# On Face Magic Labeling of Duplication Graphs 

A. Amara Jothi*, J. Baskar Babujee ${ }^{+}$and N. G. David ${ }^{*}$<br>*Department of Mathematics, Madras Christian College, Chennai-600 059<br>${ }^{+}$Department of Mathematics, Anna University, Chennai-600 025<br>Email: amarajothia@gmail.com, baskarbabujee@yahoo.com, ngdmcc@ gmail.com


#### Abstract

A labeling of a graph $G$ of type $(a, b, c)$ assigns labels from the set $\{1,2, \ldots, a v+b e+c f\}$ to the vertices, edges and faces of $G$ such that each vertex receives a label, each edge receives blabel and each face receives c label and each number is used exactly once as a label. We restrict $a, b$ and $c$ to be not greater than one. The weight of face $w(f)$ under a labeling is the sum of labels of the face itself together with labels of vertices and edges surrounding that face. A labeling is said to be magic, if for every positive integer $s$, all $s$-sided faces have the same weight. In this paper, we examine whether vertex and edge duplication on families of graphs admit face magic labeling of types ( $1,0,1$ ), ( $1,1,0$ ), ( $0,1,1$ ) and ( $1,1,1$ ) or not.


Keywords: Face magic labeling, Bijective function, Duplication graphs.

## 1. Preliminary

Throughout this paper, all graphs are finite plane graphs without loops and multiple edges. Let $G$ $=(V, E, F)$ be a finite plane graph where $V, E$ and $F$ are its vertex set, edge set and set of interior face with $|V|=v,|E|=e$ and $|F|=\mathrm{f}$. A labeling of type $(a, b, c)$ assigns labels from the set $\{1,2$, $\ldots, a v+b e+c f\}$ to the vertices, edges and faces of $G$ such that each vertex receives $a$ label, each edge receives $b$ label and each face receives $c$ label and each number is used exactly once as a label. We restrict $a, b$ and $c$ to be not greater than one. Labeling of type $(1,0,0),(0,1,0)$ and $(0,0,1)$ are called vertex, edge and face labeling, respectively. The weight of face $w(f)$ under a labeling is the sum of labels of the face itself together with labels of vertices and edges
surrounding that face. A labeling is said to be magic, if for every positive integer s , all s -sided faces have the same weight. We allow different weights for different s . A labeling is said to consecutive if, for every positive integer s the weight of all s-sided faces constitute a set of consecutive integers. For standard terminology and notation we follow Bondy and Murty [6].

The notions of magic and consecutive labeling of plane graphs were defined by Ko-Wei Lih in [8]. However, the subject of magic labeling can be traced back to the 13th century when similar notions were investigated by the Chinese mathematician Yang Hui (1275). This concept was further developed by Chang Chhao (1670). Ko-Wei Lih [8] clarified the concepts after Pao Chhi-Shou's labeling by using modern notions of the graph theory and extend these classical labelings of platonic polyhedral to certain families of plane graphs. Lih [8] described face-magic labeling of type $(1,1,0)$ for the wheels, the friendship graphs, the prisms and some of the platonic polyhedra. Martin Baca [2] has described the magic and consecutive labeling for fans, planar pyramids and ladders. The face-magic labeling of type ( $1,1,1$ ) for Mobius ladder $L_{n}^{m}, n \geq$ 3 odd, $m \geq 1$, grid graphs $G_{n}^{m}, n \geq 2, m \geq 1, n+m \neq 3$ and the hexagonal planar graphs $H_{n}^{m}$ (honeycomb) are proved in [3], [5] and [4], respectively. In [9] the face-magic labeling of type $(1, l, l)$ for special families of planar graphs with 3 -sided faces, 5 -sided faces, 6 -sided faces and one external infinite face are shown. In [10], magic labeling of type $(a, b, c)$ for families of wheels are proved. Martin Baca and others investigated the face magic labeling for some planar graphs. For further details we refer the recent survey of graph labeling by Gallian [7]. In this paper, we investigate the results of face magic labeling of types $(1,0,1),(1,1,0),(0,1,1)$ and $(1,1,1)$ on duplication graphs.

Definition 1.1 Duplication of a vertex $v_{k}$ by a new edge $e=v^{\prime} v^{\prime \prime}$ in a graph $G$ produces a new graph $G^{\prime}$ such that $N\left(v^{\prime}\right)=\left\{v_{k}, v^{\prime \prime}\right\}$ and $N\left(v^{\prime \prime}\right)=\left\{v_{k}, v^{\prime}\right\}$.

Definition 1.2 Duplication of an edge $e=v_{i} v_{i+1}$ by a vertex $v^{\prime}$ in a graph $G$ produces a new graph $G^{\prime}$ such that $N\left(v^{\prime}\right)=\left\{v_{i} v_{i+1}\right\}$.

## 2. Main Result

In this section, face magic labeling of vertex and edge duplication of graphs are discussed.
Theorem 2.1 Let $G$ be a tree of order $n \geq 2$. Then the vertex by edge duplication at all vertices simultaneously on $G$ admits face magic labeling of types $(1,0,1),(1,1,0),(0,1,1)$ and $(1,1,1)$.

## Proof

Let $G(V, E, F)$ be an arbitrary tree of order n and let $V=\left\{v_{i}: 1 \leq i \leq n\right\}, E=\left\{e_{i}: 1 \leq i \leq n-1\right\}$.
Let $G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained by duplicating all vertices in G by edges and let $V^{\prime}=V \cup$
$\left\{v_{i}{ }^{\prime}, v_{i}{ }^{\prime \prime}: 1 \leq i \leq n\right\}$, where $v_{i}{ }^{\prime}, v_{i}{ }^{\prime \prime}$ are adjacent to $v_{i}$, edge set
$E^{\prime}=E \cup\left\{v_{i} v_{i}{ }^{\prime}, v_{i} v_{i}{ }^{\prime \prime}, v_{i}{ }^{\prime} v_{i}{ }^{\prime \prime}: 1 \leq i \leq n\right\}$ and face set $F^{\prime}=\left\{f_{i}: v_{i} v_{i}{ }^{\prime} v_{i}{ }^{\prime \prime}: 1 \leq i \leq n\right\}$.
The four types of labeling are discussed separately.
Type (i): (1, 0, 1)-Face magic
Define a mapping $f_{1}: V^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 4 n\}$ in the following way:
For $i=1$ to $n ; f_{1}\left(v_{i}\right)=i, f_{1}\left(v_{i}^{\prime}\right)=2 n+1-i, f_{1}\left(v_{i}^{\prime \prime}\right)=2 n+i, f_{1}\left(f_{i}\right)=4 n+1-i$.
Clearly, the common weight of all 3-sided faces is $w\left(f_{i}\right)=8 n+2$.
Type (ii): (1, 1, 0)-Face magic
We construct a mapping $f_{2}: V^{\prime} \cup E^{\prime} \rightarrow\{1,2, \cdots, 7 n-1\}$ as follows:
For $i=1$ to $n ; f_{2}\left(v_{i}\right)=i, f_{2}\left(v_{i}{ }^{\prime}\right)=2 n+1-i, f_{2}\left(v_{i}{ }^{\prime}\right)=2 n+i$,
$f_{2}\left(v_{i} v_{i}{ }^{\prime}\right)=4 n+1-i, f_{2}\left(v_{i} v_{i}{ }^{\prime \prime}\right)=4 n+i, f_{2}\left(v_{i}{ }^{\prime} v_{i}{ }^{\prime \prime}\right)=6 n+1-i$.
For $i=1$ to $n-1 ; f_{2}\left(e_{i}\right)=6 n+i$.
Clearly, the common weight of all 3-sided faces is $w\left(f_{i}\right)=18 n+3$.
Type (iii): (0, 1, 1)-Face magic
Define a bijective mapping $f_{3}: E^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 5 n-1\}$ as below:
For $i=1$ to $n ; f_{3}\left(v_{i} v_{i}{ }^{\prime}\right)=i, f_{3}\left(v_{i} v_{i}{ }^{\prime \prime}\right)=2 n+1-i, f_{3}\left(v_{i}{ }^{\prime} v_{i}{ }^{\prime \prime}\right)=2 n+i, f_{3}\left(f_{i}\right)=5 n-i$.
For $i=1$ to $n-1 ; f_{3}\left(e_{i}\right)=3 n+i$.
The common weight for all 3 -sided faces is $w\left(f_{i}\right)=9 n+1$.

