Neighborhood total domination and colouring in graphs

C. Sivagnanam
Department of General Requirements
College of Applied Sciences - Ibri
Sultanate of Oman.
choshi71@ gmail.com

Abstract

Let $G=(V, E)$ be a graph without isolated vertices. A dominating set S of G is a neighborhood total dominating set (ntd-set) if the induced subgraph $\langle N(S)\rangle$ of G has no isolated vertices. The neighborhood total domination number $\gamma_{n t}(G)$ is the minimum cardinality of a ntd-set. The minimum number of colours required to colour all the vertices such that no two adjacent vertices have same colour is the chromatic number $\chi(G)$ of G. In this paper we find an upper bound for sum of the ntd-number and chromatic number and characterize the corresponding extremal graphs.

Keywords: Neighborhood total domination, chromatic number.
AMS Subject Classification(2010): 05C69.

1 Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

Let $G=(V, E)$ be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$ respectively. If $S \subseteq V$, then $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$. A support is a vertex with at least one of its neighbor has degree one.

A subset S of V is called a dominating set of G if $N[S]=V$. The minimum cardinality of a dominating set is called a domination number of G and is denoted by $\gamma(G)$. S. Arumugam and C. Sivagnanm [1] introduced the concept of neighborhood total domination. A dominating set S of a graph G is called a neighborhood total dominating set (ntd-set) if the induced subgraph $\langle N(S)\rangle$ has no isolated vertices. The minimum cardinality of a ntd-set of G is called the neighborhood total domination number (ntd-number) of G and is denoted by $\gamma_{n t}(G)$. The chromatic number $\chi(G)$ of a graph G is defined to be the minimum number of colours required to colour all the vertices such that no two adjacent vertices receive the same colour.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterizing the corresponding extremal graphs. In [3], J. Paulraj Joseph and S. Arumugam proved that $\gamma+\chi \leq n+1$. They also characterized the class of graphs for the upper bound is attained. In this paper, we obtain upper bounds for the sum of ntd-number and chromatic number and characterize the extremal graphs. We need the following theorems.

Theorem 1.1. [2] For any graph $G, \chi \leq 1+\Delta$.
Theorem 1.2. [2] If G is a connected graph that is neither an odd cycle nor a complete graph, then $\chi \leq \Delta$.

Theorem 1.3. [1]Let G be a graph with $\Delta=n-1$. Then $\gamma_{n t}(G)=1$ or 2 . Further $\gamma_{n t}(G)=2$ if and only if G has exactly one vertex v with $\operatorname{deg} v=n-1$ and v is adjacent to a vertex of degree 1 .

Theorem 1.4. [1] For any path P_{n},

$$
\gamma_{n t}\left(P_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil & \text { if } \quad n \equiv 1(\bmod 3), \\ \left\lceil\frac{n}{3}\right\rceil+1 & \text { otherwise } .\end{cases}
$$

Theorem 1.5. [1] For the cycle C_{n},

$$
\gamma_{n t}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil+1 & \text { if } \quad n \equiv 2(\bmod 3), \\ \left\lceil\frac{n}{3}\right\rceil & \text { otherwise } .\end{cases}
$$

Theorem 1.6. [1] For any graph $G, \gamma_{n t}(G) \leq\left\lceil\frac{n}{2}\right\rceil$.
Theorem 1.7. [1] For any graph $G, \gamma_{n t}(G) \leq n-\Delta+1$.
Theorem 1.8. [1] Let G be a connected graph with $\Delta<n-1$. Then $\gamma_{n t}(G) \leq n-\Delta$.

2 Definitions and Notations

Definition 2.1. $H\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ denotes the graph obtained from the graph H by attaching m_{i} edges to the vertex $v_{i} \in V(H), 1 \leq i \leq n$.

Definition 2.2. $H\left(P_{m_{1}}, P_{m_{2}}, \cdots, P_{m_{n}}\right)$ is the graph obtained from the graph H by attaching an end vertex of $P_{m_{i}}$ to the vertex v_{i} in $H, 1 \leq i \leq n$.

Definition 2.3. Let H_{1} and H_{2} be two copies of C_{3} with vertex sets $V\left(H_{1}\right)=\left\{v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}\right\}$ and $V\left(H_{2}\right)=\left\{v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}\right\}$. Then the graph $C_{3}^{(2)}$ is obtained from $H_{1} \cup H_{2}$ by joining the vertices $v_{i}^{(1)}$ and $v_{i}^{(2)}, 1 \leq i \leq 3$, by an edge.

