The b-chromatic number of some graphs

S. K. Vaidya ${ }^{1 *}$, Rakhimol V. Isaac ${ }^{2}$
${ }^{1}$ Saurashtra University
Rajkot - 360005, Gujarat, India.
samirkvaidya@yahoo.co.in
${ }^{2}$ Christ College, Rajkot - 360005
Gujarat, India.
rakhiisaac@yahoo.co.in

Abstract

A proper coloring of a graph G is called b-coloring if each color class contains a vertex which is adjacent to at least one vertex of every other color classes. We investigate b-chromatic number of some cycle and path related graphs.

Keywords: Graph coloring, b-coloring, b-vertex.
AMS Subject Classification(2010): 05C15, 05C76.

1 Introduction

We begin with finite, simple, connected and undirected graph. A proper k-coloring of a graph G is an assignment of k colors $1,2, \ldots, k$ to the vertices such that no two adjacent vertices share the same colors. The color of a vertex v is denoted by $c(v)$. The chromatic number $\chi(G)$ is the minimum number k for which G admits a proper k-coloring.

A b-coloring is a proper coloring of vertices of a graph G such that each color class contains a b vertex which has at least one neighbor in all the other color classes. The b-chromatic number $\varphi(G)$ is the largest integer k such that G admits a b-coloring with k colors.

The concept of b-coloring was introduced by Irving and Manlove [5] and they proved that determining $\varphi(G)$ is NP-hard for general graphs. The theory of b-coloring attracted many researchers. For eg., the b-chromatic number for Peterson graph and power of a cycle is discussed by Chandrakumar and Nicholas [1]. They also investigated the b-chromatic number of the square of cartesian product of two cycles [2]. The b-chromatic numbers of some path related graphs are investigated by Vaidya and Rakhimol [9]. The same authors have discussed the b-chromatic number of some degree splitting graphs [10].

Definition 1.1. [4] The m-degree of a graph G, denoted by $m(G)$, is the largest integer m such that G has at least m vertices of degree at least $m-1$.

[^0]Proposition 1.2. [3] For any graph $G, \chi(G) \geq 3$ if and only if G has an odd cycle.
Proposition 1.3. [5] If G admits a b-coloring with m colors, then G must have at least m vertices with degree at least $m-1$.

Proposition 1.4. [6] $\chi(G) \leq \varphi(G) \leq m(G)$.

It is obvious that if $\chi(G)=k$, then every coloring of a graph G by k colors is a b-coloring of G.

2 Main Results

Definition 2.1. The one point union $C_{n}^{(k)}$ of k-copies of cycle C_{n} is the graph obtained by taking v as a common vertex such that any two distinct cycles $C_{n}^{(i)}$ and $C_{n}^{(j)}$ are edge disjoint and do not have any vertex in common except v.

Theorem 2.2. $\phi\left(C_{n}^{(k)}\right)=3$ for all $n \geq 3$.
Proof: Let $v_{1}^{p}, v_{2}^{p}, \ldots, v_{n}^{p}$ be the vertices in the $p^{t h}$ copy of C_{n}. Take $v_{1}^{1}=v_{1}^{2}=\ldots . .=v_{1}^{k}=v$ in $C_{n}^{(k)}$. In the graph $C_{n}^{(k)}$, the vertex v is of degree $2 k$ and the remaining vertices are of degree 2. Hence $m\left(C_{n}^{(k)}\right)=3$. Thus $\phi\left(C_{n}^{(k)}\right) \leq 3$.

When n is odd, the graph $C_{n}^{(k)}$ contains odd cycles. Then by Proposition $1.2, \phi\left(C_{n}^{(k)}\right) \geq 3$. Thus $\phi\left(C_{n}^{(k)}\right)=3$. But when n is even, assign the colors as $c(v)=1, c\left(v_{2}^{2 i-1}\right)=2, c\left(v_{3}^{2 i-1}\right)=3$, $c\left(v_{4}^{2 i-1}\right)=2, c\left(v_{5}^{2 i-1}\right)=3, \ldots, c\left(v_{n}^{2 i-1}\right)=2, c\left(v_{2}^{2 i}\right)=3, c\left(v_{3}^{2 i}\right)=2, c\left(v_{4}^{2 i}\right)=3, \ldots, c\left(v_{n}^{2 i}\right)=3$ with $i \in \mathrm{~N}$. Consequently $v, v_{2}^{2 i-1}$ and $v_{2}^{2 i}$ are the b-vertices for the color classes 1,2 and 3 respectively. Hence $\phi\left(C_{n}^{(k)}\right)=3$.

