International Journal of Mathematics and Soft Computing Vol.5, No.1 (2015), 155 - 164.

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

3-equitable labeling in context of the barycentric subdivision of some special graphs

G. V. Ghodasara¹, I. I. Jadav²

¹ H. & H. B. Kotak Institute of Science Rajkot-360001, Gujarat, India. gaurang_enjoy@yahoo.co.in

² Research Scholar, R. K. University Rajkot-360020, Gujarat, India. jadaviram@gmail.com

Abstract

A function from the vertex set of a graph G to the set $\{0,1,2\}$ is called $3-equitable \ labeling$ if the induced edge labels are produced by the absolute difference of labels of end vertices such that the absolute difference of number of vertices of G labeled with 0, 1 and 2 differ by at most 1 and similarly the absolute difference of number of edges of G labeled with 0, 1 and 2 differ by at most 1. In this paper we discuss 3-equitable labeling in context of barycentric subdivision of cycle with one chord, cycle with twin chords, cycle with triangle, shell graph and wheel graph.

Keywords: 3–equitable labeling, Barycentric subdivision. **AMS Subject Classification(2010):** 05C78.

1 Introduction

We consider simple, finite, undirected graph. If the vertices of the graph are assigned values subject to certain conditions then it is known as *graph labeling*. A survey on graph labeling is given by Gallian[2].

Let G be a graph. The vertex set and the edge set of graph G are denoted by V(G) and E(G) respectively. A mapping f from V(G) to $\{0,1,2\}$ is called *ternary vertex labeling* of G. A ternary vertex labeling of a graph G is called 3-equitable labeling if the induced edge labeling function f^* from E(G) to the set $\{0, 1, 2\}$ is defined as $f^*(e = uv) = |f(u) - f(v)|$ such that the absolute difference of number of vertices of G with label 0, 1 and 2 differ by at most 1 and similarly absolute difference of number of edges of G with label 0, 1 and 2 differ by at most 1. A graph which admits 3-equitable labeling is called a 3-equitable graph. We follow Gross and Yellen[3] for the graph theoretical terminology and notations.

Definition 1.1. A chord of a cycle C_n , $n \ge 4$ is an edge joining two non-adjacent vertices of the cycle C_n .

Definition 1.2. Two chords of a cycle C_n , $n \ge 5$ are said to be twin chords if they form a triangle with an edge of cycle C_n .

For positive integers n and p with $3 \le p \le (n-2)$, $C_{n,p}$ is the graph consisting of a cycle C_n with a pair of twin chords with which the edges of C_n form cycles C_p , C_3 and C_{n+1-p} without chords.

Definition 1.3. The cycle with triangle is a cycle with three chords which by themselves form a triangle. For positive integers p, q, r and $n \ge 6$ with p + q + r + 3 = n, $C_n(p, q, r)$ denotes the cycle with triangle whose edges form the edges of cycles C_{p+2} , C_{q+2} and C_{r+2} without chords.

Definition 1.4. The shell S_n is the graph obtained by taking n-3 concurrent chords in a cycle C_n . The vertex at which all the chords are concurrent is called the apex vertex.

Definition 1.5. The wheel W_n is the join of the graphs C_n and K_1 . That is, $W_n = C_n + K_1$. Here, the vertices corresponding to C_n are called rim vertices and C_n is called rim of W_n while the vertex corresponding to K_1 is called *apex* vertex.

Definition 1.6. Let e = uv be an edge of a graph G and w is not a vertex of G. Then edge e is said to be subdivided when it is replaced by edges e' = uw and e'' = wv.

Definition 1.7. If every edge of a graph G is subdivided, then the resulting graph is called barycentric subdivision of the graph G. It is denoted by S(G).

Vaidya et al.[4] proved that cycle with twin chords is cordial as well as 3-equitable. In [5] Vaidya et al. proved that the barycentric subdivision of cycle with one chord, cycle with twin chords and cycle with triangle are cordial. Youssef[6] proved that W_n is 3-equitable for all $n \leq 4$. In this paper we prove that the barycentric subdivision of cycle with one chord, cycle with twin chords, cycle with triangle, shell and wheel are 3-equitable graphs.