2.1 Graphs and Notations

We define the following graphs.
G_{1} is the graph obtained from $C_{3}\left(P_{3}, P_{2}, P_{2}\right)$ by attaching a P_{2} to the vertex of degree 2.
G_{2} is the graph obtained from $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$.
G_{3} is the graph obtained from $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$.
G_{4} is the graph obtained from $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$.
G_{5} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 , where C is a cycle in $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$.
G_{6} is the graph obtained from $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex of degree 3 .
G_{7} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex of degree 3 .
G_{8} is the graph obtained from $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$ by attaching a P_{3} to the vertex of degree 3 .
G_{9} is the graph obtained from $C_{3}(2,1,0)$ by attaching a P_{2} to a pendant vertex whose support has degree 4.
G_{10} is the graph obtained from $C_{3}(2,0,0)$ by attaching a P_{3} to the vertex $u \in V(C)$ of degree 2 , where C is a cycle in $C_{3}(2,0,0)$.
G_{11} is the graph obtained from $C_{3}(2,1,0)$ by attaching a P_{2} to the vertices whose support has degree 4 . G_{12} is the graph obtained from $C_{3}(2,1,1)$ by attaching a P_{2} to a pendant vertex whose support has degree 4.

2.2 Sets of graphs

We define the following sets of graphs.

$$
\begin{aligned}
& A_{1}=\left\{C_{3}(3,0,0)\right\} \\
& A_{2}=\left\{C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right), C_{4}(1,0,0,0)\right\} \\
& A_{3}=\left\{C_{7}\right\} \\
& A_{4}=\left\{G_{1}, C_{3}\left(P_{3}, P_{3}, P_{2}\right), C_{3}\left(P_{3}, P_{2}, P_{2}\right)\right\} \\
& A_{5}=\left\{G_{2}, G_{3}, C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{3}, P_{1}, P_{2}, P_{1}, P_{1}\right), C_{5}\left(P_{2}, P_{2}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{2}, P_{1}, P_{2},\right.\right. \\
& \left.\left.P_{1}, P_{1}\right), C_{3}\left(P_{5}, P_{2}, P_{1}\right), C_{3}\left(P_{4}, P_{2}, P_{1}\right), C_{3}\left(P_{3}, P_{3}, P_{1}\right)\right\} \\
& A_{6}=\left\{G_{4}, G_{5}, C_{5}\left(P_{4}, P_{1}, P_{1}, P_{1}, P_{1}\right), C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right), C_{3}\left(P_{5}, P_{1}, P_{1}\right), C_{3}\left(P_{4}, P_{1}, P_{1}\right)\right\} \\
& A_{7}=\left\{C_{5}(2,0,0,0,0), C_{3}(2,1,0), C_{3}(2,1,1) \text { and } G_{i}: 6 \leq i \leq 12\right\} \\
& A_{8}=\left\{C_{4}, C_{3}(2,0,0), C_{3}(1,1,1), C_{3}(1,1,0), C_{3}\left(P_{1}, P_{2}, P_{3}\right), C_{3}\left(P_{1}, P_{1}, P_{3}\right),\right. \\
& \left.C_{5}(1,0,0,0,0)\right\}
\end{aligned}
$$

2.3 Family of graphs

Let \mathscr{F}_{1} be the family of connected unicyclic graphs of order n with odd cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ satisfy the following conditions: $(i) 6 \leq n \leq 9$ (ii) $\Delta=3$ (iii) $s=|\{v \in C: \operatorname{deg} v=\Delta\}|$.

Let \mathscr{F}_{2} be the family of connected unicyclic graphs of order n with odd cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ satisfy the following conditions (i) $6 \leq n \leq 9$ (ii) $\Delta=4$.

We assume through out that the graph G has no isolated vertices.

3 Main Results

Theorem 3.1. Let G be a graph without isolated vertices. Then $\gamma_{n t}(G)+\chi(G) \leq n+2$ and equality holds if and only if G is isomorphic to $s K_{2}$.

Proof: By Theorem 1.7, $\gamma_{n t}(G) \leq n-\Delta+1$ and by Theorem 1.1, $\chi(G) \leq \Delta+1$. Hence $\gamma_{n t}(G)+$ $\chi(G) \leq n+2$.

Let G be a graph with $\gamma_{n t}(G)+\chi(G)=n+2$. Then $\gamma_{n t}(G)=n-\Delta+1$ and $\chi(G)=\Delta+1$. Suppose G is connected. Then G is either a complete graph or an odd cycle. If $G=K_{n}, n \geq 3$ or an odd cycle, then $\gamma_{n t}(G) \leq n-\Delta$. Hence G is isomorphic to K_{2}.

Suppose G is disconnected. We claim that $\Delta(G)=1$. Suppose $\Delta(G) \geq 2$. Let G_{1} be a component of G with $\Delta\left(G_{1}\right)=\Delta(G)$ and let $\left|V\left(G_{1}\right)\right|=n_{1}$. Since $\gamma_{n t}(G)=n-\Delta+1$, it follows that $\gamma_{n t}\left(G_{1}\right)=$ $n_{1}-\Delta+1$. If $\Delta\left(G_{1}\right)<n_{1}-1$ then $\gamma_{n t}\left(G_{1}\right) \leq n_{1}-\Delta$ and hence $\gamma_{n t}(G) \leq n-\Delta$. If $\Delta\left(G_{1}\right)=n_{1}-1$, then $\gamma_{n t}\left(G_{1}\right)=1$ or 2 . If $\gamma_{n t}\left(G_{1}\right)=1$, then $\gamma_{n t}(G) \leq n-\Delta$. If $\gamma_{n t}\left(G_{1}\right)=2$ then G_{1} contains a support vertex and hence $\chi \leq \Delta$, which is a contradiction. Thus $\Delta=1$ and each component of G is isomorphic to K_{2}.