Type (iv): (1, 1, 1)-Face magic
Define a bijective mapping $f_{4}: V^{\prime} \cup E^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 8 n-1\}$ as follows:
For $i=1$ to $n ; f_{4}\left(v_{i}\right)=i, f_{4}\left(v_{i}{ }^{\prime}\right)=2 n+1-i, f_{4}\left(v_{i}{ }^{\prime}\right)=2 n+i$,
$f_{4}\left(v_{i} v_{i}{ }^{\prime}\right)=4 n+1-i, f_{4}\left(v_{i} v_{i}{ }^{\prime \prime}\right)=4 n+i, f_{4}\left(v_{i}{ }^{\prime} v_{i}{ }^{\prime \prime}\right)=7 n+1-2 i, f_{4}\left(f_{i}\right)=7 n-1+i$.
For $i=1$ to $n-1 ; f_{4}\left(e_{i}\right)=7 n-2 i$.
The common weight for all 3 -sided faces is $w\left(f_{i}\right)=26 n+2$.
Illustration 1: The graph obtained by vertex by edge duplication at all vertices on $\mathrm{T}_{7}$ and its face magic labeling is shown in figure 1 .

Illustration 2: The graph obtained by edge by vertex duplication at all edges on $\mathrm{T}_{8}$ and its face magic labeling of type $(0,1,1)$ is shown in figure 2 .


Figure 1:


Figure 2:

Theorem 2.2 Let $G$ be a tree of order $n \geq 2$. Then the edge by vertex duplication at all edges simultaneously on $G$ admits face magic labeling of type ( $0,1,1$ ).

## Proof

Let $G(V, E, F)$ be an arbitrary tree of order $n$ and assign the labels $u_{1}, u_{2}, \cdots, u_{n}$ to vertices and $e_{1}, e_{2}, \cdots, e_{n-1}$ to edges. Let $G^{\prime}\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$ be the graph obtained by "edge by vertex duplication"
at all edges in $G$ simultaneously. Let $E^{\prime}=E \cup\left\{e_{i}{ }^{\prime}, e_{i}{ }^{\prime \prime} ; 1 \leq i \leq n-1\right\}$, where $e_{i}{ }^{\prime}$ and $e_{i}{ }^{\prime \prime}$ are adjacent to $e_{i}$, face set $F^{\prime}=\left\{f_{i}: e_{i} e_{i}{ }^{\prime} e_{i}{ }^{\prime \prime}: 1 \leq i \leq n-1\right\}$.

We construct a mapping $g: E^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 4 n\}$ in the following way:
For $i=1$ to $n-1 ; ~ g\left(e_{i}\right)=i, g\left(e_{i}{ }^{\prime}\right)=2 n-1-i, g\left(e_{i}{ }^{\prime \prime}\right)=2(n-1)+i, g\left(f_{i}\right)=4 n-3-i$.
We compute the common weight of all 3 - sided faces is $w\left(f_{i}\right)=g\left(e_{i}\right)+g\left(e_{i}{ }^{\prime}\right)+g\left(e_{i}{ }^{\prime \prime}\right)+g\left(f_{i}\right)=i+(2 n-1-i)+(2(n-1)+i)+(4 n-3-i)=8 n-6$.

Theorem 2.3 For $n, m \geq 3$, the graph $G^{\prime}$ obtained by duplicating all vertices by edges on $m P_{n}$ admits face magic labeling of types $(1,0,1),(1,1,0)$ and $(0,1,1)$.

Proof
Let $m P_{n}$ be the disjoint union of $m$ path graph $P_{n}$ with $V=\left\{v_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$,
$E=\left\{e_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$. Let $G^{\prime}$ be the graph obtained by duplicating all vertices in $m P_{n}$ by edges simultaneously. Let the vertex set $V^{\prime}=V \cup\left\{u_{i}^{j}, w_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$, edge set $E^{\prime}=E \cup\left\{u_{i}^{j} v_{i}^{j}, v_{i}^{j} w_{i}^{j}, u_{i}^{j} w_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and face set $F^{\prime}=\left\{f_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

The three types of labeling are discussed below:
Type (i): (1, 0, 1)-Face magic
Define a mapping $f_{1}: V^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 4 m n\}$ in the following way:
For $i=1$ to $m, j=1$ to $n ; f_{1}\left(v_{i}^{j}\right)=(i-1) n+j, f_{1}\left(u_{i}^{j}\right)=2 m n+(i-1) n+j$,
$f_{1}\left(w_{i}^{j}\right)=2 m n+1-(i-1) n-j, f_{1}\left(f_{i}^{j}\right)=4 m n+1-(i-1) n-j$.
Clearly, the weight of all 3 -sided faces is $w\left(f_{i}\right)=8 m n+2$.
Type (ii): (1, 1, 0)-Face magic
Define a bijective mapping $f_{2}: V^{\prime} \cup E^{\prime} \rightarrow\{1,2, \cdots, m(7 n-1)\}$ as follows:
For $i=1$ to $m, j=1$ to $n ; f_{2}\left(v_{i}^{j}\right)=(i-1) n+j, f_{2}\left(u_{i}^{j}\right)=2 m n+(i-1) n+j$,
$f_{2}\left(w_{i}^{j}\right)=2 m n+1-(i-1) n-j, f_{2}\left(u_{i}^{j} w_{i}^{j}\right)=4 m n+1-(i-1) n-j$,
$f_{2}\left(v_{i}^{j} w_{i}^{j}\right)=4 m n+(i-1) n+j, f_{2}\left(u_{i}^{j} v_{i}^{j}\right)=6 m n+1-(i-1) n-j$.
For $i=1$ to $m, j=1$ to $n-1 ; f_{2}\left(e_{i}^{j}\right)=6 m n+(j-1) m+i$.
Clearly, the weight of all 3-sided faces is $w\left(f_{i}\right)=18 m n+3$.
Type (iii): (0, 1, 1)-Face magic
A bijective mapping $f_{3}: E^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, m(5 n-1)\}$ is given below:
For $i=1$ to $m, \mathrm{j}=1$ to $\mathrm{n} ; f_{3}\left(v_{i}^{j} w_{i}^{j}\right)=(i-1) n+j, f_{3}\left(u_{i}^{j} w_{i}^{j}\right)=2 m n+1-(i-1) n-j$,
$f_{3}\left(u_{i}^{j} v_{i}^{j}\right)=2 m n+(i-1) n+j, f_{3}\left(f_{i}^{j}\right)=5 m n-m+1-(i-1) n-j$.
For $i=1$ to $m, j=1$ to $n-1 ; f_{2}\left(e_{i}^{j}\right)=6 m n+(j-1) m+i$.
Clearly, the weight of all 3-sided faces is $w\left(f_{i}\right)=9 m n-m+2$.


