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Abstract

A function from the vertex set of a graph G to the set {0,1,2} is called 3−equitable labeling if
the induced edge labels are produced by the absolute difference of labels of end vertices such that
the absolute difference of number of vertices of G labeled with 0, 1 and 2 differ by at most 1 and
similarly the absolute difference of number of edges of G labeled with 0, 1 and 2 differ by at most
1. In this paper we discuss 3−equitable labeling in context of barycentric subdivision of cycle with
one chord, cycle with twin chords, cycle with triangle, shell graph and wheel graph.
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1 Introduction

We consider simple, finite, undirected graph. If the vertices of the graph are assigned values subject

to certain conditions then it is known as graph labeling. A survey on graph labeling is given by Gal-

lian[2].

Let G be a graph. The vertex set and the edge set of graph G are denoted by V (G) and E(G) re-

spectively. A mapping f from V (G) to {0,1,2} is called ternary vertex labeling of G. A ternary vertex

labeling of a graph G is called 3−equitable labeling if the induced edge labeling function f∗ from E(G)

to the set {0, 1, 2} is defined as f∗(e = uv) = |f(u)−f(v)| such that the absolute difference of number

of vertices of G with label 0, 1 and 2 differ by at most 1 and similarly absolute difference of number

of edges of G with label 0, 1 and 2 differ by at most 1. A graph which admits 3−equitable labeling is

called a 3−equitable graph. We follow Gross and Yellen[3] for the graph theoretical terminology and

notations.

Definition 1.1. A chord of a cycle Cn, n ≥ 4 is an edge joining two non-adjacent vertices of the cycle

Cn.
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Definition 1.2. Two chords of a cycle Cn, n ≥ 5 are said to be twin chords if they form a triangle with

an edge of cycle Cn.

For positive integers n and p with 3 ≤ p ≤ (n− 2), Cn,p is the graph consisting of a cycle Cn with

a pair of twin chords with which the edges of Cn form cycles Cp, C3 and Cn+1−p without chords.

Definition 1.3. The cycle with triangle is a cycle with three chords which by themselves form a triangle.

For positive integers p, q, r and n ≥ 6 with p + q + r + 3 = n, Cn(p, q, r) denotes the cycle with

triangle whose edges form the edges of cycles Cp+2, Cq+2 and Cr+2 without chords.

Definition 1.4. The shell Sn is the graph obtained by taking n−3 concurrent chords in a cycle Cn. The

vertex at which all the chords are concurrent is called the apex vertex.

Definition 1.5. The wheel Wn is the join of the graphs Cn and K1. That is, Wn = Cn + K1. Here,

the vertices corresponding to Cn are called rim vertices and Cn is called rim of Wn while the vertex

corresponding to K1 is called apex vertex.

Definition 1.6. Let e = uv be an edge of a graph G and w is not a vertex of G. Then edge e is said to

be subdivided when it is replaced by edges e′ = uw and e′′ = wv.

Definition 1.7. If every edge of a graph G is subdivided, then the resulting graph is called barycentric

subdivision of the graph G. It is denoted by S(G).

Vaidya et al.[4] proved that cycle with twin chords is cordial as well as 3−equitable. In [5] Vaidya

et al. proved that the barycentric subdivision of cycle with one chord, cycle with twin chords and

cycle with triangle are cordial. Youssef[6] proved that Wn is 3−equitable for all n ≤ 4. In this paper

we prove that the barycentric subdivision of cycle with one chord, cycle with twin chords, cycle with

triangle, shell and wheel are 3−equitable graphs.

2 Main Results

Theorem 2.1. The barycentric subdivision of cycle Cn with one chord is 3−equitable for all n, where

chord forms a triangle with two edges of Cn.

Proof: Let G be the cycle Cn with one chord and let S(G) be the barycentric subdivision of G. Note

that |V (S(G))| = 2n + 1 and |E(S(G))| = 2n + 2. Let v1, v2, . . . , v2n+1 be the successive vertices

of S(G). Let e1 = v1v5 be the chord of Cn. Here v2, v4, . . . , v2n are the vertices inserted due to the

barycentric subdivision of edges of Cn and v2n+1 is the vertex inserted due to the barycentric subdivision

of the chord e1. That is, v2n+1 is adjacent to v1 and v5, edge e1 is subdivided into two edges e′1 =

v1v2n+1 and e′′1 = v2n+1v5. Note that d(v1) = 3, d(v5) = 3 and d(vi) = 2, 2 ≤ i ≤ 2n+ 1, i 6= 5. To

define labeling function f : V (G)→ {0, 1, 2}, we consider the following cases.