2 Main Results

Theorem 2.1. The barycentric subdivision of cycle C_n with one chord is 3-equitable for all n, where chord forms a triangle with two edges of C_n .

Proof: Let G be the cycle C_n with one chord and let S(G) be the barycentric subdivision of G. Note that |V(S(G))| = 2n + 1 and |E(S(G))| = 2n + 2. Let $v_1, v_2, \ldots, v_{2n+1}$ be the successive vertices of S(G). Let $e_1 = v_1v_5$ be the chord of C_n . Here v_2, v_4, \ldots, v_{2n} are the vertices inserted due to the barycentric subdivision of edges of C_n and v_{2n+1} is the vertex inserted due to the barycentric subdivision of edges of C_n and v_{2n+1} is the vertex inserted due to the barycentric subdivision of the chord e_1 . That is, v_{2n+1} is adjacent to v_1 and v_5 , edge e_1 is subdivided into two edges $e'_1 = v_1v_{2n+1}$ and $e''_1 = v_{2n+1}v_5$. Note that $d(v_1) = 3$, $d(v_5) = 3$ and $d(v_i) = 2$, $2 \le i \le 2n + 1$, $i \ne 5$. To define labeling function $f : V(G) \rightarrow \{0, 1, 2\}$, we consider the following cases. **Case 1:** $n \equiv 0, 2, 3, 5 \pmod{6}$.

 $f(v_i) = 0$; if $i \equiv 2, 5 \pmod{6}$

 $= 1; \text{ if } i \equiv 3, 4(mod6)$ = 2; if $i \equiv 0, 1(mod6), 1 \le i \le 2n + 1.$ Case 2: $n \equiv 1(mod6).$ $f(v_{2n+1}) = 1,$ $f(v_i) = 0; \text{ if } i \equiv 1, 4(mod6)$ = 1; if $i \equiv 0, 5(mod6)$ = 2; if $i \equiv 2, 3(mod6), 1 \le i \le 2n.$ Case 3: $n \equiv 4(mod6).$ $f(v_{2n+1}) = 2,$ $f(v_i) = 0; \text{ if } i \equiv 1, 4(mod6)$ = 1; if $i \equiv 2, 3(mod6)$ = 2; if $i \equiv 0, 5(mod6), 1 \le i \le 2n.$

Above defined labeling pattern satisfies the conditions of 3-equitable labeling as shown in Table 1.

Table 1: Vertex and edge conditions for the barycentric subdivision of cycle C_n ,

where $n = 6a + b, n \in N$.			
b	Vertex Conditions	Edge Conditions	
0,3	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2)$	
2,5	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$	
1	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$	
4	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2) + 1$	

Hence the barycentric subdivision of cycle with one chord is 3-equitable.

Example 2.2. 3–equitable labeling of the graph obtained by the barycentric subdivision of cycle C_4 with one chord is shown in Figure 1.

Figure 1: 3-equitable labeling of the barycentric subdivision of cycle C_4 with one chord.

Theorem 2.3. The barycentric subdivision of cycle with twin chords $(C_{n,3})$ is 3-equitable.

Proof: Let G be cycle C_n with twin chords and S(G) denote the barycentric subdivision of G. Note that |V(S(G))| = 2n + 2 and |E(S(G))| = 2n + 4. Let $v_1, v_2, \ldots, v_{2n+2}$ be the successive vertices of S(G). Let $e_1 = v_1v_5$ and $e_2 = v_1v_7$ be two chords of C_n . Here v_2, v_4, \ldots, v_{2n} are the vertices inserted due to the barycentric subdivision of edges of C_n , v_{2n+1} and v_{2n+2} be the vertices inserted due to the barycentric subdivision of the chords e_1 and e_2 respectively. v_{2n+1} is adjacent to vertices v_1

and v_5 , v_{2n+2} is adjacent to vertices v_1 and v_7 . Edge e_1 is subdivided into two edges $e'_1 = v_1v_{2n+1}$ and $e''_1 = v_{2n+1}v_5$, edge e_2 is subdivided into two edges $e'_2 = v_1v_{2n+2}$ and $e''_2 = v_{2n+2}v_7$. Note that $d(v_1) = 4$, $d(v_5) = d(v_7) = 3$ and $d(v_i) = 2$, $2 \le i \le 2n+2$, $i \ne 5$, $i \ne 7$.

