Some path related 4-cordial graphs

N.B. Rathod ${ }^{1}$, K.K. Kanani ${ }^{2}$
${ }^{1}$ Research Scholar, R. K. University, Rajkot-360020
Gujarat, India.
${ }^{2}$ Government Engineering College, Rajkot-360005
Gujarat, India.

Abstract

In this paper, we discuss 4-cordial labeling of some path related graphs. We prove that middle graph, total graph and splitting graph of the path are 4 -cordial. In addition to this we prove that P_{n}^{2} and triangular snakes are 4 -cordial.

Keywords: Abelian group, 4-cordial labeling, middle graph, total graph, splitting graph.
AMS Subject Classification(2010): 05C78.

1 Introduction

Throughout this work, by a graph we mean finite, connected, undirected, simple graph $G=(V(G), E(G))$ of order $|V(G)|$ and size $|E(G)|$.

Definition 1.1. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices(edges) then the labeling is called a vertex labeling(an edge labeling).

A latest survey on various graph labeling problems can be found in Gallian[1].
Definition 1.2. Let $<A, *>$ be any Abelian group. A graph $G=(V(G), E(G))$ is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions when the edge $e=u v$ is labeled as $f(u) * f(v)$
(i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$; for all $a, b \in A$,
(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1$; for all $a, b \in A$.
where
$v_{f}(a)=$ the number of vertices with label a;
$v_{f}(b)=$ the number of vertices with label b;
$e_{f}(a)=$ the number of edges with label a;
$e_{f}(b)=$ the number of edges with label b.
We note that if $A=<Z_{k},+_{k}>$, that is additive group of modulo k then the labeling is known as k-cordial labeling.

Here we consider $A=<Z_{4},+_{4}>$, that is additive group of modulo 4. The concept of A-cordial labeling was introduced by Hovey[3] and proved the following results.

- All the connected graphs are 3-cordial.
- All the trees are 3 -cordial and 4 -cordial.
- Cycles are k-cordial for all odd k.

In $[4,5]$ Kanani and Modha proved various results related to 5-cordial and 7-cordial labeling. In [6] Kanani and Rathod derived some new families of 4-cordial graphs.
Here we consider the following definitions of standard graphs.

- The middle graph $M(G)$ of G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it.
- The total graph $T(G)$ of G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.
- The splitting graph of G is obtained by adding to each vertex v a new vertex v^{\prime} such that v^{\prime} is adjacent to every vertex which is adjacent to v in G in other words $N(v)=N\left(v^{\prime}\right)$. The splitting graph is denoted by $S^{\prime}(G)$.
- Let G be a simple connected graph. The square of graph G denoted by G^{2} is defined to be the graph with the same vertex set as G and in which two vertices u and v are joined by an edge \Leftrightarrow in G we have $1 \leq d(u, v) \leq 2$.
- The triangular snake $T S_{n}$ is obtained from the path P_{n} by replacing every edge of a path by a triangle C_{3}.

For any undefined term in graph theory we refer to Gross and Yellen[2].

2 Main Results

Theorem 2.1. The middle graph $M\left(P_{n}\right)$ of the path P_{n} is 4-cordial.
Proof: Let $G=M\left(P_{n}\right)$ be the middle graph of the path P_{n}. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of P_{n} and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}$ be the newly added vertices corresponding to the edges $e_{1}, e_{2}, \ldots, e_{n-1}$ to form G. We note that $|V(G)|=2 n-1$ and $|E(G)|=3 n-4$.

We define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows.

$$
\begin{array}{ll}
f\left(v_{1}\right)=3 ; & \\
f\left(v_{i}\right)=0 ; & i \equiv 1,2,5,6(\bmod 8) \\
f\left(v_{i}\right)=1 ; & i \equiv 3,7(\bmod 8)
\end{array}
$$

```
f(vi})=2;\quadi\equiv0,4(\operatorname{mod}8);2\leqi\leq
f(vi})=1;\quadi\equiv3,7(\operatorname{mod}8)
f(vi})=2;\quadi\equiv1,5(\operatorname{mod}8)
f(vi})=3;\quadi\equiv0,2,4,6(\operatorname{mod}8);1\leqi\leqn-1
```

Table 1: $n=8 a+b, a, b \in N \cup\{0\}$.

\mathbf{b}	Vertex conditions	Edge conditions
0,4	$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)=e_{f}(1)=e_{f}(2)=e_{f}(3)$
1,5	$v_{f}(0)+1=v_{f}(1)+1=v_{f}(2)+1=v_{f}(3)$	$e_{f}(0)=e_{f}(1)=e_{f}(2)+1=e_{f}(3)$
2,6	$v_{f}(0)=v_{f}(1)+1=v_{f}(2)=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)+1$
3,7	$v_{f}(0)+1=v_{f}(1)+1=v_{f}(2)+1=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)+1=e_{f}(3)+1$

Table 1 shows that above defined labeling pattern satisfies the vertex and edge conditions of 4-cordial labeling. Hence the middle graph $M\left(P_{n}\right)$ of path P_{n} is 4-cordial.