Case 1: n ≡ 0, 2, 3, 5(mod6).

f(vi) = 0; if i ≡ 2, 5(mod6)
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= 1; if i ≡ 3, 4(mod6)

= 2; if i ≡ 0, 1(mod6), 1 ≤ i ≤ 2n+ 1.

Case 2: n ≡ 1(mod6).

f(v2n+1) = 1,

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 1 ≤ i ≤ 2n.

Case 3: n ≡ 4(mod6).

f(v2n+1) = 2,

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 2, 3(mod6)

= 2; if i ≡ 0, 5(mod6), 1 ≤ i ≤ 2n.

Above defined labeling pattern satisfies the conditions of 3−equitable labeling as shown in Table 1.

Table 1: Vertex and edge conditions for the barycentric subdivision of cycle Cn,
where n = 6a+ b, n ∈ N .

b Vertex Conditions Edge Conditions
0,3 vf (0) + 1 = vf (1) + 1 = vf (2) ef (0) = ef (1) + 1 = ef (2)
2,5 vf (0) = vf (1) = vf (2) + 1 ef (0) = ef (1) = ef (2)
1 vf (0) = vf (1) = vf (2) ef (0) + 1 = ef (1) + 1 = ef (2)
4 vf (0) = vf (1) = vf (2) ef (0) + 1 = ef (1) = ef (2) + 1

Hence the barycentric subdivision of cycle with one chord is 3−equitable.

Example 2.2. 3−equitable labeling of the graph obtained by the barycentric subdivision of cycle C4

with one chord is shown in Figure 1.
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Figure 1: 3−equitable labeling of the barycentric subdivision of cycle C4 with one chord.

Theorem 2.3. The barycentric subdivision of cycle with twin chords (Cn,3) is 3−equitable.

Proof: Let G be cycle Cn with twin chords and S(G) denote the barycentric subdivision of G. Note

that |V (S(G))| = 2n + 2 and |E(S(G))| = 2n + 4. Let v1, v2, . . . , v2n+2 be the successive vertices

of S(G). Let e1 = v1v5 and e2 = v1v7 be two chords of Cn. Here v2, v4, . . . , v2n are the vertices

inserted due to the barycentric subdivision of edges of Cn, v2n+1 and v2n+2 be the vertices inserted

due to the barycentric subdivision of the chords e1 and e2 respectively. v2n+1 is adjacent to vertices v1
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and v5, v2n+2 is adjacent to vertices v1 and v7. Edge e1 is subdivided into two edges e′1 = v1v2n+1

and e′′1 = v2n+1v5, edge e2 is subdivided into two edges e′2 = v1v2n+2 and e′′2 = v2n+2v7. Note that

d(v1) = 4, d(v5) = d(v7) = 3 and d(vi) = 2, 2 ≤ i ≤ 2n+ 2, i 6= 5, i 6= 7.

To define labeling function f : V (G)→ {0, 1, 2}, we consider the following cases.

Case 1: n ≡ 0, 2, 3, 5(mod6).

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 1 ≤ i ≤ 2n+ 2.

Case 2: n ≡ 1, 4(mod6).

f(v2n+2) = 2,

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 3, 4(mod6)

= 2; if i ≡ 0, 1(mod6), 1 ≤ i ≤ 2n+ 1.

Above defined labeling pattern satisfies the conditions of 3−equitable labeling as shown in Table 2.

Table 2: Vertex and edge conditions for the barycentric subdivision of cycle with twin chords (Cn,3),
where n = 6a+ b, n ∈ N .

b Vertex Conditions Edge Conditions
0,3 vf (0) = vf (1) + 1 = vf (2) ef (0) + 1 = ef (1) + 1 = ef (2)
1,4 vf (0) + 1 = vf (1) + 1 = vf (2) ef (0) = ef (1) = ef (2)
2,5 vf (0) = vf (1) = vf (2) ef (0) = ef (1) = ef (2) + 1

Hence the barycentric subdivision of cycle with twin chords is 3−equitable.