To define labeling function $f: V(G) \to \{0, 1, 2\}$, we consider the following cases.

Case 1: $n \equiv 0, 2, 3, 5 \pmod{6}$. $f(v_i) = 0$; if $i \equiv 1, 4 \pmod{6}$ = 1; if $i \equiv 0, 5 \pmod{6}$ = 2; if $i \equiv 2, 3 \pmod{6}, 1 \le i \le 2n + 2$. Case 2: $n \equiv 1, 4 \pmod{6}$. $f(v_{2n+2}) = 2$, $f(v_i) = 0$; if $i \equiv 2, 5 \pmod{6}$ = 1; if $i \equiv 3, 4 \pmod{6}$ = 2; if $i \equiv 0, 1 \pmod{6}, 1 \le i \le 2n + 1$.

Above defined labeling pattern satisfies the conditions of 3-equitable labeling as shown in Table 2.

Table 2: Vertex and edge conditions for the barycentric subdivision of cycle with twin chords $(C_{n,3})$,

where $n \equiv 6a + b$, $n \in N$.			
b	Vertex Conditions	Edge Conditions	
0,3	$v_f(0) = v_f(1) + 1 = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$	
1,4	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$	
2,5	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$	

Hence the barycentric subdivision of cycle with twin chords is 3-equitable.

Example 2.4. 3–equitable labeling of the graph obtained by the barycentric subdivision of cycle C_7 with twin chords is shown in Figure 2.

Figure 2: 3-equitable labeling of the barycentric subdivision of cycle C_7 with twin chords.

Theorem 2.5. The barycentric subdivision of cycle with triangle $C_n(1, 1, n-5)$ is 3-equitable.

Proof: Let G be cycle with triangle $C_n(1, 1, n - 5)$. Let S(G) be the barycentric subdivision of G and $v_1, v_2, \ldots, v_{2n+3}$ be the successive vertices of S(G). Let $e_1 = v_1v_5$, $e_2 = v_5v_9$ and $e_3 = v_1v_9$ be three chords of C_n . Here v_2, v_4, \ldots, v_{2n} are the vertices inserted due to the barycentric subdivision of the edges of C_n , v_{2n+1} , v_{2n+2} and v_{2n+3} be the vertices inserted due to the barycentric subdivision of

the chords e_1 , e_2 and e_3 respectively. v_{2n+1} is adjacent to v_1 and v_5 , v_{2n+2} is adjacent to v_5 and v_9 , v_{2n+3} is adjacent to v_1 and v_9 . Edge e_1 is subdivided into two edges $e'_1 = v_1v_{2n+1}$ and $e''_1 = v_{2n+1}v_5$, e_2 is subdivided into two edges $e'_2 = v_5v_{2n+2}$ and $e''_2 = v_{2n+2}v_9$, e_3 is subdivided into two edges $e'_3 = v_1v_{2n+3}$ and $e''_3 = v_{2n+3}v_9$. Note that $d(v_1) = d(v_5) = d(v_9) = 4$ and $d(v_i) = 2$, $2 \le i \le 2n+3$, $i \ne 5$, $i \ne 9$. Here |V(S(G))| = 2n + 3 and |E(S(G))| = 2n + 6.

To define labeling function $f: V(G) \to \{0, 1, 2\}$, we consider the following cases.

Case 1: $n \equiv 0, 3 \pmod{6}$. $f(v_{2n+1}) = 1,$ $f(v_i) = 0; \text{ if } i \equiv 0, 3 \pmod{6}$ $= 1; \text{ if } i \equiv 4, 5 \pmod{6}$ $= 2; \text{ if } i \equiv 1, 2 \pmod{6}, 1 \le i \le 2n+3, i \ne 2n+1.$ Case 2: $n \equiv 2, 5 \pmod{6}$. $f(v_i) = 0; \text{ if } i \equiv 2, 5 \pmod{6}$ $= 1; \text{ if } i \equiv 3, 4 \pmod{6}$ $= 2; \text{ if } i \equiv 0, 1 \pmod{6}, 1 \le i \le 2n+3.$ Case 3: $n \equiv 1, 4 \pmod{6}$. $f(v_i) = 0; \text{ if } i \equiv 0, 3 \pmod{6}$ $= 1; \text{ if } i \equiv 1, 2 \pmod{6}$ $= 2; \text{ if } i \equiv 4, 5 \pmod{6}, 1 \le i \le 2n+3.$

Above defined labeling pattern satisfies the conditions of 3-equitable labeling as shown in Table 3.

