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Abstract

Let G be a simple connected graph. A subset S of vertices of G is said to be a convex set if for
any two vertices u, v of S, S contains all the vertices of every u−v shortest path in G. The convexity
number con(G) of G is the maximum cardinality of a proper convex set of G. The local convexity
number of a graph denoted by l1con(G) is defined as the maximum of {con(< N [x] >)/x ∈ V (G)

and con(< N [x] >) set is a proper convex set of G}. For a connected graph G of order n ≥ 3,
we have 2 ≤ l1con(G) ≤ n − 1. Local convex set for which its cardinality is same as l1con(G) is
called a maximum local convex set. Local clique number denoted by ω1(G) is the cardinality of a
maximum clique in the set of all maximum local convex sets of G. Here we present characterisation
of graphs for which l1con(G) = con(G), equivalent condition in graphs for which N [S] is convex
for any connected subgraph < S > of G is presented. Interesting results and construction of graphs
with prescribed l1con(G), ω1(G) are also presented.
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1 Introduction

Throughout this paper G denotes a finite, connected, undirected graph without loops or multiple

edges. In the study of convexity in graphs ( [1], [5], [6], [7], [8], [9], [12], [13], [14], [15], [17] ), two

types of convexity played a vital role. A set S of vertices in G is g-convex ( respectively, m-convex), if,

for any pair of vertices u, v in S, all vertices on all shortest ( respectively, induced ) paths from u to v

also lie in S.

For two vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u− v

path in G referred to as a u − v geodesic. For any set S of vertices in G and any integer j ≥ 0, the

closed neighborhood of radius j about S, denoted N j [S], is { x/d(x, u) ≤ j for some u in S }. We

write N [S] instead of N1[S], and N j [x1, · · · , xn] if the elements of S are explicitly given.

The local convexity may be distinguished in atleast four ways.
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(i): N [v] is convex for every vertex v of G.

(ii): N j [v] is convex for every vertex v of G and for every j ≥ 0.

(iii):N [S] is convex for every vertex subset S of G.

(iv):N j [S] is convex for every vertex subset S of G and for every j ≥ 0. A paper by Farber and

Jamison [9] contains a class of graphs which are characterised by certain local convexity conditions

with respect to geodesic convexity, in particular, those graphs in which balls around vertices are convex,

and those graphs in which neighborhoods of convex sets are convex. Also paper by Soltan and Chepoi

[17] contains some overlapping results to that of [18] but proofs are different.

In [9] equivalent condition in graphs for which N [S] is convex for any convex subgraph < S > of

G is presented. Here we present characterisation of graphs for which l1con(G) = con(G), equivalent

condition in graphs for which N [S] is convex for any connected subgraph < S > of G is presented.

Also we present results related to local convexity numbers of G. Convexity number con(G) of G is the

maximum cardinality of a proper convex set of G. For local convexity number we consider cardinality

of a maximum convex set among all N [v] for any v in V (G). If N [v] is convex for every vertex v of G

then local convexity number of G denoted by l1con(G) is the maximum cardinality of N [v] with N [v] 6=
V (G). Otherwise l1con(G) is maximum of { con(< N [v] >)/vinV (G) and con(< N [v] >) set is a

proper subset of V (G) }. From the above definition we observe that con(< N [v] >) = |N [v]| if N [v] is

convex and equal to maximum cardinality of a convex set in N [v] otherwise. Thus for a connected graph

G of order n ≥ 3, we have 2 ≤ l1con(G) ≤ n− 1. If G is a non-complete graph containing a complete

subgraph H , then the vertex set V (H) is convex in G thus V (H) is local convex and so l1con(G) ≥
|V (H)|. The clique number ω(G) of a graph is the maximum order of a complete subgraph in G. Local

clique number of a graph is defined as the maximum clique in 〈l1con(G)〉. Clearly l1con(G) ≥ ω1(G)

for a non-complete connected graph. For a complete graph we have ω1(Kn) = n−1, l1con(Kn) = n−1

and ω(Kn) = n. But if G is non-complete then 2 ≤ ω1(G) ≤ ω(G) ≤ l1con(G) ≤ n− 1.