Example 2.4. 3−equitable labeling of the graph obtained by the barycentric subdivision of cycle C7

with twin chords is shown in Figure 2.
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Figure 2: 3−equitable labeling of the barycentric subdivision of cycle C7 with twin chords.

Theorem 2.5. The barycentric subdivision of cycle with triangle Cn(1, 1, n− 5) is 3−equitable.

Proof: Let G be cycle with triangle Cn(1, 1, n− 5). Let S(G) be the barycentric subdivision of G and

v1, v2, . . . , v2n+3 be the successive vertices of S(G). Let e1 = v1v5, e2 = v5v9 and e3 = v1v9 be

three chords of Cn. Here v2, v4, . . . , v2n are the vertices inserted due to the barycentric subdivision of

the edges of Cn, v2n+1, v2n+2 and v2n+3 be the vertices inserted due to the barycentric subdivision of
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the chords e1, e2 and e3 respectively. v2n+1 is adjacent to v1 and v5, v2n+2 is adjacent to v5 and v9,

v2n+3 is adjacent to v1 and v9. Edge e1 is subdivided into two edges e′1 = v1v2n+1 and e′′1 = v2n+1v5,

e2 is subdivided into two edges e′2 = v5v2n+2 and e′′2 = v2n+2v9, e3 is subdivided into two edges

e′3 = v1v2n+3 and e′′3 = v2n+3v9. Note that d(v1) = d(v5) = d(v9) = 4 and d(vi) = 2, 2 ≤ i ≤ 2n+3,

i 6= 5, i 6= 9. Here |V (S(G))| = 2n+ 3 and |E(S(G))| = 2n+ 6.

To define labeling function f : V (G)→ {0, 1, 2}, we consider the following cases.

Case 1: n ≡ 0, 3(mod6).

f(v2n+1) = 1,

f(vi) = 0; if i ≡ 0, 3(mod6)

= 1; if i ≡ 4, 5(mod6)

= 2; if i ≡ 1, 2(mod6), 1 ≤ i ≤ 2n+ 3, i 6= 2n+ 1.

Case 2: n ≡ 2, 5(mod6).

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 3, 4(mod6)

= 2; if i ≡ 0, 1(mod6), 1 ≤ i ≤ 2n+ 3.

Case 3: n ≡ 1, 4(mod6).

f(vi) = 0; if i ≡ 0, 3(mod6)

= 1; if i ≡ 1, 2(mod6)

= 2; if i ≡ 4, 5(mod6), 1 ≤ i ≤ 2n+ 3.

Above defined labeling pattern satisfies the conditions of 3−equitable labeling as shown in Table 3.

Table 3: Vertex and edge conditions for the barycentric subdivision of cycle with triangle

Cn(1, 1, n− 5), where n = 6a+ b, n ∈ N .

b Vertex Conditions Edge Conditions

0,3 vf (0) = vf (1) = vf (2) ef (0) = ef (1) = ef (2)

1,4 vf (0) + 1 = vf (1) = vf (2) ef (0) = ef (1) + 1 = ef (2)

2,5 vf (0) + 1 = vf (1) + 1 = vf (2) ef (0) + 1 = ef (1) = ef (2) + 1

Hence the barycentric subdivision of cycle with triangle Cn(1, 1, n− 5) is 3−equitable.

Example 2.6. 3−equitable labeling of the graph obtained by the barycentric subdivision of cycle C6

with triangle is shown in Figure 3. It is the case related to n ≡ 0(mod6).
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Figure 3: 3−equitable labeling of the barycentric subdivision of cycle C6 with triangle.
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Theorem 2.7. The barycentric subdivision of shell graph Sn is 3−equitable.

Proof: Let S(Sn) be the barycentric subdivision of shell Sn. Let v0 be the apex vertex, {v1, v2, . . . ,
v2n−1} be the external vertices and {v′1, v′2, . . . , v′n−3} be the internal vertices in S(Sn). Here the ver-

tices {v1, v3, . . . , v2n−1, v′1, v
′
2, . . . , v

′
n−3} are formed by the barycentric subdivision of shell graph Sn,

where v′j is the vertex which makes subdivision of the edge joining v2(n−j−1) and v0, j = 1, 2, 3, . . . ,

n− 3. Note that |V (S(Sn))| = 3(n− 1) and |E(S(Sn))| = 4n− 6.