Figure 3: Labeled graphs for vertex by edge duplication on $\mathrm{mP}_{\mathrm{n}}$

Theorem 2.4 The graph $G^{\prime}$ obtained by vertex by edge duplication at all vertices on $m P_{n}$ which admits face magic labeling of type (1, 1, 1), where both $m$ and $n$ are not simultaneously even.

Proof
Let $m P_{n}$ be the disjoint union of $m$ path graph $P_{n}$ with $V=\left\{v_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E=\left\{e_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$. Let $G^{\prime}$ be the graph obtained by duplicating all vertices by edges in $m P_{n}$ simultaneously. Let the vertex set $V^{\prime}=V \cup\left\{u_{i}^{j}, w_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$, edge set $E^{\prime}=E \cup\left\{u_{i}^{j} v_{i}^{j}, v_{i}^{j} w_{i}^{j}, u_{i}^{j} w_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and face set $F^{\prime}=\left\{f_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Define a bijective mapping $f_{4}: V^{\prime} \cup E^{\prime} \cup F^{\prime} \rightarrow\{1,2, \cdots, 8 m n-m\}$ as follows:
We consider two cases depending on the values of $m$ and $n$.
Case (i): when $m, n \equiv 1(\bmod 2), m, n \geq 3$
For $i=1$ to $m, j=1$ to $n$;
$f_{4}\left(v_{i}^{j}\right)=(i-1) n+j, f_{4}\left(u_{i}^{j}\right)=2 m n+(i-1) n+j, f_{4}\left(w_{i}^{j}\right)=2 m n+1-(i-1) n-j$,
$f_{4}\left(u_{i}^{j} w_{i}^{j}\right)=4 m n+1-(i-1) n-j, f_{4}\left(v_{i}^{j} w_{i}^{j}\right)=4 m n+(i-1) n+j$,
$f_{4}\left(e_{i}^{j}\right)=6 m n+(i-1)(n-1)+j$.
$f_{4}\left(u_{i}^{j} v_{i}^{j}\right)=\left\{\begin{array}{l}5 m n+\left\lceil\frac{m n}{2}\right\rceil+1-(i-1)\left(\frac{n}{2}\right)-\left(\frac{j+1}{2}\right), \quad \text { if } i \text { and } j \text { are odd }, 1 \leq i \leq m, 1 \leq j \leq n, \\ 6 m n-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j}{2}\right), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1, \\ 6 m n-\left(\frac{n-1}{2}\right)-(i-2)\left(\frac{n}{2}\right)+1-\left(\frac{j+1}{2}\right), \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m-1,1 \leq j \leq n, \\ 5 m n+\left\lceil\frac{m n}{2}\right\rceil-\left(\frac{n-1}{2}\right)-(i-2)\left(\frac{n}{2}\right)-\frac{j}{2}, \quad \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$
$f_{4}\left(f_{i}^{j}\right)=\left\{\begin{array}{l}8 m n-m+1-(i-1)\left(\frac{n}{2}\right)-\left(\frac{j+1}{2}\right), \quad \text { if } i \text { and jare odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ 7 m n-m+\left\lceil\frac{m n}{2}\right\rceil-(i-1)\left(\frac{n}{2}\right)-\left(\frac{j}{2}\right), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1, \\ 7 m n-m+\left\lceil\frac{m n}{2}\right\rceil-\left(\frac{n-1}{2}\right)-(i-2)\left(\frac{n}{2}\right)-\left(\frac{j+1}{2}\right), \text { if i is even and } j \text { is odd, }, \\ 2 \leq i \leq m-1,1 \leq j \leq n, \\ 8 m n-m-\left(\frac{n-1}{2}\right)-(i-2)\left(\frac{n}{2}\right)-\frac{j}{2}, \quad \text { if } i \text { and jare even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$
Clearly, the common weight of all 3-sided faces is $w\left(f_{i}\right)=25 m n-m+\left\lceil\frac{m n}{2}\right\rceil+3$.
Case (ii): When (a) $m \equiv 1(\bmod 2)$ and $n \equiv 0(\bmod 2)$

$$
\text { (b) } m \equiv 0(\bmod 2) \text { and } n \equiv 1(\bmod 2)
$$

In this case, labels are assigned to the vertices as in case (i). We define the edge and face labeling as follows;

For $i=1$ to $m, j=1$ to $n ; f_{4}\left(u_{i}^{j} w_{i}^{j}\right)=4 m n+1-(i-1) n-j$,
$f_{4}\left(v_{i}^{j} w_{i}^{j}\right)=4 m n+(i-1) n+j, f_{4}\left(e_{i}^{j}\right)=6 m n+(i-1)(n-1)-1+j$.
When $m$ is odd and $n$ is even, let
$f_{4}\left(u_{i}^{j} v_{i}^{j}\right)=\left\{\begin{array}{l}5 m n-\frac{1}{2}(i n-n+j+1)+1, \quad \text { if jis odd, } 2 \leq i \leq m, l \leq j \leq n-1 \\ 5 m n+\frac{m n}{2}+1-\frac{1}{2}(i n-n+j), \text { if } j \text { is even, } l \leq i \leq m, 2 \leq j \leq n .\end{array}\right.$
$f_{4}\left(f_{i}^{j}\right)=\left\{\begin{array}{l}7 m n-m-\frac{1}{2}(i n-n+j-m n+1)+2, \text { if } j \text { is odd, } 2 \leq i \leq m, 1 \leq j \leq n-1 \\ 8 m n-m+1-\frac{1}{2}(i n-n+j), \text { if } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n .\end{array}\right.$

