_{1, n}$ and P_{k} which is the generalization of the result in [5].

2 Basic definitions

Definition 2.1. A graph $G=(V(G), E(G))$ with p vertices and q edges is said to admit graceful labeling if $f: V(G) \longrightarrow\{0,1,2, \ldots, q\}$ such that distinct vertices receive distinct numbers and $\{|f(u)-f(v)| / u v \in E(G)\}=\{1,2,3, \ldots, q\}$.

Definition 2.2. A graph $G=(V(G), E(G))$ with p vertices and q edges is said to admit oddeven graceful labeling if $f: V(G) \longrightarrow\{0,1,2, \ldots, 2 q\}$ is injective and the induced function, $f^{*}: E(G) \longrightarrow\{2,4,6, \ldots, 2 q\}$ defined as $f^{*}(u v)=|f(u)-f(v)|$ is bijective.

It should be noted that the vertices take both odd and even labelings whereas the edges take only even labelings. That is the reason we call it as odd-even gracefulness.

Definition 2.3. For any graph G, the splitting graph is obtained by adding to each vertex v, a new vertex v^{\prime} so that v^{\prime} is adjacent to each and every vertex that is adjacent to v in G.

Definition 2.4. The tensor product of two graphs G_{1} and G_{2} denoted by $G_{1} \otimes G_{2}$ has the vertex set $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set $E\left(G_{1} \otimes G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) / u_{1} u_{2}\right.$ $\in E\left(G_{1}\right)$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

3 The splitting graph of the complete bi-partite graph $K_{m, n}$ is graceful

Theorem 3.1. The splitting graph of the complete bi-partite graph $K_{m, n}$ is graceful.

Proof: Let $u_{1}, u_{2}, \ldots, u_{m}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the complete bi-partite graph $K_{m, n}$.

Let G be the splitting graph of $K_{m, n}$. Let $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{m}^{\prime}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the newly added vertices in $K_{m, n}$ to form G. G has $2(m+n)$ vertices and $3 m n$ edges.

Define $f: V(G) \longrightarrow\{0,1,2, \ldots, 3 m n\}$ as follows:

$$
\begin{array}{lrl}
f\left(u_{i}^{\prime}\right) & =i-1, & 1 \leq i \leq m \\
f\left(v_{i}\right) & =(3 n+1-i) m, & 1 \leq i \leq n \\
f\left(u_{i}\right) & =m n+(i-1), & 1 \leq i \leq m \\
f\left(v_{i}^{\prime}\right) & =(2 n+1-i) m, & 1 \leq i \leq n
\end{array}
$$

The above defined function f is a graceful labeling for the splitting graph of the complete bi-partite graph $K_{m, n}$.

Hence, the splitting graph of the complete bi-partite graph $K_{m, n}$ is graceful.

Illustration 3.2. The splitting graph of the complete bi-partite graph $K_{5,7}$ consists of 24 vertices and 105 edges. A graceful labeling of $K_{5,7}$ is given in Figure 1.

Figure 1. Splitting graph of $K_{5,7}$

4 Gracefulness of the tensor product of the complete bi-partite graph $K_{m, n}$ with the path P_{2} and P_{3}

Theorem 4.1. The tensor product of the complete bi-partite graph $K_{m, n}$ for $m, n>1$ and the path P_{2} admits graceful labeling.

Proof: Let $u_{1}, u_{2}, \ldots, u_{m+n}$ be the vertices of the complete bi-partite graph $K_{m, n}$ and let v_{1}, v_{2} be the vertices of the path graph P_{2}. The tensor product of the complete bi-partite graph $K_{m, n}$ and the path P_{2} is denoted by $K_{m, n} \otimes P_{2}$.