Theorem 3.2. Let G be a connected graph. Then $\gamma_{n t}(G)+\chi(G)=n+1$ if and only if $G=C_{5}$ or $K_{n} ;(n \geq 3)$ or $K_{n}-Y$ where Y is a set of edges incident with a vertex of K_{n} with $|Y|=n-2$.

Proof: Let G be a connected graph with $\gamma_{n t}(G)+\chi(G)=n+1$.
Case 1: $\Delta<n-1$.
Then $\gamma_{n t} \leq n-\Delta$. Since $\gamma_{n t}+\chi=n+1$, it follows that $\chi \geq \Delta+1$ and hence $\chi=\Delta+1$. Thus G is an odd cycle and $\gamma_{n t}=n-\Delta=n-2$. Hence $G=C_{5}$.
Case 2: $\Delta=n-1$.
Then $\gamma_{n t} \leq 2$. If $\gamma_{n t}=1$ then $\chi=n$ and hence G is isomorphic to $K_{n}, n \geq 3$. Suppose $\gamma_{n t}=2$. It follows from Theorem 1.3 that G has exactly one vertex v with $\operatorname{deg} v=n-1$ and v is adjacent to a vertex of degree 1 . Since $\chi(G)=n-1$, it follows that $G-v$ has exactly two components H_{1} and H_{2} where $H_{1}=K_{1}$ and $\left\langle V\left(H_{2}\right) \cup\{v\}\right\rangle=K_{n-1}$. Hence $G=K_{n}-Y$ where Y is a set of edges incident with a vertex of K_{n} with $|Y|=n-2$. The converse is obvious.

Corollary 3.3. Let G be a graph with $\gamma_{n t}(G)+\chi(G)=n+1$. Then G is isomorphic to $s K_{2} \cup H$ where H is isomorphic to C_{5} or $K_{n-2 s}(n-2 s \neq 2)$ or $K_{n-2 s}-Y$ where Y is the set of edges incident with a vertex of $K_{n-2 s}$ with $|Y|=n-2 s-2$.

Theorem 3.4. Let T be a tree of order n. Then $\gamma_{n t}+\chi=n$ if and only if T is isomorphic to P_{4} or P_{5} or $K_{1,3}$.

Proof: Suppose $\gamma_{n t}+\chi=n$. Since $\chi=2$ for any nontrivial tree, $\gamma_{n t}=n-2$. If $\Delta=n-1$, then $\gamma_{n t}=2$ so that $n=4$ and $T=K_{1,3}$. Suppose $\Delta<n-1$. Then $\gamma_{n t} \leq n-\Delta$. Since $\gamma_{n t}=n-2$, it follows that $\Delta \leq 2$, so that T is a path. Hence $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ which implies $n \leq 5$. Since $\Delta<n-1, T$ is isomorphic to either P_{4} or P_{5}. The converse is obvious.

Theorem 3.5. Let G be a connected unicyclic graph of order n with cycle $C=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)$. Then $\gamma_{n t}+\chi=n$ if and only if $G \in A_{8}$.

Proof: Suppose $\gamma_{n t}+\chi=n$.
Case 1: $\quad \Delta=n-1$.
Then $\gamma_{n t} \leq 2$. If $\gamma_{n t}=1$ then G is K_{3} and in this case $\gamma_{n t}+\chi=4>n$. Hence $\gamma_{n t}=2$ and $\chi=n-2$. If k is even then $\chi=2$ and $n=4$ and $k=4$ so that $\Delta \neq n-1$ which is a contradiction. Hence k is odd, $\chi=3$, so that $n=5$ and $\Delta=4$. Hence $k=3$ and G is isomorphic to $C_{3}(2,0,0)$.
Case 2. $\Delta<n-1$.
If k is even, then $\chi=2$ and $\gamma_{n t}=n-2$. Since $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$, it follows that $n \leq 5$. If $n=5$, then $k=4$ and there exists a vertex not in C which is adjacent to a vertex in C. For this graph $\gamma_{n t}+\chi \neq n$. Hence $n=4$ and G is isomorphic to C_{4}.

If k is odd, then $\chi=3$ and $\gamma_{n t}=n-3$. Since $\Delta<n-1$ we have $\gamma_{n t} \leq n-\Delta$ and hence $\Delta \leq 3$. Also $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$, which gives $n \leq 7$.