When $m$ is even and $n$ is odd, let

$$
\begin{gathered}
f_{4}\left(f_{i}^{j}\right)=\left\{\begin{array}{l}
6 m n+m(n-1)+1, \quad \text { if } i=1 \text { and } j=1, \\
7 m n+\frac{3}{2}(m n)-\frac{1}{2}(\text { in }-n+j+1)-(m+n-2), \quad \text { if } i \text { and } j \text { are odd, } 3 \leq i \leq m-1,1 \leq j \leq n, \\
8 m n-\frac{1}{2}(\text { in }-n+j)-m+1, \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m-1,2 \leq j \leq n-1, \\
8 m n-\frac{1}{2}(\text { in }-n+j)-m+1, \quad \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m, 1 \leq j \leq n, \\
6 m n+\frac{m n}{2}-\frac{1}{2}(i n+n+j+1)-m+n+1, \quad \text { fi and } j \text { are even, } 2 \leq i \leq m, 2 \leq j \leq n-1 .
\end{array}\right. \\
f_{4}\left(u_{i}^{j} v_{i}^{j}\right)=\left\{\begin{array}{l}
6 m n+1-\left(\frac{j+1}{2}\right), \quad \text { if } j \text { is odd, } i=1 \text { and } j \neq 1, \\
6 m n+\left(\frac{m n}{2}\right), \quad \text { if } i=1 \text { and } j=1, \\
5 m n+\frac{m n}{2}-\frac{1}{2}(i n-n+j)+1, \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m-1,2 \leq j \leq n-1, \\
5 m n+\frac{m n}{2}-\frac{1}{2}(i+n+j)+1+n, \quad \text { if } \text { i is even and } j \text { is odd, } 2 \leq i \leq m, 1 \leq j \leq n, \\
6 m n-\frac{1}{2}(\text { in }+n+j+1)+n, \quad \text { fi and } j \text { are even, } 2 \leq i \leq m, 2 \leq j \leq n-1 .
\end{array}\right.
\end{gathered}
$$

Clearly, the common weight of all 3-sided faces is $w\left(f_{i}\right)=25 m n+\frac{m n}{2}-m+4$.
Theorem 2.5 For $n \geq 4$ and $m \geq 2$, the graph $G$ obtained by edge by vertex duplication at all edges on $m P_{n}$ admits face magic labeling of type $(0,1,1)$ and also $G$ admits face magic labeling of types $(1,0,1)$ and $(1,1,0)$ if $n$ is even.

## Proof

Let $G(V, E, F)$ be the graph obtained by duplicating all edges in $m P_{n}$ by vertices respectively.
$\operatorname{Let} V=\left\{v_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}, E=\left\{u_{i}^{j} v_{i}^{j+1}, u_{i}^{j} v_{i}^{j}, v_{i}^{j} v_{i}^{j+1}:\right.$
$1 \leq i \leq m, 1 \leq j \leq n-1\}$ and face set $F=\left\{f_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$. The three types of magic labeling are discussed below:
Type (i): (1, 0, 1)-Face magic ( $n$ is even)
Define a bijective mapping $g_{1}: V \cup F \rightarrow\{1,2, \cdots, 3 m n-2 m\}$ in the following way:
$g_{1}\left(v_{i}^{j}\right)=\left\{\begin{array}{l}(i-1)\left(\frac{n}{2}\right)+\left(\frac{j+1}{2}\right), \quad \text { if } 1 \leq i \leq m \text { and for odd } j, 1 \leq j \leq n-1, \\ m n-i \frac{n}{2}+\frac{j}{2}, \quad \text { if } 1 \leq i \leq m \text { and for even } j, 2 \leq j \leq n .\end{array}\right.$
$g_{1}\left(u_{i}^{j}\right)=\left\{\begin{array}{l}m n+i\left(\frac{n}{2}\right)+2-\frac{1}{2}(i+j+2), \quad \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n-1, \\ m n+(i+1)\left(\frac{n}{2}\right)+1-\frac{1}{2}(i+j+1), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-2, \\ 2 m n-m-(i-1)\left(\frac{n}{2}\right)+\frac{1}{2}(i-j-1)+1, \quad \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m-1,1 \leq j \leq n-1, \\ 2 m n-m-(i-2)\left(\frac{n}{2}\right)+\frac{1}{2}(i-j), \quad \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m-1,2 \leq j \leq n-2 .\end{array}\right.$
$g_{1}\left(f_{i}^{j}\right)=\left\{\begin{array}{l}3 m n-2 m-(i-1)\left(\frac{n}{2}\right)+\frac{1}{2}(i-j), \quad \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n-1, \\ 3 m n-2 m-i\left(\frac{n}{2}\right)+\frac{1}{2}(i-j-1), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n, \\ 2 m n-m+(i)\left(\frac{n}{2}\right)+1-\frac{1}{2}(i+j+1), \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m, 1 \leq j \leq n-1, \\ 2 m n-m+(i-1)\left(\frac{n}{2}\right)-\frac{1}{2}(i+j)+1, \quad \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m, 2 \leq j \leq n .\end{array}\right.$
We can easily see that all 3-sided faces have the equal weight $w\left(f_{i}\right)=5 m n-2 m+2$.
Type (ii): (1, 1, 0)-Face magic ( $n$ is even)
Define a bijective mapping $g_{2}: V \cup E \rightarrow\{1,2, \cdots, 5 m n-4 m\}$ as follows:
Here, labels are assigned to the vertices as in type (i).
$g_{2}\left(v_{i}^{j} u_{i}^{j}\right)=2 m n-m+(i-1)(n-1)+j, \quad$ if $1 \leq i \leq m$ and $1 \leq j \leq n-1$.

$$
\begin{aligned}
& g_{2}\left(v_{i}^{j+1} u_{i}^{j}\right)=4 m n-3 m+1-(i-1)(n-1)-j, \quad \text { if } 1 \leq i \leq m \text { and } 1 \leq j \leq n-1 . \\
& g_{2}\left(v_{i}^{j} v_{i}^{j+1}\right)=\left\{\begin{array}{l}
5 m n-4 m-(i-1)\left(\frac{n}{2}\right)+\left(\frac{i-j}{2}\right), \quad \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n-1, \\
5 m n-4 m-\frac{n}{2}-(i-1)\left(\frac{n}{2}\right)+\left(\frac{i+1-j}{2}\right), \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-2, \\
4 m n-3 m+i\left(\frac{n}{2}\right)-\left(\frac{i+j+1}{2}\right)+1, \text { if } i \text { is even and } j \text { is odd }, 2 \leq i \leq m-1,1 \leq j \leq n-1, \\
4 m n-3 m+(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{i+j}{2}\right), \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m-1,2 \leq j \leq n-2 .
\end{array}\right.
\end{aligned}
$$

Clearly, the common weight for all 3 -sided faces is $w\left(f_{i}\right)=13 m n-8 m+3$.
Type (iii): (0, 1, 1)-Face magic
A bijective mapping $g_{3}: E \cup F \rightarrow\{1,2, \cdots, 4 m(n-1)\}$ is given below:
For $1 \leq i \leq m$ and $1 \leq j \leq n-1 ; ~ g_{3}\left(v_{i}^{j} u_{i}^{j}\right)=(i-1)(n-1)+j$,
$g_{3}\left(v_{i}^{j+1} u_{i}^{j}\right)=2 m(n-1)+1-(i-1)(n-1)-j, \quad g_{3}\left(v_{i}^{j} v_{i}^{j+1}\right)=2 m(n-1)+(i-1)(n-1)+j$,
$g_{3}\left(f_{i}^{j}\right)=4 m(n-1)+1-(i-1)(n-1)-j$.
Clearly, the common weight for all 3-sided faces is $w\left(f_{i}\right)=8 m(n-1)+2$.
Theorem 2.6 Let $G$ be the graph obtained by edge by vertex duplication at all edges on $m P_{n+1}$, then the graph $G$ has face magic labeling of type $(1,1,1)$ when $n, m \equiv 1(\bmod 2)$.