Illustration 1.1. For the graph given in Figure 1, l1con(G) = 4 = {d, e, k, j}, con(G) = 9 =

{a, d, e, f, g, h, i, j, k}, ω1(G) = 2 = |{a, d}| and ω(G) = 3 = |{a, g, i}|. Hence, ω1(G) < ω(G).
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Figure 1: A graph G with ω1(G) < ω(G).
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We observe that every m - convex set is a convex set and every convex set is a weak convex or isometric

convex set. Also l1-convex set is a convex set but not always m - convex set. In figure 1, {d, e, k, j} is a

l1 - convex set which is a convex set but not m - convex set whereas {a, i, g} is l1 - convex as well as m

- convex set. Also {a, b, c, d} is a m - convex set which is not a l1 - convex set. Therefore, set of all l1 -

convex set intersect both convex and m - convex regions.

wcon sets

con sets

mcon sets l1con setsωsets

Figure 2

Observation 1.2. Let G be a non-complete connected graph. Then the largest convex set S which has

a vertex adjacent to rest of the vertices of S is the maximum local convex set of G.

Corrolary 1.3. For every tree T of order n ≥ 3,

l1con(T ) =


∆ + 1 if ∆ 6= n− 1

n− 1 if ∆ = n− 1

Theorem 1.4. Let G be a non-complete connected graph of order n. Then l1con(G) = n − 1 iff

∆ = n − 2 with no C4 as induced subgraph containing the remaining vertex or ∆ = n − 1 with a

complete vertex.

Proof: Suppose l1con(G) = n−1 then let S be a maximum local convex set of cardinality n−1. Also

let u ∈ S. Therefore, degree of u is n− 2 in < S > and G or degree of u is n− 2 in < S > and n− 1

in G. If ∆ = n− 2 then clearly G has no C4 containing the remaining vertex. If degree of u is n− 1 in

G then G has a complete vertex.

Converse is obvious.
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Observation 1.5. For n ≥ 3,

l1con(Cn) =


2 if n = 3, 4

3 if n ≥ 5

2 Graphs with prescribed clique number, l1-Convexity number and order

If G is a non-complete connected graph of order n such that ω1(G) = l
′
1 and l1con(G) = k

′
1, then

G is called an (l
′
1, k

′
1, n) graph. Now we show that (2, 3, 5) is either C5 or has a pendant.

Theorem 2.1. The (2, 3, 5) graph is either C5 or has a pendant with l1con(G) = 3 and ω1(G) = 2.

Proof: Let G be a connected graph of order 5 with ω1(G) = 2 and l1con(G) = 3. Let S = {u, v, w}
be a maximum local convex set in G and let u − v − w be a path of length 2. From hypothesis we

observe the following.

(i) G has no triangles, since ω1(G) = 2.

(ii) Suppose G has a C4 then G is C4 with a pendant. Otherwise G is C5 or P5 or K1,3 with a pendant.

Hence the theorem is proved.

3 Realisation Problem

Lemma 3.1. For every pair k
′
1, n of integers with n ≥ 3, 2 ≤ k

′
1 ≤ n− 1 there exists a non-complete

connected graph such that ω1(G) = l1con(G) = k
′
1.

Required graph F is obtained as follows. F = (K
k
′
1−1

⋃
K̄

n−k′1−1
) + K̄2. l1con(G) set has k

′
1 − 1

vertices with a vertex of K̄2. If atleast one vertex of K̄
n−k′1−1

is included then convexity is violated.

Theorem 3.2. For every triple l
′
1, k

′
1, n with 2 ≤ l

′
1 ≤ k

′
1 ≤ n− 1 there exists a non-complete connected

graph of order n having ω1(G) = l
′
1, l1con(G) = k

′
1.

Proof: If ω1(G) = l1con(G) = k
′
1 then by Lemma 3.1 we get the result.

Assume l
′
1 < k

′
1. Consider F = (K

l
′
1−1

+ K̄2) where V (K̄2) = {u1, u2}. Consider (K̄
k
′
1−l

′
1
) + u1,

u2 + K̄2 where V (K̄2) = {v1, v2} and remaining (n − k
′
1 − 3) vertices as isolates are joined to

{v1, v2}.

Corrolary 3.3. For every three integers l
′
1, k

′
1, N such that 2 ≤ l

′
1 ≤ k

′
1 and N ≥ 2 there exists

a connected graph G with ω1(G) = l
′
1, l1con(G) = k

′
1 whose vertices can be partitioned into N

maximum l1 convex sets.