If $\Delta=2$, then G is isomorphic to C_{3} or C_{5} or C_{7} and for these graphs $\gamma_{n t}+\chi \neq n$. Thus $\Delta=3$.
Let X be the set of all pendent vertices of G. Since $\gamma_{n t}=n-3,|X| \leq 3$ and C contains at most three vertices of degree 3. Suppose C contains three vertices of degree 3 . Then $k=3$. Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $u_{i} v_{i} \in E, i=1,2,3$. Since $\gamma_{n t}+\chi=n$, it follows that $d e g u_{i}=1$ for all i and G is isomorphic to $C_{3}(1,1,1)$.

Suppose C contains two vertices of degree 3 . Then $k=3$ or 5 . If $k=5$, then $n=7$, and in this case $\gamma_{n t}+\chi \neq n$. Hence $k=3$. Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$, $\operatorname{deg} v_{1}=\operatorname{deg} v_{2}=3$ and $u_{1} v_{1}, u_{2} v_{2} \in E$. If $\operatorname{deg} u_{1}=\operatorname{deg} u_{2}=1$, then G is isomorphic to $C_{3}(1,1,0)$. If $\operatorname{deg} u_{1}=\operatorname{deg} u_{2}=2$, then $\gamma_{n t}+\chi \neq n$. Hence we may assume that $\operatorname{deg} u_{1}=1$ and $\operatorname{deg} u_{2} \geq 2$. Since $\gamma_{n t}+\chi=n$, it follows that $\operatorname{deg} u_{2}=2$ and if $u_{2} w \in E(G)$, then $\operatorname{deg} w=1$. Hence G is isomorphic to $C_{3}\left(P_{1}, P_{2}, P_{3}\right)$.

Suppose C contains exactly one vertex of degree 3 . Then $k=3$ or 5 . If $k=3$, and $u_{1} v_{1} \in E$, then $\operatorname{deg} u_{1}=2$ and if $u_{1} w \in E$, then $\operatorname{deg} w=1$. Hence G is isomorphic to $C_{3}\left(P_{3}, P_{1}, P_{1}\right)$.

If $k=5$ and $u_{1} v_{1} \in E$, then $\operatorname{deg} u_{1}=1$ and G is isomorphic to $C_{5}(1,0,0,0,0)$. The converse is obvious.

Remark 3.6. There is no cubic graph of order n with $\gamma_{n t}+\chi=n$.
Proof: Let G be a cubic graph with $\gamma_{n t}+\chi=n$. If G is a complete graph then $\gamma_{n t}+\chi=n+1$, which is a contradiction. Hence $\chi \leq 3$. Then $\gamma_{n t} \geq n-3$. It follows from Theorem 1.8, $\gamma_{n t} \leq n-3$. Thus we have $\gamma_{n t}=n-3$ and then $\chi=3$. Theorem 1.6 gives $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ which implies $n \leq 7$. Since G is not a complete graph, we have $n=6$. Then $\gamma_{n t}=3$ and $\chi=3$. Since each vertex v of G dominates four vertices, and all the vertices have degree 3 , two vertices are sufficient to dominate six vertices. Hence there does not exist a cubic graph with $\gamma_{n t}+\chi=n$.

Theorem 3.7. Let T be a tree of order n. Then $\gamma_{n t}+\chi=n-1$ if and only if T is $K_{1,4}$ or P_{6} or it is obtained from $K_{1,3}$ by subdividing at least one edge.

Proof: Let T be a tree with $\gamma_{n t}+\chi=n-1$. Since $\chi=2$, we have $\gamma_{n t}=n-3$ and hence $n \geq 5$. If $\Delta=n-1$ then $\gamma_{n t}=2$ so that $n=5$ and $T=K_{1,4}$. Suppose $\Delta<n-1$. Then $\gamma_{n t} \leq n-\Delta$ and hence $\Delta \leq 3$. Now from Theorem 1.6, $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$. So that $n-3 \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 7$. Hence $5 \leq n \leq 7$. If $\Delta=2$ then T is a path and hence $T=P_{6}$. Let $\Delta=3$. If $n=5$ then T is obtained from $K_{1,3}$ by subdividing exactly one edge. Suppose $n=6$. Let $v \in V$ such that degv $=\Delta$ and let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $u_{1}, u_{2} \in V-N[v]$. If $u_{1}, u_{2} \in N\left(v_{i}\right)$ for some $i=1,2,3$ then $\gamma_{n c}=2$ which is a contradiction. Hence u_{1} is adjacent to v_{i} and u_{2} is adjacent to $v_{j}, j \neq i$. Thus T is isomorphic to a graph obtained from $K_{1,3}$ by subdividing two edges once.