## Proof

Let $G(V, E, F)$ be the graph obtained by duplicating all edges in $m P_{n+1}$ by vertices respectively.
Let $V=\left\{v_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n+1\right\} \cup\left\{u_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$,
$E=\left\{u_{i}^{j} v_{i}^{j+1}, u_{i}^{j} v_{i}^{j}, v_{i}^{j} v_{i}^{j+1}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and face set $F=\left\{f_{i}^{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define the vertex labeling $g_{4}: V(G) \rightarrow\{1,2, \cdots, 2 m n+m\}$ as follows:
$g_{4}\left(v_{i}^{j}\right)= \begin{cases}(i-1)\left(\frac{n+1}{2}\right)+\left(\frac{j+1}{2}\right), & \text { if } j \text { is odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ m(n+1)-i\left(\frac{n+1}{2}\right)+\frac{j}{2}, & \text { if } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n+1 .\end{cases}$
$g_{4}\left(u_{i}^{j}\right)=\left\{\begin{array}{l}m(n+1)+i\left(\frac{n+1}{2}\right)+2-\left(\frac{i+j+2}{2}\right), \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ m(n+1)+(i+1)\left(\frac{n+1}{2}\right)+1-\left(\frac{i+j+1}{2}\right), \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1, \\ 2 m m+m-(i-1)\left(\frac{n+1}{2}\right)+\left(\frac{i-j-1}{2}\right)+1, \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m-1,1 \leq j \leq n, \\ 2 m n+m-(i-2)\left(\frac{n+1}{2}\right)+\left(\frac{i-j}{2}\right), \text { if } i \text { and jare even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$
We construct the edge labeling $f_{2}: E(G) \rightarrow\{1,2, \cdots, 3 m n\}$ in the following way;
$g_{4}\left(v_{i}^{j} u_{i}^{j}\right)=2 m(n+1)-m+(i-1) n+j, \quad$ if $1 \leq i \leq m$ and $1 \leq j \leq n$.
$g_{4}\left(v_{i}^{j+1} u_{i}^{j}\right)=\left\{\begin{array}{l}5 m n+m-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j+1}{2}\right), \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ 5 m n+m-\left\lceil\left[\frac{m n}{2}\right\rceil-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j}{2}\right), \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1,\right. \\ 5 m n+m-\left\lceil\frac{m n}{2}\right\rceil-i\left(\frac{n}{2}\right)+\frac{n+1}{2}-\left(\frac{j+1}{2}\right)+1, \text { if } i \text { is even and } j \text { is } o d d, 2 \leq i \leq m-1,1 \leq j \leq n, \\ 5 m n+m-i\left(\frac{n}{2}\right)+\left(\frac{n+1}{2}\right)-\frac{j}{2}, \quad \text { if } i \text { and jare even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$
$g_{4}\left(v_{i}^{j} v_{i}^{j+1}\right)=\left\{\begin{array}{l}4 m n+m-\left\lceil\frac{m n}{2}\right\rceil-(i-1)\left(\frac{n}{2}\right)+2-\left(\frac{j+1}{2}\right), \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ 4 m n+m-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j}{2}\right), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1, \\ 4 m n+m-i\left(\frac{n}{2}\right)+\frac{n+1}{2}-\left(\frac{j+1}{2}\right)+1, \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m-1,1 \leq j \leq n, \\ 4 m n+m-\left\lceil\frac{m n}{2}\right\rceil-i\left(\frac{n}{2}\right)+\left(\frac{n+1}{2}\right)-\frac{j}{2}+1, \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$

Define the face labeling $f_{3}: F(G) \rightarrow\{1,2, \cdots, m n\}$ as follows:
$g_{4}\left(f_{i}^{j}\right)=\left\{\begin{array}{l}6 m n+m-(i-1)\left(\frac{n+1}{2}\right)+\left(\frac{i-j}{2}\right), \quad \text { if } i \text { and } j \text { are odd, } 1 \leq i \leq m, 1 \leq j \leq n, \\ 6 m n+m-i\left(\frac{n+1}{2}\right)+\left(\frac{i+1-j}{2}\right), \quad \text { if } i \text { is odd and } j \text { is even, } 1 \leq i \leq m, 2 \leq j \leq n-1, \\ 5 m n+m+i\left(\frac{n+1}{2}\right)+1-\left(\frac{i+j+1}{2}\right), \text { if } i \text { is even and } j \text { is odd, } 2 \leq i \leq m-1,1 \leq j \leq n, \\ 5 m n+m+(i-1)\left(\frac{n+1}{2}\right)-\left(\frac{i+j}{2}\right)+1, \quad \text { if } i \text { and } j \text { are even, } 2 \leq i \leq m-1,2 \leq j \leq n-1 .\end{array}\right.$
By direct computation that following, we observe that all 3-sided faces have the same weight
(a) If i and j are odd, $1 \leq i \leq m, 1 \leq j \leq n$, then the weight of 3-sided faces is

$$
\begin{aligned}
& =\left((i-1)\left(\frac{n+1}{2}\right)+\left(\frac{j+1}{2}\right)\right)+\left(m(n+1)-i\left(\frac{n+1}{2}\right)+\frac{j+1}{2}\right)+\left(m(n+1)+i\left(\frac{n+1}{2}\right)+2-\left(\frac{i+j+2}{2}\right)\right) \\
& +\left(4 m n+m-\left\lceil\frac{m n}{2}\right\rceil+2-(i-1)\left(\frac{n}{2}\right)-\frac{j+1}{2}\right)+\left(5 m n+m-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j+1}{2}\right)\right) \\
& +(2 m n+m+(i-1) n+j)+\left(6 m n+m-(i-1)\left(\frac{n+1}{2}\right)+\left(\frac{i-j}{2}\right)\right)=19 m n+6 m-\left\lceil\frac{m n}{2}\right\rceil+4
\end{aligned}
$$