Let $G=K_{m, n} \otimes P_{2}$. Then G consists of $2(m+n)$ vertices and $2 m n$ edges. We divide the vertices of $K_{m, n} \otimes P_{2}$ into two disjoint sets

$$
\begin{aligned}
& V_{1}=\left\{\left(u_{i}, v_{1}\right) / i=1,2, \ldots, m+n\right\} \\
& V_{2}=\left\{\left(u_{j}, v_{2}\right) / j=1,2, \ldots, m+n\right\}
\end{aligned}
$$

Define $f: V(G) \longrightarrow\{0,1,2, \ldots, 2 m n\}$ by

$$
\begin{aligned}
& f\left(u_{i}, v_{1}\right)= \begin{cases}(i-1) n, & 1 \leq i \leq m \\
m(n+1)+2-i, & m+1 \leq i \leq m+n\end{cases} \\
& f\left(u_{j}, v_{2}\right)= \begin{cases}(j-1) n+1, & 1 \leq j \leq m \\
q+m-j+1, & m+1 \leq j \leq m+n\end{cases}
\end{aligned}
$$

The function f defined above is a graceful labeling for the tensor product of complete bipartite graph $K_{m, n}$ and the path P_{2}. Hence, $K_{m, n} \otimes P_{2}$ is a graceful graph.

Illustration 4.2. Consider the complete bi-partite graph $K_{3,4}$ and the path P_{2}. The resultant
graph $K_{3,4} \otimes P_{2}$ consists of 14 vertices and 24 edges. A graceful labeling of $K_{3,4} \otimes P_{2}$ is given in Figure 2.

Figure 2. Tensor product of $K_{3,4}$ and P_{2}

Theorem 4.3. The tensor product of the complete bi-partite graph $K_{m, n}$ for $m, n>1$ and the path P_{3} admits graceful labeling.

Proof: Let $u_{1}, u_{2}, \ldots, u_{m+n}$ be the vertices of the complete bi-partite graph $K_{m, n}$ and let v_{1}, v_{2} and v_{3} be the vertices of the path graph P_{3}. The tensor product of the complete bipartite graph $K_{m, n}$ and the path P_{3} is denoted by $K_{m, n} \otimes P_{3}$.

Let $G=K_{m, n} \otimes P_{3}$. Then G consists of $3(m+n)$ vertices and $4 m n$ edges. We divide the vertices of $K_{m, n} \otimes P_{3}$ into three disjoint sets for each vertex in P_{3} as V_{1}, V_{2} and V_{3} and they are given as

$$
\begin{aligned}
V_{1} & =\left\{\left(u_{i}, v_{1}\right) / i=1,2, \ldots, m+n\right\} \\
V_{2} & =\left\{\left(u_{j}, v_{2}\right) / j=1,2, \ldots, m+n\right\} \\
V_{3} & =\left\{\left(u_{k}, v_{3}\right) / k=1,2, \ldots, m+n\right\}
\end{aligned}
$$

Define $f: V(G) \longrightarrow\{0,1,2, \ldots, 4 m n\}$ by

$$
\begin{aligned}
& f\left(u_{i}, v_{1}\right)= \begin{cases}m+n i+1, & 1 \leq i \leq m \\
q-m(i-m-1), & m+1 \leq i \leq m+n\end{cases} \\
& f\left(u_{j}, v_{2}\right)= \begin{cases}j-1, & 1 \leq j \leq m \\
j, & m+1 \leq j \leq m+n\end{cases} \\
& f\left(u_{k}, v_{3}\right)= \begin{cases}n(m+k)+(m+1), & 1 \leq k \leq m \\
q-m n-m(k-m-1), & m+1 \leq k \leq m+n\end{cases}
\end{aligned}
$$

The function f defined above provides graceful labeling for the tensor product of the complete bi-partite graph $K_{m, n}$ and the path P_{3} that is, $K_{m, n} \otimes P_{3}$ is a graceful graph.

Illustration 4.4. Consider the complete bi-partite graph $K_{2,3}$ and the path P_{3}. The resultant graph $K_{2,3} \otimes P_{3}$ consists of 15 vertices and 24 edges. A graceful labeling of $K_{2,3} \otimes P_{3}$ is shown in Figure 3.