Illustration 2.3. $C_{6}^{(3)}$ and $C_{3}^{(4)}$ and their b-coloring are shown in figure 1 and figure 2 respectively.

Figure 1

Figure 2

Definition 2.4. ([8]) Let $G_{1}, G_{2}, \ldots, G_{k}$ be k copies of a graph G where $k \geq 2 . G(k)$ is the graph obtained by adding an edge from G_{i} to $G_{i+1} ; i=1,2, \ldots, k-1$ and we call $G(k)$ the path union of k copies of the graph G.

Theorem 2.5. $\phi\left(C_{n}(k)\right)=\left\{\begin{array}{cc}3, & k=2,3 \\ 4, & k=4,5,6 \\ 5, & k \geq 7 .\end{array}\right.$
Proof: Let $C_{n}(k)$ denotes the path union of k copies of the cycle C_{n} with vertices v_{i}^{p} in the $p^{t h}$ copy of C_{n}, where $1 \leq i \leq n$ and $1 \leq p \leq k-1$. For obtaining $C_{n}(k)$ we join v_{1}^{p} and v_{1}^{p+1} by an edge. The vertices v_{1}^{1} and v_{1}^{k} are of degree 3 , the vertices $v_{1}^{p} ; 2 \leq p \leq k-1$ are of degree 4 and the remaining vertices are of degree 2 .
To prove the result we consider following three cases:
Case (i): When $k=2,3$.
The graph $C_{n}(k)$ has m-degree 3 . Then by Proposition $1.4, \phi\left(C_{n}(k)\right) \leq 3$. If we assign the colors as $c\left(v_{1}^{1}\right)=1, c\left(v_{2}^{1}\right)=2, c\left(v_{n}^{1}\right)=3, c\left(v_{1}^{2}\right)=3, c\left(v_{2}^{2}\right)=2, c\left(v_{3}^{2}\right)=1$ then v_{1}^{1}, v_{1}^{2} and v_{2}^{2} are the b-vertices for the color classes 1,3 and 2 respectively. Thus $\phi\left(C_{n}(k)\right)=3$.

Case (ii): When $k=4,5,6$.
The graph $C_{n}(k)$ has m-degree 4 . Then by Proposition $1.4, \phi\left(C_{n}(k)\right) \leq 4$. If we assign the colors as $c\left(v_{1}^{1}\right)=1, c\left(v_{2}^{1}\right)=2, c\left(v_{n}^{1}\right)=3, c\left(v_{1}^{2}\right)=4, c\left(v_{2}^{2}\right)=2, c\left(v_{n}^{2}\right)=3, c\left(v_{1}^{3}\right)=2, c\left(v_{2}^{3}\right)=1, c\left(v_{n}^{3}\right)=4$, $c\left(v_{1}^{4}\right)=3, c\left(v_{2}^{4}\right)=1, c\left(v_{n}^{4}\right)=4$ then $v_{1}^{1}, v_{1}^{2}, v_{1}^{3}$ and v_{1}^{4} are the b-vertices for the color classes $1,4,2$ and 3 respectively. Thus $\phi\left(C_{n}(k)\right)=4$.
Case (iii): When $k \geq 7$.
The graph $C_{n}(k)$ has m-degree 5 . Then by Proposition $1.4, \phi\left(C_{n}(k)\right) \leq 5$. If we assign the colors as $c\left(v_{1}^{1}\right)=3, c\left(v_{1}^{2}\right)=1, c\left(v_{2}^{2}\right)=4, c\left(v_{n}^{2}\right)=5, c\left(v_{1}^{3}\right)=2, c\left(v_{2}^{3}\right)=4, c\left(v_{n}^{3}\right)=5, c\left(v_{1}^{4}\right)=3, c\left(v_{2}^{4}\right)=1$, $c\left(v_{n}^{4}\right)=5, c\left(v_{1}^{5}\right)=4, c\left(v_{2}^{5}\right)=1, c\left(v_{n}^{5}\right)=2, c\left(v_{1}^{6}\right)=5, c\left(v_{2}^{6}\right)=1, c\left(v_{n}^{6}\right)=2, c\left(v_{1}^{7}\right)=3$ then v_{1}^{2}, v_{1}^{3}, v_{1}^{4}, v_{1}^{5} and v_{1}^{6} are the b-vertices for the color classes $1,2,3,4$ and 5 respectively. Thus $\phi\left(C_{n}(k)\right)=5$.