Suppose $n=7$. Let v be a vertex of degree Δ and let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $u_{1}, u_{2}, u_{3} \in$ $V-N[v]$. Suppose $\operatorname{deg} v_{1}=1$. If $\operatorname{deg} v_{2}=2$ and $\operatorname{deg} v_{3}=3$ then $\gamma_{n t}=3 \neq n-3$ which is a contradiction. If $\operatorname{deg} v_{2}=1$ and $\operatorname{deg} v_{3}=3$ then $u_{1} v_{3}, u_{2} v_{3} \in E(T)$. Since T is a tree without loss of generality we assume u_{3} is adjacent to u_{1} then $\gamma_{n t}=3 \neq n-3$ which is a contradiction. Let $\operatorname{deg} v_{2}=1$ and $\operatorname{deg} v_{3}=2$ and $u_{1} v_{3} \in E(T)$. If $u_{1} u_{2}, u_{1} u_{3} \in E(T)$ then $\gamma_{n t}=3 \neq n-3$ which is a contradiction. If $u_{1} u_{2}, u_{2} u_{3} \in E(T)$ then $\gamma_{n t} \neq n-3$ which is a contradiction. Hence $\operatorname{deg} v_{i}=2,1 \leq i \leq 3$. Thus T is isomorphic to a graph obtained from $K_{1,3}$ by subdividing all the edges once. The converse is obvious.

Lemma 3.8. Let G be a connected unicyclic graph of order n and $\Delta=n-1$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{1}$.

Proof: Let G be a connected unicyclic graph with cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right), \Delta=n-1$ and let $\gamma_{n t}+\chi=n-1$. Then $\gamma_{n t} \leq 2$. If $\gamma_{n t}=1$ then G is K_{3} and $\gamma_{n t}+\chi=n+1$. Hence $\gamma_{n t}=2$ and $\chi=n-3$. If $k \geq 4$ then $\Delta<n-1$. Hence $k=3$. Thus $\chi=3, n=6$ and $\Delta=5$. Hence G is isomorphic to $C_{3}(3,0,0)$. The converse is obvious.

Lemma 3.9. Let G be a connected unicyclic graph with even cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ and $\Delta<$ $n-1$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{2}$.

Proof: Since k is even $\chi=2$ and $\gamma_{n t}=n-3$. It follows from Theorem 1.6 that $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ and hence $n \leq 7$.
Case 1: $n=7$.
Then $k=4$ or 6 . If $k=4$ then $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{1}\right)$. Let u_{1}, u_{2}, u_{3} be the vertices not on C. If $\operatorname{deg} u_{i}=1$ for all $i=1,2,3$ then G is isomorphic to $C_{4}(1,1,1,0)$ or $C_{4}(2,1,0,0)$ or $C_{4}(2,0,1,0)$ or $C_{4}(3,0,0,0)$. For this graphs $\gamma_{n t} \neq n-3$. Let $\operatorname{deg} u_{1}=\operatorname{deg} u_{2}=1$. If $\operatorname{deg} u_{3}=2$ then G is isomorphic to $C_{4}\left(P_{3}, P_{2}, P_{1}, P_{1}\right)$ or $C_{4}\left(P_{3}, P_{1}, P_{2}, P_{1}\right)$. But $\gamma_{n t}=3 \neq n-3$. If $\operatorname{deg} u_{3}=3$ then G is a graph obtained from $C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 . For this graph $\gamma_{n t}=3 \neq n-3$. If $\operatorname{deg} u_{1}=1$ and $\operatorname{deg} u_{i} \neq 1, i=2,3$ then $\operatorname{deg} u_{2}=\operatorname{deg} u_{3}=2$. Hence G is isomorphic to $C_{4}\left(P_{4}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n t}=3 \neq n-3$. If $k=6$ then G is isomorphic to $C_{6}(1,0,0,0,0,0)$. But $\gamma_{n t}=3 \neq n-3$.

Case 2: $n=6$.
Then $k=4$ or 6 . If $k=6$ then G is C_{6}.But $\gamma_{n t}\left(C_{6}\right)=2$. Hence $k=4$. Then G is any one of the following graph $(i) H_{1}=C_{4}(1,1,0,0)($ ii $) H_{2}=C_{4}(2,0,0,0)(i i i) H_{3}=C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n t}\left(H_{1}\right)=\gamma_{n t}\left(H_{2}\right)=2$. Hence G is isomorphic to $C_{4}\left(P_{3}, P_{1}, P_{1}, P_{1}\right)$.

If $n=5$ then $k=4$ and G is isomorphic to $C_{4}(1,0,0,0)$. If $n=4$ then G is C_{4} and $\gamma_{n t} \neq n-3$. The converse is obvious.