Proof: If N = 2, consider two copies of F = (K
l
′
1−1

⋃
K̄

k
′
1−l

′
1
) + K1.Let K1 = u1. Let V (K̄

k
′
1−l

′
1
) =

{w1, w2 · · ·wk
′
1−l

′
1
}. Join two u′1s and w′is for i = 1tok

′
1 − l

′
1. Also join each vertex of K

l
′
1−1

to w1 of

next copy. For N = 3, join as in N = 2 and for third copy join u1 to second copy of u1 and w′is. By

the very construction the theorem is true. Repeat the same for large values of N changing w′is.
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Theorem 3.4. For every five positive integers a, b, c, d, n with 2 ≤ a ≤ b ≤ c ≤ d ≤ n− 1 there exists

a connected graph G of order n and l1con(G) = a, mcon(G) = b, con(G) = c, wcon(G) = d.

Proof: Consider K1,a−1. Form a path on b − a vertices. Let V (K1,a−1) = {u1, u2, · · · , ua} centered

at u1. Let V (Pb−a) = {ua+1, ua+2, · · · , ub}. Join ua+1 to u2, ua+2 to u3 and so on untill all the

vertices of Pb−a exhaust. Next consider K̄c−b. Let V (K̄c−b) = {ub+1, ub+2, · · · , uc}. New edges

are formed by joining each vertex of K̄c−b to ua+2 except ub+1, instead ub+1ua+1 edge is formed.

Also {ub+2, ub+3, · · · , uc} vertices are joined to ub+1. Form a path on d − c vertices. Let V (Pd−c) =

{uc+1, uc+2, · · · , ud}. Form new edges uc+1ub+1, uc+2ub+2, uc+4ub+3, uc+6ub+4, uc+8ub+5 and so on

until vertices of Pd−c exhausts. Suppose uc+y 6=d is joined to uc then uc+y+2 is joined to ub+2, and the

process repeated. If ud−1 is joined to some vertex in {ub+2, ub+3, · · · , uc} then by our construction ud

does not form an edge with any of the vertex in {ub+2, ub+3, · · · , uc}. Since con(G) by this construction

is d we join ud to ub+1. Rest of n − d vertices form a path. Now consider the cycle C formed in the

construction by vertices uc+1uc+2uc+3uc+4ub+3ub+1. Let V (Pn−d) = {ud+1, ud+2, · · · , un}. Join

ud+1 to uc+1, ud+2 to uc+3, ud+3 to ub+3, ud+4 to uc+1 until all the vertices of Pn−d exhaust. Also join

ud+1 to ub+2. By the construction we can easily check for l1con(G) = a, mcon(G) = b, con(G) = c,

wcon(G) = d.

Theorem 3.5. For every five positive integers a, b, c, d, n with 2 ≤ a ≤ b ≤ c ≤ d ≤ n− 1 there exists

a connected graph G of order n and mcon(G) = a, l1con(G) = b, con(G) = c, wcon(G) = d.

Proof: Consider K1,b. Let V (K1,b) = {u1, u2, · · · , ua, ua+1, · · · , ub} centered at u1. Form a path on

{u2, u3, · · · , ua}. Join u2 to ua+1. Form a path on c−b vertices. Let V (Pc−b) = {ub+1, ub+2, · · · , uc}.
Join ub+1 to ua+1, ub+2 to ua+2 and so on until all the vertices in Pc−b. Also join ua to ub+3 to make

ua non-complete vertex. Next form a path on d−c vertices. Let V (Pd−c) = {uc+1, uc+2, · · · , ud}. Join

uc+1 to ub+1, uc+2 to ub+2 and the process repeated until ud is joined to some vertex in {ub+1, ub+2, · · · ,
uc}. Rest of n − d vertices are also formed as path. Join ud+1 to uc+1 and ub+2. Consider the

cycle C formed in this construction on the vertices uc+1, uc+2, uc+3, ub+3, ub+2, ub+1. Join ud+2

to uc+3, ud+3 to ub+2, ud+4 to uc+1 and the process repeated until un is joined to a vertex among

{uc+1, uc+3, ub+2}. By the construction we can easily check for mcon(G) = a, l1con(G) = b,

con(G) = c, wcon(G) = d.
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