Figure 3. Tensor product of $K_{2,3}$ and P_{3}

5 Generalization of the tensor product of $K_{m, n}$ with P_{k}

Theorem 5.1. The tensor product of the complete bi-partite graph $K_{m, n}$ for $m, n>1$ and the path P_{k} where $k>3$ admits graceful labeling.

Proof: Let $u_{1}, u_{2}, \ldots, u_{m+n}$ be the vertices of the complete bi-partite graph $K_{m, n}$ and let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of the path graph P_{k}. The tensor product of the complete bipartite graph $K_{m, n}$ and the path P_{k} is denoted by $K_{m, n} \otimes P_{k}$.

Let $G=K_{m, n} \otimes P_{k}$. Then G consists of $k(m+n)$ vertices and $2(k-1) m n$ edges. We divide the vertices of $K_{m, n} \otimes P_{k}$ into k disjoint sets

$$
V_{j}=\left\{\left(u_{i}, v_{j}\right) / i=1,2, \ldots, m+n \text { and } j=1,2, \ldots, k\right\}
$$

We prove the theoren in two cases.

Case 1: k is even.

Define $f: V(G) \longrightarrow\{0,1,2, \ldots, 2(k-1) m n\}$ as follows:
For odd j,

$$
f\left(u_{i}, v_{j}\right)= \begin{cases}q+m-\left(\frac{k}{2}\right) m n-\left(\frac{j-1}{2}\right) m n-\left(\frac{k}{2}-1\right) m n-n(i-1), & 1 \leq i \leq m \\ q+m-\left(\frac{j-1}{2}\right) m n-m(i-m), & m+1 \leq i \leq m+n\end{cases}
$$

For even j,

$$
f\left(u_{i}, v_{j}\right)=\left(\frac{j-2}{2}\right) m n+(i-1) ; \quad 1 \leq i \leq m+n
$$

Then f is a graceful labeling for G and hence G is graceful.
Case 2: k is odd.
Define $f: V(G) \longrightarrow\{0,1,2, \ldots, 2(k-1) m n\}$ as follows:
For odd j,

$$
f\left(u_{i}, v_{j}\right)= \begin{cases}q+m-\left(\frac{k+1}{2}\right) m n-\left(\frac{j-1}{2}\right) m n-\left(\frac{k-1}{2}-1\right) m n-n(i-1), & 1 \leq i \leq m \\ q+m-\left(\frac{j-1}{2}\right) m n-m(i-m), & m+1 \leq i \leq m+n\end{cases}
$$

For even j,

$$
f\left(u_{i}, v_{j}\right)=\left(\frac{j-2}{2}\right) m n+(i-1) ; \quad 1 \leq i \leq m+n
$$

Then f is a graceful labeling for G.
From both the cases, we have the tensor product of the complete bi-partite graph $K_{m, n}$ and the path P_{k} is graceful.

Illustration 5.2. A graceful labeling of the tensor product $K_{4,4} \otimes P_{4}$ is shown in Figure 4 .

Figure 4. Tensor product of $K_{4,4}$ and P_{4}

Illustration 5.3. A graceful labeling of the tensor product $K_{4,5} \otimes P_{5}$ is shown in Figure 5 .

Figure 5. Tensor product of $K_{4,5}$ and P_{5}

6 Odd-even graceful labeling of the tensor product of $K_{1, n}$ with P_{k}

Theorem 6.1. The tensor product of the complete bi-partite graph $K_{1, n}$ and the path P_{k} where $n, k>1$ admits odd-even graceful labeling.

Proof: Let $u_{1}, u_{2}, \ldots, u_{n+1}$ be the vertices of the complete bi-partite graph $K_{1, n}$ and let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of the path graph P_{k}. The tensor product of the complete bipartite graph $K_{1, n}$ and the path P_{k} is denoted by $K_{1, n} \otimes P_{k}$.