Lemma 3.10. Let $G \in \mathscr{F}_{1}$ and $s=3$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{4}$.
Proof: Since k is odd $\chi=3$ and $\gamma_{n t}=n-4$, also $s=3$ gives $k=3$ or 5 . If $k=5$ then G is isomorphic to $C_{5}\left(P_{3}, P_{2}, P_{2}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{2}, P_{2}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{2}, P_{1}, P_{2}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}, P_{2}, P_{2}\right.$, $\left.P_{1}\right)$ or $C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{2}\right)$ or $C_{5}\left(P_{3}, P_{2}, P_{1}, P_{2}, P_{1}\right)$. For this graphs $\gamma_{n t} \neq n-4$ which is a contradiction. Thus $k=3$. Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and $u_{i} v_{i} \in E, 1 \leq i \leq 3$. If $\operatorname{deg} u_{i}=1,1 \leq i \leq 3$ then G is isomorphic to $C_{3}(1,1,1)$. But $\gamma_{n t}\left[C_{3}(1,1,1)\right]=3 \neq n-4$ which is a contradiction. If deg $u_{1}=3$ then at most one of u_{2} and u_{3} has degree 2 . Let $\operatorname{deg} u_{2}=2$. Then $\operatorname{deg} u_{3}=1$. For this graph $\gamma_{n t}=4 \neq n-4$ which is a contradiction. If $\operatorname{deg} u_{2}=1$ and $\operatorname{deg} u_{3}=1$ then the graph G is isomorphic to G_{1}. Suppose $\operatorname{deg} u_{1}=2$. Then $\left(\operatorname{deg} u_{2}=2\right.$ and $\left.\operatorname{deg} u_{3}=2\right)$ or $\left(\operatorname{deg} u_{2}=2\right.$ and $\left.\operatorname{deg} u_{3}=1\right)$ or ($\operatorname{deg} u_{2}=1$ and $\operatorname{deg} u_{3}=1$).

If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=2$ and $\operatorname{deg} u_{3}=2$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{3}\right)$. But $\gamma_{n t}\left[C_{3}\left(P_{3}\right.\right.$, $\left.\left.P_{3}, P_{3}\right)\right]=4 \neq n-4$ which is a contradiction. If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=2$ and $\operatorname{deg} u_{3}=1$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{2}\right)$. If $\operatorname{deg} u_{1}=2, \operatorname{deg} u_{2}=1$ and $\operatorname{deg} u_{3}=1$ then G is isomorphic to $C_{3}\left(P_{3}, P_{2}, P_{2}\right)$. The converse is obvious.

Lemma 3.11. Let $G \in \mathscr{F}_{1}$ and $s=2$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{5}$.
Proof: Since k is odd $\chi=3$ and $\gamma_{n t}=n-4$. Also $s=2$ gives $k=3$ or 5 or 7 .
Case 1: $k=7$.
Then G is isomorphic to the graph obtained from C_{7} by attaching P_{2} to any two vertices. But $\gamma_{n t}<n-4$ which is a contradiction.
Case 2: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$ and let x be a pendant vertex in G. It is clear that $d(x, C) \leq 3$. If $d(x, C)=3$ then G is isomorphic to $C_{5}\left(P_{4}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{4}, P_{1}, P_{2}, P_{1}, P_{1}\right)$. For this graphs $\gamma_{n t} \neq n-4$ which is a contradiction.

Suppose $d(x, C)=2$. Then $n=8$ or 9 . Suppose $n=8$. Let $\operatorname{deg} v_{1}=3$ and $\left(v_{1}, x_{1}, x\right)$ be a path in G. Since $n=8$ there is a vertex x_{2} in $V(G)$ and x_{2} is adjacent to v_{2} or v_{3} or v_{4} or v_{5}. Hence G is isomorphic to $C_{5}\left(P_{3}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}, P_{2}, P_{1}, P_{1}\right)$. Suppose $n=9$. Then there are two vertices $x_{2}, x_{3} \in V(G)$. If $\operatorname{deg} x_{2}=\operatorname{deg} x_{3}=1$ then $x_{2} v_{2}$ or $x_{2} v_{3} \in E$ and $x_{1} x_{3} \in E$. For these graphs $\gamma_{n t} \neq n-4$ which is a contradiction. If $\operatorname{deg} x_{2}=2$ then $\operatorname{deg} x_{3}=1$ and $x_{2} x_{3} \in E$. Hence G is isomorphic to $C_{5}\left(P_{3}, P_{3}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{3}, P_{1}, P_{3}, P_{1}, P_{1}\right)$. For this graphs $\gamma_{n t} \neq n-4$.

If $d(x, C)=1$ then G is isomorphic to $C_{5}\left(P_{2}, P_{2}, P_{1}, P_{1}, P_{1}\right)$ or $C_{5}\left(P_{2}, P_{1}, P_{2}, P_{1}, P_{1}\right)$.
Case 3: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and let x be a pendant vertex in G. Then $d(x, C) \leq 5$. If $d(x, C)=5$ then $n=9$ and G is isomorphic to $C_{3}\left(P_{6}, P_{2}, P_{1}\right)$. But $\gamma_{n t} \neq n-4$ which is a contradiction.