Illustration 2.2. The middle graph $M\left(P_{3}\right)$ of path P_{3} and its 4-cordial labeling is shown in Figure 1.

Figure 1: 4-cordial labeling of the middle graph $M\left(P_{3}\right)$ of path P_{3}.
Theorem 2.3. The total graph $T\left(P_{n}\right)$ of path P_{n} is 4-cordial.
Proof: Let $G=T\left(P_{n}\right)$ be the total graph of the path P_{n}. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the $n-1$ edges. Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}$ be the newly added vertices corresponding to edges $e_{1}, e_{2}, \ldots, e_{n-1}$ to form G. We note that $|V(G)|=2 n-1$ and $|E(G)|=4 n-5$.

We define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows.
$f\left(v_{i}\right)=1 ; \quad i \equiv 3,7(\bmod 8) ;$
$f\left(v_{i}\right)=2 ; \quad i \equiv 1,5(\bmod 8)$;
$f\left(v_{i}\right)=3 ; \quad i \equiv 0,2,4,6(\bmod 8) ; 1 \leq i \leq n$
$f\left(v_{i}^{\prime}\right)=0 ; \quad i \equiv 0,1,4,5(\bmod 8)$;
$f\left(v_{i}^{\prime}\right)=1 ; \quad i \equiv 2,6(\bmod 8) ;$
$f\left(v_{i}^{\prime}\right)=2 ; \quad i \equiv 3,7(\bmod 8) ; \quad 1 \leq i \leq n-1$.

Table 2: $n=8 a+b, a, b \in N \cup\{0\}$.

\mathbf{b}	Vertex conditions	Edge conditions
0,4	$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)=e_{f}(1)=e_{f}(2)+1=e_{f}(3)$
1,5	$v_{f}(0)+1=v_{f}(1)+1=v_{f}(2)=v_{f}(3)+1$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)$
2,6	$v_{f}(0)=v_{f}(1)+1=v_{f}(2)=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)$
3,7	$v_{f}(0)+1=v_{f}(1)=v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(0)=e_{f}(1)=e_{f}(2)=e_{f}(3)+1$

Table 2 shows that above defined labeling pattern satisfies the vertex and edge conditions of 4-cordial labeling. Hence The total graph $T\left(P_{n}\right)$ of the path P_{n} is 4-cordial.

Illustration 2.4. The total graph $T\left(P_{4}\right)$ of path P_{4} and its 4-cordial labeling is shown in Figure 2.

Figure 2: 4-cordial labeling of the total graph $T\left(P_{4}\right)$ of path P_{4}.
Theorem 2.5. The splitting graph $S^{\prime}\left(P_{n}\right)$ of the path P_{n} is 4-cordial.
Proof: Let $G=S^{\prime}\left(P_{n}\right)$ be the splitting graph of the path P_{n}. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vertices of the path P_{n} and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the newly added vertices corresponding to the vertices $v_{1}, v_{2}, \ldots, v_{n}$ to form G. We note that $|V(G)|=2 n$ and $|E(G)|=3 n-3$.

We define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows.

$$
\begin{array}{ll}
f\left(v_{i}\right)=0 ; & i \equiv 2,3,6,7(\bmod 8) \\
f\left(v_{i}\right)=2 ; & i \equiv 0,4(\bmod 8) ; \\
f\left(v_{i}\right)=3 ; & i \equiv 1,5(\bmod 8) ; 1 \leq i \leq n \\
f\left(v_{i}^{\prime}\right)=1 ; & i \equiv 2,3,6,7(\bmod 8) \\
f\left(v_{i}^{\prime}\right)=2 ; & i \equiv 1,5(\bmod 8) ; \\
f\left(v_{i}^{\prime}\right)=3 ; & i \equiv 0,4(\bmod 8) ; \quad 1 \leq i \leq n
\end{array}
$$

Table 3: $n=8 a+b, a, b \in N \cup\{0\}$.

\mathbf{b}	Vertex conditions	Edge conditions
0,4	$v_{f}(0)=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)+1=e_{f}(2)+1=e_{f}(3)$
1,5	$v_{f}(0)+1=v_{f}(1)+1=v_{f}(2)=v_{f}(3)$	$e_{f}(0)=e_{f}(1)=e_{f}(2)=e_{f}(3)$
2,6	$v_{f}(0)=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)=e_{f}(1)+1=e_{f}(2)=e_{f}(3)$
3,7	$v_{f}(0)=v_{f}(1)=v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(0)=e_{f}(1)=e_{f}(2)+1=e_{f}(3)+1$

Table 3 shows that above defined labeling pattern satisfies the vertex and edge conditions of 4-cordial labeling. Hence the splitting graph $S^{\prime}\left(P_{n}\right)$ of the path P_{n} is 4-cordial.

Illustration 2.6. The splitting graph $S^{\prime}\left(P_{7}\right)$ of path P_{7} and its 4-cordial labeling is shown in Figure 3.