Let $G=K_{1, n} \otimes P_{k}$. Then G consists of $k(n+1)$ vertices and $2 n(k-1)$ edges. We divide the vertices of $G=K_{1, n} \otimes P_{k}$ into k disjoint sets

$$
V_{j}=\left\{\left(u_{i}, v_{j}\right) / i=1,2, \ldots, n+1 \text { and } j=1,2, \ldots, k\right\}
$$

We prove the theorem in two cases.
Case 1: k is odd.
Define $f: V(G) \longrightarrow\{0,2,4, \ldots, 2 q\}$ where $q=2 n(k-1)$ as follows:

$$
\begin{aligned}
f\left(u_{1}, v_{2 j-1}\right) & =2 n(j-1)+1, & & 1 \leq j \leq \frac{k+1}{2} \\
f\left(u_{1}, v_{2 j}\right) & =2 n(j-1), & & 1 \leq j \leq \frac{k-1}{2}
\end{aligned}
$$

For $2 \leq i \leq n+1,1 \leq j \leq k$,

$$
f\left(u_{i}, v_{j}\right)= \begin{cases}2 q-n(j-1)+2-2(i-1), & \text { for odd } \mathrm{j} \\ 2 n(k-1)+3-n(j-2)-2(i-1), & \text { for even } \mathrm{j}\end{cases}
$$

Then f is a graceful labeling for G. Case 2: k is even.
Define $f: V(G) \longrightarrow\{0,2,4, \ldots, 2 q\}$ where $q=2 n(k-1)$ as follows:

$$
\begin{array}{r}
f\left(u_{1}, v_{2 j-1}\right)=2 n(j-1)+1,1 \leq j \leq \frac{k}{2} \\
f\left(u_{1}, v_{2 j}\right) \quad=2 n(j-1), 1 \leq j \leq \frac{k}{2}
\end{array}
$$

For $2 \leq i \leq n+1,1 \leq j \leq k$,

$$
f\left(u_{i}, v_{j}\right)= \begin{cases}2 q-n(j-1)+2-2(i-1), & \text { for odd } \mathbf{j}, \\ 2 n(k-1)+3-n(j-2)-2(i-1), & \text { for even } \mathbf{j}\end{cases}
$$

Then f is a graceful labeling for G. From both the cases, tensor product of the complete bipartite graph $K_{1, n}$ and the path P_{k} where $n, k>1$ admits an odd-even graceful labeling.

Illustration 6.2. Consider the complete bi-partite graph $K_{1,4}$ and the path P_{7}. The resultant graph $K_{1,4} \otimes P_{7}$ consists of 35 vertices and 48 edges. An odd-even graceful labeling of $K_{1,4} \otimes P_{7}$ is shown in Figure 6.

Figure 6. Tensor product of $k_{1,4}$ and P_{7}

Illustration 6.2 Consider the complete bi-partite graph $K_{1,5}$ and the path P_{6}. The resultant graph $K_{1,5} \otimes P_{6}$ consists of 36 vertices and 50 edges. An odd-even graceful labeling of $K_{1,5} \otimes P_{6}$ is shown in Figure 7.

Figure 7. Tensor product of $K_{1,5}$ and P_{6}

References

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18, $\sharp \mathrm{DS} 6,2011$.
[2] S. W. Golomb, How to number a graph. In: Graph Theory and Computing(R. C. Read. Ed.) Academic Press, New York, 23-37.
[3] A. Rosa, On Certain Valuations of the Vertices of a Graph, In: Theory of Graphs, (International Symposium, Rome, July 1966). Gordon and Breach, N.Y. and Dunod Paris, 349 - 355 .
[4] C. Sekar, Studies in Graph Theory. Ph.D. Thesis, Madurai Kamaraj University, Madurai, 2002.
[5] S. Sudha and V. Kanniga, Gracefulness of Some New Class of Graphs, Engineering Sciences International Research Journal, Vol 1, Issue 1(2013), 81-83.
[6] S. K. Vaidya and Lekha Bijukumar, Odd graceful labeling of some new graphs, Modern Applied Science, $\operatorname{Vol}(4)$, No.10(2010), 65-70.