Sub Case 3.1: $d(x, C)=4$.
Let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x\right)$ be the $v_{1}-x$ path. Then $n=8$ or 9 . Suppose $n=8$ then G is isomorphic to $C_{3}\left(P_{5}, P_{2}, P_{1}\right)$. If $n=9$ there exist two vertices x_{4} and x_{5} such that $x_{4} v_{2} \in E$ and x_{5} is adjacent to any one of x_{1}, x_{2}, x_{3} and x_{4}. All these cases $\gamma_{n t} \neq n-4$.
Sub Case 3.2: $d(x, C)=3$.
Let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. Then $7 \leq n \leq 9$. If $n=7$ then G is isomorphic to $C_{3}\left(P_{4}, P_{2}, P_{1}\right)$. Let $n=8$ and $x_{3} v_{2} \in E$. Then there is a vertex x_{4} which is adjacent to any one of x_{1}, x_{2} and x_{3}. Hence G is isomorphic to $C_{3}\left(P_{4}, P_{3}, P_{1}\right)$ or G_{2}. But $\gamma_{n t}\left(C_{3}\left(P_{4}, P_{3}, P_{1}\right)\right) \neq n-4$. Hence G is isomorphic to G_{2}.Let $n=9$ and $x_{3} v_{2} \in E$. Then there are two vertices x_{4} and x_{5} with $x_{2} x_{4}, x_{3} x_{5} \in E$ or $x_{2} x_{4}, x_{1} x_{5} \in E$ or $x_{1} x_{5}, x_{3} x_{4} \in E$. All these cases $\gamma_{n t} \neq n-4$.

Sub Case 3.3: $d(x, C)=2$.
Let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path and let $x_{2} v_{2} \in E$. Then $6 \leq n \leq 9$. If $n=6$ then G is isomorphic to $C_{3}\left(P_{3}, P_{2}, P_{1}\right)$. For this graph $\gamma_{n t} \neq n-4$. If $n=7$ then G is isomorphic to $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ or G_{3}. If $n=8$ then G is a graph obtained from $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ by attaching a P_{2} to the vertex $u \notin V(C)$ of degree 2 . For this graph $\gamma_{n t} \neq n-4$. If $n=9$ then G is a graph obtained from $C_{3}\left(P_{3}, P_{3}, P_{1}\right)$ by attaching a pendant vertex to all the vertices of degree 2 which are not on C. For this graph $\gamma_{n t} \neq n-4$.

If $d(x, C)=1$ then G is isomorphic to $C_{3}\left(P_{2}, P_{2}, P_{1}\right)$. But $\gamma_{n t} \neq n-4$ which is a contradiction. The converse is obvious.

Lemma 3.12. Let $G \in \mathscr{F}_{1}$ and $s=1$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{6}$.
Proof: Since k is odd, $\chi=3$ and $\gamma_{n t}=n-4$. Also $s=1$ gives $k=3$ or 5 or 7 .
Case 1: $k=7$.
Then G is isomorphic to $C_{7}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}\right)$ or $C_{7}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. For these graphs $\gamma_{n t} \neq n-4$.

Case 2: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$ and let x be a pendant vertex in G. Also let us assume $\operatorname{deg} v_{1}=3$. Then $d(x, C) \leq 4$. If $d(x, C)=4$ then $n=9$ and G is isomorphic to $C_{5}\left(P_{5}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n t} \neq n-4$. Let $d(x, C)=3$ and let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{1}=3$ or $\operatorname{deg} x_{2}=3$ then $\gamma_{n t} \neq n-4$. Hence G is isomorphic to $C_{5}\left(P_{4}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. Let $d(x, C)=2$ and let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path. Then $n=7$ or 8 . If $n=7$ then G is isomorphic to $C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. If $n=8$ then there is a vertex x_{2} such that $x_{2} x_{1} \in E$. For this graph $\gamma_{n t} \neq n-4$. If $d(x, C)=1$ then G is isomorphic to $C_{5}\left(P_{2}, P_{1}, P_{1}, P_{1}, P_{1}\right)$. But $\gamma_{n t} \neq n-4$.

Case 3: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$ and let x be a pendant vertex in G. Also let us assume $\operatorname{deg} v_{1}=3$. Then $d(x, C) \leq 6$. If $d(x, C)=6$ then $n=9$ and G is isomorphic to $C_{3}\left(P_{7}, P_{1}, P_{1}\right)$. But $\gamma_{n t} \neq n-4$.

Let $d(x, C)=5$ and let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{i}=2,1 \leq i \leq 4$ then G is isomorphic to $C_{3}\left(P_{6}, P_{1}, P_{1}\right)$. But $\gamma_{n t}\left(C_{3}\left(P_{6}, P_{1}, P_{1}\right)\right) \neq n-4$. If deg $x_{i}=3$ for some $i, 1 \leq i \leq 4$ then $\gamma_{n t} \neq n-4$.

Let $d(x, C)=4$ and let $\left(v_{1}, x_{1}, x_{2}, x_{3}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{i}=2,1 \leq i \leq 3$ then G is isomorphic to $C_{3}\left(P_{5}, P_{1}, P_{1}\right)$. If deg $x_{i}=3$ for some $i, 1 \leq i \leq 3$ then $\gamma_{n t} \neq n-4$.