To define labeling function f : V (S(Sn))→ {0, 1, 2}, we consider the following cases.

Case 1: n ≡ 0(mod6).

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 0, 1(mod6)

= 2; if i ≡ 3, 4(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 1, 4(mod6)

= 1; if j ≡ 2, 5(mod6)

= 2; if j ≡ 0, 3(mod6), 1 ≤ j ≤ n− 3

Case 2: n ≡ 1(mod6).

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 1, 5(mod6)

= 1; if j ≡ 3, 4(mod6)

= 2; if j ≡ 0, 2(mod6), 1 ≤ j ≤ n− 3

Case 3: n ≡ 2(mod6).

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 3, 4(mod6)

= 2; if i ≡ 0, 1(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 3, 4(mod6)

= 1; if j ≡ 0, 5(mod6)

= 2; if j ≡ 1, 2(mod6), 1 ≤ j ≤ n− 3

Case 4: n ≡ 3(mod6).

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 1, 5(mod6)

= 1; if j ≡ 3, 4(mod6)

= 2; if j ≡ 0, 2(mod6), 1 ≤ j ≤ n− 3

Case 5: n ≡ 4(mod6).

f(vi) = 0; if i ≡ 1, 4(mod6)
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= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 0, 5(mod6)

= 1; if j ≡ 1, 2(mod6)

= 2; if j ≡ 3, 4(mod6), 1 ≤ j ≤ n− 3

Case 6: n ≡ 5(mod6).

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 0 ≤ i ≤ 2n− 1

f(v′j) = 0; if j ≡ 0, 5(mod6)

= 1; if j ≡ 1, 2(mod6)

= 2; if j ≡ 3, 4(mod6), 1 ≤ j ≤ n− 3

Above defined labeling pattern satisfies the conditions of 3−equitable labeling as shown in Table 4.

Table 4: Vertex and edge conditions for the barycentric subdivision of shell graph Sn,
where n = 6a+ b, n ∈ N .

b Vertex Conditions Edge Conditions
0,3 ef (0) = ef (1) = ef (2)
1 ef (0) + 1 = ef (1) = ef (2) + 1
2 vf (0) = vf (1) = vf (2) ef (0) + 1 = ef (1) = ef (2)
4 ef (0) + 1 = ef (1) + 1 = ef (2)
5 ef (0) = ef (1) = ef (2) + 1

Hence the barycentric subdivision of shell Sn is 3−equitable.

Example 2.8. 3−equitable labeling of the graph obtained by the barycentric subdivision of shell S9 is

shown in Figure 4. It is the case related to n ≡ 3(mod6).
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Figure 4: 3−equitable labeling of the barycentric subdivision of the shell S9.

Theorem 2.9. The barycentric subdivision of wheel Wn is 3−equitable.

Proof: Let S(Wn) be the barycentric subdivision of wheel Wn. Let {v1, v2, . . . , v2n} be the rim ver-

tices of G. Let {v′1, v′2, . . . , v′n} be the internal vertices of S(Wn) and v0 be the apex vertex of G.

Here, v2, v4, . . . , v2n are the vertices inserted due to the barycentric subdivision of edges of Cn, where
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vj is the vertex which makes the subdivision of edge joining (vj−1, vj+1), j = 2, 4, 6, . . . , 2n− 2, v2n
is adjacent to v2n−1 and vi. v′i is the vertex which makes the subdivision of edge joining (v2i−1, v0),

i = 1, 2, 3, . . . , n. Note that |V (S(Wn))| = 3n+ 1 and |E(S(Wn))| = 4n.

To define labeling function f : V (S(Wn))→ {0, 1, 2} we consider the following cases.

Case 1: n ≡ 0(mod6).

f(v0) = 2.

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 0, 1(mod6)

= 2; if i ≡ 3, 4(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 1, 2(mod6)

= 1; if i ≡ 3, 4(mod6)

= 2; if i ≡ 0, 5(mod6), 1 ≤ i ≤ n.