(b) If i is odd and j is even, $1 \leq i \leq m, 2 \leq j \leq n-1$, then the weight of 3 -sided faces is

$$
\begin{aligned}
& w\left(f_{i, j}\right)=g_{4}\left(v_{i}^{j}\right)+g_{4}\left(v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j}\right)+g_{4}\left(v_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j}\right)+g_{4}\left(f_{i}^{j}\right) \\
& =\left(m(n+1)-i\left(\frac{n+1}{2}\right)+\frac{j}{2}\right)+\left((i-1)\left(\frac{n+1}{2}\right)+\left(\frac{j+2}{2}\right)\right)+\left(m(n+1)+(i+1)\left(\frac{n+1}{2}\right)+1-\left(\frac{i+j+1}{2}\right)\right) \\
& +\left(4 m n+m-(i-1)\left(\frac{n}{2}\right)+1-\frac{j}{2}\right)+\left(5 m n+m-\left\lceil\frac{m n}{2}\right\rceil-(i-1)\left(\frac{n}{2}\right)+1-\left(\frac{j}{2}\right)\right) \\
& +(2 m n+m+(i-1) n+j)+\left(6 m n+m-i\left(\frac{n+1}{2}\right)+\left(\frac{i+1-j}{2}\right)\right)=19 m n+6 m-\left\lceil\frac{m n}{2}\right\rceil+4
\end{aligned}
$$

(c) If i is even and j is odd, $2 \leq i \leq m-1,1 \leq j \leq n$, then the weight of 3 -sided faces is

$$
w\left(f_{i, j}\right)=g_{4}\left(v_{i}^{j}\right)+g_{4}\left(v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j}\right)+g_{4}\left(v_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j}\right)+g_{4}\left(f_{i}^{j}\right)
$$

$$
\begin{aligned}
& =\left((i-1)\left(\frac{n+1}{2}\right)+\left(\frac{j+1}{2}\right)\right)+\left(m(n+1)-i\left(\frac{n+1}{2}\right)+\frac{j+1}{2}\right)+\left(2 m m+m-(i-1)\left(\frac{n+1}{2}\right)+\left(\frac{i-j-1}{2}\right)+1\right) \\
& +\left(4 m n+m-i\left(\frac{n}{2}\right)+\left(\frac{n+1}{2}\right)+1-\frac{j+1}{2}\right)+\left(5 m n+m-\left\lceil\frac{m n}{2}\right\rceil+(1-i)\left(\frac{n}{2}\right)+1-\left(\frac{j+1}{2}\right)\right) \\
& +(2 m n+m+(i-1) n+j)+\left(5 m n+m+i\left(\frac{n+1}{2}\right)-\left(\frac{i+1+j}{2}\right)+1\right)=19 m n+6 m-\left\lceil\frac{m n}{2}\right\rceil+4 .
\end{aligned}
$$

(d) If i and j are even, $2 \leq i \leq m-1,2 \leq j \leq n-1$, then the weight of 3 -sided faces is

$$
\begin{aligned}
& w\left(f_{i, j}\right)=g_{4}\left(v_{i}^{j}\right)+g_{4}\left(v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j}\right)+g_{4}\left(v_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j+1}\right)+g_{4}\left(u_{i}^{j} v_{i}^{j}\right)+g_{4}\left(f_{i}^{j}\right) \\
& =\left(m(n+1)-i\left(\frac{n+1}{2}\right)+\frac{j}{2}\right)+\left((i-1)\left(\frac{n+1}{2}\right)+\left(\frac{j+2}{2}\right)\right)+\left(2 m m+m-(i-2)\left(\frac{n+1}{2}\right)+\left(\frac{i-j}{2}\right)\right) \\
& +\left(4 m n+m-\left\lceil\frac{m n}{2}\right\rceil-i\left(\frac{n}{2}\right)+\left(\frac{n+1}{2}\right)+1-\frac{j}{2}\right)+\left(5 m n+m-i\left(\frac{n}{2}\right)+\left(\frac{n+1}{2}\right)-\left(\frac{j}{2}\right)\right) \\
& +(2 m n+m+(i-1) n+j)+\left(5 m n+m+(i-1)\left(\frac{n+1}{2}\right)+1-\left(\frac{i+j}{2}\right)\right)=19 m n+6 m-\left\lceil\frac{m n}{2}\right\rceil+4 .
\end{aligned}
$$

Theorem 2.7 The $G$ graph obtained by duplicating all vertices by edges in $C_{n}, n \geq 3$, admits face magic labeling of types $(1,0,1),(1,1,0),(0,1,1)$ and $(1,1,1)$.

## Proof

Let $G(V, E, F)$ be the graph obtained by duplicating all vertices in $C_{n}: u_{1}, u_{2}, \cdots, u_{n}, n \geq 3$ by edges. Let $V=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}, E=\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$ $\cup\left\{u_{1} u_{n}\right\}$ and $F=\left\{f_{i}: u_{i} v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{f_{n+1}: u_{1} u_{2} \cdots u_{n}\right\}$.

The four types of labeling are discussed below:
Type (i): (1, 0, 1)-Face magic
Define a mapping $f_{1}: V \cup F \rightarrow\{1,2, \cdots, 4 n+1\}$ in the following way:
For $i=1$ to $n ; f_{1}\left(u_{i}\right)=i, f_{1}\left(v_{i}\right)=2 n+1-i, f_{1}\left(w_{i}\right)=2 n+i$,
$f_{1}\left(f_{i}\right)=4 n+1-i, f_{1}\left(f_{n+1}\right)=4 n+1$.

Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=8 n+2$.
The weight of $n$-side face is
$w_{2}\left(f_{i}\right)=\sum_{i=1}^{n} f_{1}\left(u_{i}\right)+f_{1}\left(f_{n+1}\right)=\sum_{i=1}^{n} i+(4 n+1)=\frac{n(n+1)}{2}+(4 n+1)=\frac{n^{2}+9 n+2}{2}$.
Type (ii): (1, 1, 0)-Face magic
We define a bijective function $f_{2}: V \cup E \rightarrow\{1,2, \cdots, 7 n\}$ as follows:
For $i=1$ to $n ; f_{2}\left(u_{i}\right)=i, f_{2}\left(v_{i}\right)=2 n+1-i, f_{2}\left(w_{i}\right)=2 n+i, f_{2}\left(v_{i} w_{i}\right)=4 n+1-i$,
$f_{2}\left(u_{i} v_{i}\right)=4 n+i, f_{2}\left(u_{i} w_{i}\right)=6 n+1-i, f_{2}\left(u_{1} u_{n}\right)=6 n+1$.
For $i=1$ to $n-1 ; f_{2}\left(u_{i} u_{i+1}\right)=6 n+1+i$.
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=18 n+3$ and the weight of $n$-side face is

$$
\begin{gathered}
w_{2}\left(f_{i}\right)=\sum_{i=1}^{n} f_{2}\left(u_{i}\right)+\sum_{i=1}^{n-1} f_{2}\left(u_{i} u_{i+1}\right)+f_{2}\left(u_{1} u_{n}\right)=\sum_{i=1}^{n} i+\sum_{i=1}^{n-1}(6 n+1+i)+(6 n+1) \\
=\frac{n(n+1)}{2}+(6 n+1)(n-1)+\frac{(n-1) n}{2}+(6 n+1)=7 n^{2}+n .
\end{gathered}
$$