 Table 3: Vertex and edge conditions for the barycentric subdivision of cycle with triangle

 $C_n(1, 1, n-5)$, where $n = 6a + b, n \in N$.

b	Vertex Conditions	Edge Conditions
0,3	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
1,4	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2)$
2,5	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2) + 1$

Hence the barycentric subdivision of cycle with triangle $C_n(1, 1, n-5)$ is 3-equitable. **Example 2.6.** 3-equitable labeling of the graph obtained by the barycentric subdivision of cycle C_6 with triangle is shown in Figure 3. It is the case related to $n \equiv 0 \pmod{6}$.

Figure 3: 3-equitable labeling of the barycentric subdivision of cycle C_6 with triangle.

Proof: Let $S(S_n)$ be the barycentric subdivision of shell S_n . Let v_0 be the apex vertex, $\{v_1, v_2, \ldots, v_n\}$ v_{2n-1} be the external vertices and $\{v'_1, v'_2, \ldots, v'_{n-3}\}$ be the internal vertices in $S(S_n)$. Here the vertices $\{v_1, v_3, \ldots, v_{2n-1}, v'_1, v'_2, \ldots, v'_{n-3}\}$ are formed by the barycentric subdivision of shell graph S_n , where v'_j is the vertex which makes subdivision of the edge joining $v_{2(n-j-1)}$ and $v_0, j = 1, 2, 3, ...,$ n-3. Note that $|V(S(S_n))| = 3(n-1)$ and $|E(S(S_n))| = 4n-6$. To define labeling function $f: V(S(S_n)) \to \{0, 1, 2\}$, we consider the following cases. Case 1: $n \equiv 0 \pmod{6}$. $f(v_i) = 0$; if $i \equiv 2, 5 \pmod{6}$ $= 1; \text{ if } i \equiv 0, 1 \pmod{6}$ = 2; if $i \equiv 3, 4(mod6), 0 \le i \le 2n - 1$ $f(v'_{i}) = 0$; if $j \equiv 1, 4(mod6)$ $= 1; \text{ if } j \equiv 2, 5 \pmod{6}$ = 2; if $j \equiv 0, 3 \pmod{6}, 1 \le j \le n - 3$ Case 2: $n \equiv 1 \pmod{6}$. $f(v_i) = 0$; if $i \equiv 1, 4(mod6)$ $= 1; \text{ if } i \equiv 0, 5 \pmod{6}$ = 2; if $i \equiv 2, 3 \pmod{6}, 0 \le i \le 2n - 1$ $f(v'_{j}) = 0$; if $j \equiv 1, 5 \pmod{6}$ $= 1; \text{ if } j \equiv 3, 4 \pmod{6}$ $= 2; \text{ if } j \equiv 0, 2 \pmod{6}, 1 \le j \le n - 3$ Case 3: $n \equiv 2(mod6)$. $f(v_i) = 0$; if $i \equiv 2, 5 \pmod{6}$ $= 1; \text{ if } i \equiv 3, 4(mod 6)$ = 2; if $i \equiv 0, 1 \pmod{6}, 0 \le i \le 2n - 1$ $f(v'_{i}) = 0$; if $j \equiv 3, 4(mod6)$ $= 1; \text{ if } j \equiv 0, 5 \pmod{6}$ $= 2; \text{ if } j \equiv 1, 2 \pmod{6}, 1 \le j \le n - 3$ Case 4: $n \equiv 3(mod6)$.