Case 2: n ≡ 1(mod6).

f(v0) = 2.

f(vi) = 0; if i ≡ 0, 3(mod6)

= 1; if i ≡ 1, 2(mod6)

= 2; if i ≡ 4, 5(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 0, 1(mod6)

= 1; if i ≡ 4, 5(mod6)

= 2; if i ≡ 2, 3(mod6), 1 ≤ i ≤ n.

Case 3: n ≡ 2(mod6).

f(v0) = 0.

f(vi) = 0; if i ≡ 2, 5(mod6)

= 1; if i ≡ 0, 1(mod6)

= 2; if i ≡ 3, 4(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 4, 5(mod6)

= 1; if i ≡ 0, 1(mod6)

= 2; if i ≡ 2, 3(mod6), 1 ≤ i ≤ n.

Case 4: n ≡ 3(mod6).

f(v0) = 1.

f(vi) = 0; if i ≡ 0, 3(mod6)

= 1; if i ≡ 4, 5(mod6)

= 2; if i ≡ 1, 2(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 0, 3(mod6)

= 2; if i ≡ 2, 5(mod6), 1 ≤ i ≤ n.
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Case 5: n ≡ 4(mod6).

f(v0) = 2.

f(vi) = 0; if i ≡ 1, 4(mod6)

= 1; if i ≡ 2, 3(mod6)

= 2; if i ≡ 0, 5(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 3, 4(mod6)

= 1; if i ≡ 0, 2(mod6)

= 2; if i ≡ 1, 5(mod6), 1 ≤ i ≤ n.

Case 6: n ≡ 5(mod6).

f(v0) = 0.

f(vi) = 0; if i ≡ 0, 3(mod6)

= 1; if i ≡ 1, 2(mod6)

= 2; if i ≡ 4, 5(mod6), 1 ≤ i ≤ 2n.

f(v
′
i) = 0; if i ≡ 3, 5(mod6)

= 1; if i ≡ 0, 1(mod6)

= 2; if i ≡ 2, 4(mod6), 1 ≤ i ≤ n.

Above defined labeling pattern satisfies the conditions of 3−equitable labeling which is shown in Table

5.

Table 5: Vertex and edge conditions for the barycentric subdivision of the wheel Wn, where
n = 6a+ b, n ∈ N .

b Vertex Conditions Edge Conditions
0 vf (0) + 1 = vf (1) + 1 = vf (2) ef (0) = ef (1) = ef (2)
1 vf (0) + 1 = vf (1) = vf (2) + 1 ef (0) = ef (1) + 1 = ef (2) + 1
2 vf (0) + 1 = vf (1) + 1 = vf (2) ef (0) = ef (1) = ef (2) + 1
3 vf (0) + 1 = vf (1) = vf (2) + 1 ef (0) = ef (1) = ef (2)
4 vf (0) = vf (1) + 1 = vf (2) + 1 ef (0) + 1 = ef (1) + 1 = ef (2)
5 vf (0) = vf (1) + 1 = vf (2) + 1 ef (0) = ef (1) + 1 = ef (2)

Hence the barycentric subdivision of the wheel Wn is 3−equitable.

Example 2.10. 3−equitable labeling of the graph obtained by the barycentric subdivision of wheel W6

is shown in Figure 5.
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Figure 5: 3−equitable labeling of the barycentric subdivision of the wheel W6.



164 G. V. Ghodasara and I. I. Jadav

Acknowledgement: The authors are grateful to the anonymous referee for valuable suggestions and

comments.

References

[1] I. Cahit, On cordial and 3−equitable labelings of graphs, Util. Math., 37(1990), 189-198.

[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics,

16(2013), ]DS6 1− 308.

[3] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, 1999.

[4] S. K. Vaidya, S. Srivastav, V. J. Kaneria and G. V . Ghodasara, Cordial and 3−equitable of cycle

with twin chords, Proceedings of the First International Conference on Emerging Technologies and

Applications in Engineering, Technology and Sciences, 1(2008), 905-907.

[5] S. K. Vaidya, K. K. Kanani, S. Srivastav and G. V. Ghodasara, Barycentric subdivision and cordial

labeling of some cycle related graphs, Proceedings of the First International Conference on Emerg-

ing Technologies and Applications in Engineering, Technology and Sciences, 1(2008), 1081-1083.

[6] M. Z. Youssef, A necessary condition on k-equitable labelings, Util. Math., 64(2003), 193-195.