Figure 3: 4-cordial labeling of Splitting graph $S^{\prime}\left(P_{7}\right)$ of path P_{7}.

Theorem 2.7. The graph P_{n}^{2} is 4-cordial.

Proof: Let $G=P_{n}^{2}$ be the square of the path P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$. We note that $|V(G)|=n$ and $|E(G)|=2 n-3$.

We define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows.
$f\left(v_{i}\right)=0 ; \quad i \equiv 1,5(\bmod 8) ;$
$f\left(v_{i}\right)=1 ; \quad i \equiv 2,6(\bmod 8)$;
$f\left(v_{i}\right)=2 ; \quad i \equiv 3,7(\bmod 8) ;$
$f\left(v_{i}\right)=3 ; \quad i \equiv 0,4(\bmod 8) ; 1 \leq i \leq n$.

Table 4: $n=8 a+b, a, b \in N \cup\{0\}$.

\mathbf{b}	Vertex conditions	Edge conditions
0,4	$v_{f}(0)=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)+1=e_{f}(3)+1$
1,5	$v_{f}(0)=v_{f}(1)+1=v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)$
2,6	$v_{f}(0)=v_{f}(1)=v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)+1=e_{f}(3)+1$
3,7	$v_{f}(0)=v_{f}(1)=v_{f}(2)=v_{f}(3)+1$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)$

Table 4 shows that above defined labeling pattern satisfies the vertex and edge conditions of 4-cordial labeling. Hence the graph P_{n}^{2} is 4-cordial.

Illustration 2.8. The square graph P_{6}^{2} and its 4 -cordial labeling is shown in Figure 4.

Figure 4: 4-cordial labeling of the square graph P_{6}^{2}.
Theorem 2.9. The triangular snake $T S_{n}$ obtained from the path P_{n} is 4-cordial.
Proof: Let $G=T S_{n}$ be the triangular snake obtained from the path P_{n}. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}$ be the newly added vertices to form G. We note that $|V(G)|=2 n-1$ and $|E(G)|=3 n-3$.

Define a vertex labeling $f: V(G) \rightarrow Z_{4}$ as follows:
$f\left(v_{i}\right)=1 ; \quad i \equiv 3,7(\bmod 8)$;
$f\left(v_{i}\right)=2 ; \quad i \equiv 1,5(\bmod 8) ;$
$f\left(v_{i}\right)=3 ; \quad i \equiv 0,2,4,6(\bmod 8) ; \quad 1 \leq i \leq n$.
$f\left(v_{i}^{\prime}\right)=0 ; \quad i \equiv 0,1,4,5(\bmod 8)$;
$f\left(v_{i}^{\prime}\right)=1 ; \quad i \equiv 2,6(\bmod 8) ;$
$f\left(v_{i}^{\prime}\right)=2 ; \quad i \equiv 3,7(\bmod 8) ; \quad 1 \leq i \leq n-1$.
Table 5: $n=8 a+b, a, b \in N \cup\{0\}$.

\mathbf{b}	Vertex conditions	Edge conditions
0,4	$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=v_{f}(3)$	$e_{f}(0)=e_{f}(1)+1=e_{f}(2)+1=e_{f}(3)+1$
1,5	$v_{f}(0)+1=v_{f}(1)+1=v_{f}(2)=v_{f}(3)+1$	$e_{f}(0)=e_{f}(1)=e_{f}(2)=e_{f}(3)$
2,6	$v_{f}(0)=v_{f}(1)+1=v_{f}(2)=v_{f}(3)$	$e_{f}(0)+1=e_{f}(1)=e_{f}(2)=e_{f}(3)$
3,7	$v_{f}(0)+1=v_{f}(1)=v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(0)=e_{f}(1)+1=e_{f}(2)=e_{f}(3)+1$

Table 5 shows that above defined labeling pattern satisfies the vertex and edge conditions of 4-cordial labeling. Hence the triangular snake $T S_{n}$ obtained from the path P_{n} is 4-cordial.

Illustration 2.10. The triangular snake $T S_{5}$ obtained from the path P_{5} and its 4 -cordial labeling is shown in Figure 5.

Figure 5: 4-cordial labeling of the triangular snake $T S_{5}$ obtained from the path P_{5}.

Concluding Remarks: We proved five results related to 4-cordial labeling. To investigate similar results for any integer k is an open problem.

References

[1] J A Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 17(2014), \#DS6.
[2] J Gross and J Yellen, Handbook of graph theory, CRC Press, (2004).
[3] M. Hovey, A-cordial graphs, Discrete Math., 93 (1991), 183-194.
[4] K. K. Kanani and M. V. Modha, 7-cordial labeling of standard graphs, Internat. J. Appl. Math. Res., 3(4) (2014), 547-560.
[5] K. K. Kanani and M. V. Modha, Some new families of 5-cordial graphs, Int. J. Math. Soft Comp., 4(1) (2015), 129-141.
[6] K. K. Kanani and N. B. Rathod, Some new 4-cordial graphs, J. Math. Comput. Sci., 4(5) (2014), 834-848.
[7] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43 (2009), 31-37.