$$f(v_i) = 0; \text{ if } i \equiv 1, 4(mod6)$$

= 1; if $i \equiv 0, 5(mod6)$
= 2; if $i \equiv 2, 3(mod6), 0 \le i \le 2n - 1$
 $f(v'_j) = 0; \text{ if } j \equiv 1, 5(mod6)$
= 1; if $j \equiv 3, 4(mod6)$
= 2; if $j \equiv 0, 2(mod6), 1 \le j \le n - 3$
Case 5: $n \equiv 4(mod6).$
 $f(v_i) = 0; \text{ if } i \equiv 1, 4(mod6)$

 $= 1; \text{ if } i \equiv 0, 5 \pmod{6}$ = 2; if $i \equiv 2, 3 \pmod{6}, 0 \le i \le 2n - 1$ $f(v'_j) = 0; \text{ if } j \equiv 0, 5 \pmod{6}$ = 1; if $j \equiv 1, 2 \pmod{6}$ = 2; if $j \equiv 3, 4 \pmod{6}, 1 \le j \le n - 3$ **Case 6:** $n \equiv 5 \pmod{6}$. $f(v_i) = 0; \text{ if } i \equiv 1, 4 \pmod{6}$ = 1; if $i \equiv 0, 5 \pmod{6}$ = 2; if $i \equiv 2, 3 \pmod{6}, 0 \le i \le 2n - 1$ $f(v'_j) = 0; \text{ if } j \equiv 0, 5 \pmod{6}$ = 1; if $j \equiv 1, 2 \pmod{6}$ = 2; if $j \equiv 3, 4 \pmod{6}, 1 \le j \le n - 3$

Above defined labeling pattern satisfies the conditions of 3-equitable labeling as shown in Table 4.

Table 4: Vertex and edge conditions for the barycentric subdivision of shell graph S_n , where n = 6a + b, $n \in N$.

b	Vertex Conditions	Edge Conditions
0,3		$e_f(0) = e_f(1) = e_f(2)$
1		$e_f(0) + 1 = e_f(1) = e_f(2) + 1$
2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2)$
4		$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
5		$e_f(0) = e_f(1) = e_f(2) + 1$

Hence the barycentric subdivision of shell S_n is 3-equitable.

Example 2.8. 3-equitable labeling of the graph obtained by the barycentric subdivision of shell S_9 is shown in *Figure 4*. It is the case related to $n \equiv 3(mod6)$.

Figure 4: 3-equitable labeling of the barycentric subdivision of the shell S_9 .

Theorem 2.9. The barycentric subdivision of wheel W_n is 3-equitable.

Proof: Let $S(W_n)$ be the barycentric subdivision of wheel W_n . Let $\{v_1, v_2, \ldots, v_{2n}\}$ be the rim vertices of G. Let $\{v'_1, v'_2, \ldots, v'_n\}$ be the internal vertices of $S(W_n)$ and v_0 be the apex vertex of G. Here, v_2, v_4, \ldots, v_{2n} are the vertices inserted due to the barycentric subdivision of edges of C_n , where

 v_j is the vertex which makes the subdivision of edge joining (v_{j-1}, v_{j+1}) , $j = 2, 4, 6, ..., 2n - 2, v_{2n}$ is adjacent to v_{2n-1} and v_i . v'_i is the vertex which makes the subdivision of edge joining (v_{2i-1}, v_0) , i = 1, 2, 3, ..., n. Note that $|V(S(W_n))| = 3n + 1$ and $|E(S(W_n))| = 4n$. To define labeling function $f : V(S(W_n)) \to \{0, 1, 2\}$ we consider the following cases.

```
Case 1: n \equiv 0 \pmod{6}.
f(v_0) = 2.
f(v_i) = 0; if i \equiv 2, 5 \pmod{6}
       = 1; \text{ if } i \equiv 0, 1 \pmod{6}
       = 2; if i \equiv 3, 4 \pmod{6}, 1 \le i \le 2n.
f(v'_i) = 0; if i \equiv 1, 2(mod6)
       = 1; \text{ if } i \equiv 3, 4 \pmod{6}
       = 2; if i \equiv 0, 5 \pmod{6}, 1 \le i \le n.
Case 2: n \equiv 1 \pmod{6}.
f(v_0) = 2.
f(v_i) = 0; if i \equiv 0, 3(mod6)
       = 1; \text{ if } i \equiv 1, 2 \pmod{6}
       = 2; if i \equiv 4, 5 \pmod{6}, 1 \le i \le 2n.
f(v'_i) = 0; if i \equiv 0, 1 \pmod{6}
       = 1; \text{ if } i \equiv 4, 5 \pmod{6}
       = 2; if i \equiv 2, 3 \pmod{6}, 1 \le i \le n.
Case 3: n \equiv 2(mod6).
f(v_0) = 0.
f(v_i) = 0; if i \equiv 2, 5 \pmod{6}
       = 1; \text{ if } i \equiv 0, 1 \pmod{6}
       = 2; if i \equiv 3, 4(mod6), 1 \le i \le 2n.
f(v'_i) = 0; if i \equiv 4, 5 \pmod{6}
       = 1; \text{ if } i \equiv 0, 1 \pmod{6}
       = 2; if i \equiv 2, 3 \pmod{6}, 1 \le i \le n.
Case 4: n \equiv 3(mod6).
f(v_0) = 1.
f(v_i) = 0; if i \equiv 0, 3(mod6)
       = 1; \text{ if } i \equiv 4, 5 \pmod{6}
       = 2; if i \equiv 1, 2 \pmod{6}, 1 \le i \le 2n.
f(v'_i) = 0; if i \equiv 1, 4(mod6)
       = 1; \text{ if } i \equiv 0, 3 \pmod{6}
       = 2; if i \equiv 2, 5 \pmod{6}, 1 \le i \le n.
```