Type (iii): (0, 1, 1)-Face magic
We construct a bijective mapping $f_{3}: E \cup F \rightarrow\{1,2, \cdots, 5 n+1\}$ as below:
For $i=1$ to $n ; f_{3}\left(u_{i} w_{i}\right)=n+i, f_{3}\left(u_{i} v_{i}\right)=3 n+1-i, f_{3}\left(v_{i} w_{i}\right)=3 n+i, f_{3}\left(f_{i}\right)=5 n+2-i$.
For $i=1$ to $n-1 ; f_{3}\left(u_{i} u_{i+1}\right)=i, f_{3}\left(u_{1} u_{n}\right)=n, f_{3}\left(f_{n+1}\right)=4 n+1$.
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=12 n+3$ and the weight of n -side face is

$$
\begin{gathered}
w_{2}\left(f_{i}\right)=\sum_{i=1}^{n-1} f_{3}\left(u_{i} u_{i+1}\right)+f_{3}\left(u_{1} u_{n}\right)+f_{3}\left(f_{n+1}\right)=\sum_{i=1}^{n-1} i+n+(4 n+1) \\
=\frac{n(n-1)}{2}+(5 n+1)=\frac{n^{2}+9 n+2}{2} .
\end{gathered}
$$

Type (iv): (1, 1, 1)-Face magic
Define a bijective mapping $f_{4}: V \cup E \cup F \rightarrow\{1,2, \cdots, 8 n+1\}$ as follows:
For $i=1$ to $n ; f_{4}\left(u_{i}\right)=i, f_{4}\left(v_{i}\right)=2 n+i, f_{4}\left(w_{i}\right)=2 n+1-i, f_{4}\left(v_{i} w_{i}\right)=4 n+1-i$,
$f_{4}\left(u_{i} w_{i}\right)=4 n+i, f_{4}\left(u_{i} v_{i}\right)=7 n+1-2 i, f_{4}\left(f_{i}\right)=7 n+1+i$.
For $i=1$ to $n-1 ; f_{4}\left(u_{i} u_{i+1}\right)=7 n+2-2 i, f_{4}\left(u_{1} u_{n}\right)=5 n+2, f_{4}\left(f_{n+1}\right)=7 n+1$.
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=26 n+4$ and the weight of $n$-side face is

$$
\begin{aligned}
w_{2}\left(f_{i}\right) & =\sum_{i=1}^{n} f_{4}\left(u_{i}\right)+\sum_{i=1}^{n-1} f_{4}\left(u_{i} u_{i+1}\right)+f_{4}\left(u_{1} u_{n}\right)+f_{4}\left(f_{n+1}\right) \\
& =\sum_{i=1}^{n} i+\sum_{i=1}^{n-1}(7 n+2-2 i)+(5 n+2)+(7 n+1) \\
& =\frac{n(n+1)}{2}+(7 n+2)(n-1)-2 \frac{n(n-1)}{2}+(12 n+3)=\frac{13 n^{2}+17 n+2}{2} .
\end{aligned}
$$

The labeling technique used in the proof of the theorems 2.7 and 2.8 are exhibited in the following figures.


Figure 4:


Figure 5:

Figure 4: Face magic labeling of type $(1,0,1)$ for vertex by edge duplication on $C_{n}$
Figure 5: Face magic labeling of type $(1,0,1)$ for edge by vertex duplication on $C_{n}$

Theorem 2.8 The G graph obtained by duplicating all edges by vertex in outside the cycle $C_{n}$, $n \geq 3$ admits face magic labeling of types (1, 0, 1) and ( $0,1,1$ ). Also $G$ admits face magic labeling of types $(1,1,0)$ and $(1,1,1)$ if $n$ is odd.

Proof
Let $G(V, E, F)$ be the graph obtained by duplicating all edges by vertex in
$C_{n}: v_{1}, v_{2}, \cdots, v_{n}, n \geq 3$. Let $V=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}, E=\left\{v_{i} v_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup$
$\left\{v_{1} u_{n}, v_{1} v_{n}\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ and $F=\left\{f_{i}: 1 \leq i \leq n\right\} \cup\left\{f_{n+1}: v_{1} v_{2} \cdots v_{n}\right\}$
The four types of labeling are discussed separately below:
Type (i): (1, 0, 1)-Face magic
Define a mapping $g_{1}: V \cup F \rightarrow\{1,2, \cdots, 3 n+1\}$ in the following way:
For $1 \leq i \leq n ; g_{1}\left(v_{i}\right)=i, g_{1}\left(u_{i}\right)=2 n+1-i$.
$g_{1}\left(f_{i}\right)=\left\{\begin{array}{l}3 n-i, \text { if } 1 \leq i \leq n-1, \\ 3 n, \text { if } i=n, \\ 3 n+1, \text { if } i=n+1 .\end{array}\right.$
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=5 n+2$ and the weight of $n$-side face is
$w_{2}\left(f_{i}\right)=\sum_{i=1}^{n} g_{1}\left(v_{i}\right)+g_{1}\left(f_{n+1}\right)=\sum_{i=1}^{n} i+(3 n+1)=\frac{n(n+1)}{2}+(3 n+1)=\frac{n^{2}+7 n+2}{2}$.
Type (ii): (1, 1, 0)-Face magic ( $n$ is odd)
We define a bijective function $g_{2}: V \cup E \rightarrow\{1,2, \cdots, 5 n\}$ as follows:
$g_{2}\left(v_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, \quad \text { if } i \text { is odd, } 1 \leq i \leq n, \\ \left\lceil\frac{n}{2}\right\rceil+\frac{i}{2},\end{array}\right.$ if i is even, $2 \leq i \leq n-1 . ~ \$$
$g_{2}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}4 n+\left\lceil\frac{n}{2}\right\rceil-1+\frac{i+1}{2}, \text { if } i \text { is odd, } 1 \leq i \leq n-2, \\ 4 n+\frac{i}{2}, \text { if } i \text { is even, } 2 \leq i \leq n-1 .\end{array}\right.$
$g_{2}\left(u_{i} v_{i+1}\right)=\left\{\begin{array}{l}3 n+\frac{i+1}{2}, \text { if } i \text { is odd, } 1 \leq i \leq n-2, \\ 3 n+\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2}, \quad \text { if } i \text { is even, } 2 \leq i \leq n-1 .\end{array}\right.$
For $1 \leq i \leq n ; \quad g_{2}\left(u_{i} v_{i}\right)=3 n+1-i, \quad g_{2}\left(v_{1} v_{n}\right)=5 n, g_{2}\left(v_{1} u_{n}\right)=3 n+\left\lceil\frac{n}{2}\right\rceil$.

$$
g_{2}\left(u_{i}\right)=\left\{\begin{array}{l}
2 n-i, \text { if } 1 \leq i \leq n-1, \\
2 n, \text { if } i=n .
\end{array}\right.
$$