Illustration 2.6. The b-coloring of $C_{5}(4)$ is shown in Figure 3.

Figure 3: b-coloring of $C_{5}(4)$.

Definition 2.7. [7] A t-ply $P_{t}(u, v)$ is a graph with t paths, each of length at least two and such that no two paths have a vertex in common except the end vertices u and v.

The maximum over the length of all the paths with end points u and v in a t-ply $P_{t}(u, v)$ is denoted by $\max (l(P))$.

Theorem 2.8. For a path $P \equiv\left\{u, v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ with end points u and v in a t-ply $P_{t}(u, v)$, $\phi\left(P_{t}(u, v)\right)= \begin{cases}2, & \text { if } \max (l(P))=2 \\ 3, & \text { if } \max (l(P)) \geq 3 .\end{cases}$

Proof: Consider a t-ply graph $P_{t}(u, v)$ with $\max (l(P))=n+1$. The vertices u and v are of degree t and the remaining vertices are of degree 2 .

When $\max (l(P))=2, P_{t}(u, v)$ contains a P_{3}. Then obviously $\phi\left(P_{t}(u, v)\right) \geq 2$. As $P_{t}(u, v)$ has the m-degree 3 , by Proposition $1.4, \phi\left(P_{t}(u, v)\right) \leq 3$. If possible let $\phi\left(P_{t}(u, v)\right)=3$ and $c(u)=1$, $c\left(v_{1}\right)=2, c(v)=3$. But such b-coloring does not give the b-vertices for the color classes 1 and 3 . Consequently $\phi\left(P_{t}(u, v)\right) \neq 3$. Thus in turn $\phi\left(P_{t}(u, v)\right)=2$.

In the case when $\max (l(P)) \geq 3$, then m-degree of $P_{t}(u, v)$ is 3 . Thus by Proposition $1.4, \phi\left(P_{t}(u, v)\right) \leq$ 3. Also $P_{t}(u, v)$ contains a cycle of length greater than or equal to 5 . Thus $\phi\left(P_{t}(u, v)\right) \geq 3$. Clearly $\phi\left(P_{t}(u, v)\right)=3$.

Illustration 2.9. $P_{3}(u, v)$ with $\max (l(P))=3$ and its b-coloring is shown in Figure 4.

Figure 4: b-coloring of $P_{3}(u, v)$ with $\max (l(P))=3$.

3 Concluding Remarks

The b-chromatic number for cycle and path are known. But we have explored the concept of b coloring for the larger graphs obtained from these standard graphs. We have investigated the b-chromatic number for one point union of cycles, path union of cycles and t-ply graphs.
Acknowledgment: The authors are highly thankful to the anonymous referees for their kind suggestions and comments.

References

[1] S. Chandrakumar and T. Nicholas, b-continuity in Peterson graph and power of a cycle, International Journal of Modern Engineering Research, 2(2012), 2493-2496.
[2] S. Chandrakumar and T. Nicholas, b-coloring in square of cartesian product of two cycles, Annals of Pure and Applied Mathematics, 1(2)(2012), 131-137.
[3] J. Clark and D. A. Holton, A First Look at Graph Theory, World Scientific, 1969.
[4] F. Havet, C. L. Sales and L. Sampaio, b-coloring of tight graphs, Discrete Applied Mathematics, 160(2012), 2709-2715.
[5] R. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics, 91(1999), 127-141.
[6] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics, 256(2002), 267-277.
[7] N. B. Limaye, k-equitable graphs, $k=2,3$, in: Labelings of Discrete Structure and Applications, Narosa Publishing House, New Delhi, (2008), 117-133.
[8] S. C. Shee and Y. S. Ho, The cordiality of the path-union of n copies of a graph, Discrete Mathematics, 151(1996), 221-229.
[9] S. K. Vaidya and Rakhimol V. Isaac, The b-chromatic number of some path related graphs, International Journal of Mathematics and Scientific Computing, 4(1)(2014), 7-12.
[10] S. K. Vaidya and Rakhimol V. Isaac, The b-chromatic number of some degree splitting graphs, Malaya Journal of Mathematik, 2(3)(2014), 249-253.

[^0]: * Corresponding author