162

Case 5: $n \equiv 4(mod6)$. $f(v_0) = 2.$ $f(v_i) = 0$; if $i \equiv 1, 4(mod6)$ $= 1; \text{ if } i \equiv 2, 3 \pmod{6}$ = 2; if $i \equiv 0, 5 \pmod{6}, 1 \le i \le 2n$. $f(v'_i) = 0$; if $i \equiv 3, 4(mod6)$ $= 1; \text{ if } i \equiv 0, 2 \pmod{6}$ = 2; if $i \equiv 1, 5 \pmod{6}, 1 \le i \le n$. Case 6: $n \equiv 5 \pmod{6}$. $f(v_0) = 0.$ $f(v_i) = 0$; if $i \equiv 0, 3(mod6)$ $= 1; \text{ if } i \equiv 1, 2 \pmod{6}$ = 2; if $i \equiv 4, 5 \pmod{6}, 1 \le i \le 2n$. $f(v'_i) = 0$; if $i \equiv 3, 5(mod6)$ $= 1; \text{ if } i \equiv 0, 1 \pmod{6}$ = 2; if $i \equiv 2, 4 \pmod{6}, 1 \le i \le n$.

Above defined labeling pattern satisfies the conditions of 3–equitable labeling which is shown in Table 5.

Table 5: Vertex and edge conditions for the barycentric subdivision of the wheel W_n , where $n = 6a + b, n \in N$.

b	Vertex Conditions	Edge Conditions
0	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
1	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) + 1 = e_f(2) + 1$
2	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$
3	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
4	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
5	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0) = e_f(1) + 1 = e_f(2)$

Hence the barycentric subdivision of the wheel W_n is 3-equitable.

Example 2.10. 3–equitable labeling of the graph obtained by the barycentric subdivision of wheel W_6 is shown in Figure 5.

Figure 5: 3-equitable labeling of the barycentric subdivision of the wheel W_6 .

Acknowledgement: The authors are grateful to the anonymous referee for valuable suggestions and comments.

References

- [1] I. Cahit, On cordial and 3-equitable labelings of graphs, Util. Math., 37(1990), 189-198.
- [2] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, $16(2013), \#DS6\ 1-308.$
- [3] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, 1999.
- [4] S. K. Vaidya, S. Srivastav, V. J. Kaneria and G. V. Ghodasara, *Cordial and 3–equitable of cycle with twin chords*, Proceedings of the First International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, 1(2008), 905-907.
- [5] S. K. Vaidya, K. K. Kanani, S. Srivastav and G. V. Ghodasara, *Barycentric subdivision and cordial labeling of some cycle related graphs*, Proceedings of the First International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, 1(2008), 1081-1083.
- [6] M. Z. Youssef, A necessary condition on k-equitable labelings, Util. Math., 64(2003), 193-195.