Clearly, the weight of all 3-sided faces is $w_{1}\left(f_{i}\right)=2\left(6 n+\left\lceil\frac{n}{2}\right\rceil+1\right)$.
The weight of $n$-side face is

$$
\begin{aligned}
w_{2} & \left(f_{i}\right)=\sum_{i=o d d} g_{2}\left(u_{i}\right)+\sum_{i=o d d} g_{2}\left(v_{i} v_{i+1}\right)+\sum_{i=\text { even }} g_{2}\left(u_{i}\right)+\sum_{i=\text { even }} g_{2}\left(v_{i} v_{i+1}\right)+g_{2}\left(v_{1} v_{n}\right) \\
= & \sum_{i=1}^{n}\left(\frac{i+1}{2}\right)+\sum_{i=1}^{n-2}\left(4 n+\left\lceil\frac{n}{2}\right\rceil-1+\frac{i+1}{2}\right)+\sum_{i=2}^{n-1}\left(4 n+\frac{i}{2}\right)+\sum_{i=2}^{n-1}\left(\left[\frac{n}{2}\right]+\frac{i}{2}\right)+5 n \\
= & \frac{1}{2}\left(\frac{n+1}{2}\right)\left(\frac{n+3}{2}\right)+\left(4 n+\left[\frac{n}{2}\right]-1\right)\left(\frac{n-1}{2}\right)+\frac{1}{2}\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)+4 n\left(\frac{n-1}{2}\right) \\
& +\frac{1}{2}\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)+\left[\frac{n}{2}\left(\frac{n-1}{2}\right)+\frac{1}{2}\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)+5 n\right. \\
= & \frac{3}{2}\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)+\left(\frac{n-1}{2}\right)\left(2\left[\frac{n}{2}\right\rceil+8 n-1\right)+\frac{1}{2}\left(\frac{n+3}{2}\right)\left(\frac{n+1}{2}\right)+5 n .
\end{aligned}
$$

Type (iii): (0, 1, 1)-Face magic
We construct a mapping $g_{3}: E \cup F \rightarrow\{1,2, \cdots, 4 n+1\}$ in the following way:
For $i=1$ to $n ; g_{3}\left(u_{i} v_{i}\right)=2 n+1-i, g_{3}\left(f_{i}\right)=4 n+1-i, g_{3}\left(f_{n+1}\right)=4 n+1$.
For $i=1$ to $n-1 ; g_{3}\left(v_{i} v_{i+1}\right)=i, g_{3}\left(u_{i} v_{i+1}\right)=2 n+i . g_{3}\left(v_{1} v_{n}\right)=n, g_{3}\left(u_{n} v_{1}\right)=3 n$,
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=8 n+2$.
The weight of $n$-side face is

$$
w_{2}\left(f_{i}\right)=\sum_{i=1}^{n-1} g_{3}\left(v_{i} v_{i+1}\right)+g_{3}\left(f_{n+1}\right)=\sum_{i=1}^{n-1} i+(4 n+1)=\frac{n(n-1)}{2}+(4 n+1)=\frac{n^{2}+7 n+2}{2} .
$$

Type (iv): ( $1,1,1$ )-Face magic ( $n$ is odd)
A bijective function $g_{4}: V \cup E \cup F \rightarrow\{1,2, \cdots, 6 n+1\}$ is given below:
$g_{4}\left(f_{i}\right)=\left\{\begin{array}{l}5 n+\left\lceil\frac{n}{2}\right\rceil+\frac{i+1}{2}, \quad \text { if } i \text { is odd, } 1 \leq i \leq n-2, \\ 5 n+1+\frac{i}{2}, \quad \text { if } i \text { is even, } 2 \leq i \leq n-1, \\ 6 n+1, \quad \text { if } i=n+1 .\end{array}\right.$
$g_{4}\left(u_{i} v_{i+1}\right)= \begin{cases}3 n+\frac{i+1}{2}, & \text { if } i \text { is odd, } 1 \leq i \leq n-2, \\ 3 n+\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2}, & \text { if } i \text { is even, } 2 \leq i \leq n-1 .\end{cases}$
For $i=1$ to $n ; g_{4}\left(v_{i}\right)=i, g_{4}\left(u_{i}\right)=3 n+1-i, g_{4}\left(u_{i} v_{i}\right)=5 n-i$.
For $i=1$ to $n-1 ; g_{4}\left(v_{i} v_{i+1}\right)=2 n-i . g_{4}\left(v_{1} u_{n}\right)=3 n+\left\lceil\frac{n}{2}\right\rceil, g_{4}\left(v_{1} v_{n}\right)=2 n$.
Clearly, the weight of all 3 -sided faces is $w_{1}\left(f_{i}\right)=18 n+\left\lceil\frac{n}{2}\right\rceil+3$.
The weight of $n$-side face is

$$
\begin{aligned}
& w_{2}\left(f_{i}\right)=\sum_{i=1}^{n} g_{4}\left(w_{i}\right)+\sum_{i=1}^{n-1} g_{4}\left(u_{i} u_{i+1}\right)+g_{4}\left(u_{1} u_{n}\right)+g_{4}\left(f_{n+1}\right) \\
& \quad=\sum_{i=1}^{n} i+\sum_{i=1}^{n-1}(2 n-i)+2 n+(6 n+1)=\frac{n(n+1)}{2}+2 n(n-1)-\frac{n(n-1)}{2}+8 n+1=2 n^{2}+7 n+1 .
\end{aligned}
$$

## Remark

We have considered unique structure of $G$ in the above theorems 2.7 and 2.8. That is, $G$ has exactly $n+1$ interior faces of which one is an $n$-sided face and the others are 3 -sided faces.

## Conclusion

In this paper, we have studied face magic labeling for vertex and edge duplication on some families of graphs. In future, we are interested in extending this idea to some graph operations. We propose the following problem for further study in this area.

Problem 1 Whether the edge by vertex duplication at all edges simultaneously on an arbitrary tree has face magic labeling of types $(1,0,1),(1,1,0)$ and $(1,1,1)$ or not.

## References

[1] A. Amara Jothi, N.G. David and J. Baskar Babujee, On Super Edge Magic and Bimagic Labeling for Duplication Graphs, Gen. Math. Notes., 22 (2014), 57-70.
[2] M. Baca, On Magic and Consecutive Labelings for the Special Classes of Plane Graphs, Utilitas Math., 32 (1987), 59-65.
[3] M. Baca, On Magic Labelings of Mobius Ladders, J. Franklin Inst., 326 (1989), 885-888.
[4] M. Baca, On Magic Labelings of Honeycomb, Discrete Math., 105 (1992), 305-311.
[5] M. Baca, On Magic Labelings of Grid Graphs, Ars., Combin., 33 (1992), 295-299.
[6] J. A. Bondy and U. S. R. Murthy, 1982, Graph Theory with Applications, Elsevier Science Publishing Co., Inc.
[7] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics 20(2013), \#DS6.
[8] Ko-Wei Lih, On Magic and Consecutive Labelings of Plane Graphs, Utilitas Math., 24 (1983), 165-197.
[9] K. Kathiresan and S. Gokulakrishnan, On Magic Labelings of Type ( $1,1,1$ ) for the Special Classes of Plane Graphs, Utilitas Math., 63 (2003), 25-32.
[10] Kasif Ali, Muhammad Hussain, Ali Ahmad and Mirka Miller, Magic Labeling of Type (a,b,c) of Families of Wheels, Mathematics in Computer Science, 7 (2013), 315- 319.