Let $d(x, C)=3$ and let $\left(v_{1}, x_{1}, x_{2}, x\right)$ be the $v_{1}-x$ path. Then $6 \leq n \leq 9$. If $n=6$ then G is isomorphic to $C_{3}\left(P_{4}, P_{1}, P_{1}\right)$. If $n=7$ then $\operatorname{deg} x_{1}=3$ or deg $x_{2}=3$. Hence G is isomorphic to G_{4}. If $n=8$ then $\operatorname{deg} x_{i}=3,1 \leq i \leq 2$ or $\operatorname{deg} x_{1}=3$ and $\operatorname{deg} x_{2}=2$ and x_{1} is not a support vertex. For these graphs $\gamma_{n t} \neq n-4$. If $n=9$ then $\operatorname{deg} x_{i}=3,1 \leq i \leq 2$ and x_{1} is not a support vertex. For this graph $\gamma_{n t} \neq n-4$.

Let $d(x, C)=2$ and let $\left(v_{1}, x_{1}, x\right)$ be the $v_{1}-x$ path. If $\operatorname{deg} x_{1}=2$ then $n=5$ which is a contradiction. Thus $\operatorname{deg} x_{1}=3$ and hence G is isomorphic to G_{5}.

If $d(x, C)=1$ then $n=4$ which is a contradiction. The converse is obvious.

Lemma 3.13. Let $G \in \mathscr{F}_{2}$. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in A_{7}$.

Proof: Since k is odd $\chi=3$ and $\gamma_{n t}=n-4$.
Case 1: C contains a vertex of degree Δ.
Then $k=3$ or 5 or 7 . If $k=7$ then G is isomorphic to $C_{7}(2,0,0,0,0,0,0)$ and $\gamma_{n t} \neq n-4$.
Sub case 1.1: $k=5$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$. If x is a pendant vertex then $d(x, C) \leq 3$. If $d(x, C)=3$ then $\gamma_{n t} \neq n-4$. If $d(x, C)=2$ then by similar arguments given in Lemma 3.11 and $3.12 \gamma_{n t} \neq n-4$. If $d(x, C)=1$ then $n=7$ or 8 or 9 . If $n=8$ or 9 we have $\gamma_{n t} \neq n-4$. Then G is isomorphic to $C_{5}(2,0,0,0,0)$.

Sub Case 1.2: $k=3$.
Let $C=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)$. If x is a pendant vertex then $d(x, C) \leq 5$. If $d(x, C)=5$ or 4 then $\gamma_{n t} \neq n-4$. If $d(x, C)=3$ then $n=7$ or 8 or 9 . If $n=8$ or 9 then by similar arguments given in Lemma 3.11 and Lemma $3.12 \gamma_{n t} \neq n-4$. If $n=7$ then G is isomorphic to G_{6}. If $d(x, C)=2$ then $6 \leq n \leq 9$. If $n=6$ then G is isomorphic to G_{7}. If $n=7$ then G is isomorphic to G_{8} or G_{9} or G_{10}. If $n=8$ then G is isomorphic to G_{11} or G_{12}. If $n=9$ then no graph exists. If $d(x, C)=1$ then $6 \leq n \leq 9$. Then by similar arguments given in Lemma 3.11 and Lemma 3.12 there is no graph of order 8 and 9. If $n=6$ then G is isomorphic to $C_{3}(2,1,0)$. If $n=7$ then G is isomorphic to $C_{3}(2,1,1)$.

Case 2: C does not contains maximum degree vertex.
Then $k=3$ or 5 . If $k=5$ then G is a graph obtained from $C_{5}\left(P_{3}, P_{1}, P_{1}, P_{1}, P_{1}\right)$ by attaching two
P_{2} to the vertex $u \notin V(C)$ of degree 2 . For this graph $\gamma_{n t} \neq n-4$. If $k=3$ then by similar arguments given in Lemma 3.11 and 3.12 there is no graph. The converse is obvious.

Theorem 3.14. Let G be a connected unicyclic graph of order n. Then $\gamma_{n t}+\chi=n-1$ if and only if $G \in \bigcup_{i=1}^{7} A_{i}$.

Proof: Let G be a unicyclic graph with cycle $C=\left(v_{1}, v_{2}, \cdots, v_{k}, v_{1}\right)$ and let $\gamma_{n t}+\chi=n-1$. If $\Delta=n-1$ or $\Delta<n-1$ with k is even then $G \in A_{1} \cup A_{2}$.

Suppose $\Delta<n-1$ and k is odd.Then $\chi=3$ and $\gamma_{n t}=n-4$. Also it follows from Theorem 1.6 that $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ so that $6 \leq n \leq 9$. Further since $\Delta<n-1$ we have $\gamma_{n t} \leq n-\Delta$ and hence $\Delta \leq 4$. If $\Delta=2$ then G is isomorphic to C_{7} or C_{9}. But $\gamma_{n t}\left(C_{9}\right)=3 \neq n-4$. Hence G is isomorphic to C_{7}. Thus $G \in A_{3}$. Since $\gamma_{n t}=n-4, G$ contains at most four pendant vertices and hence C contains at most four vertices of degree 3 . Then $s \leq 4$. If $s=4$ then $k=5$. Let $v \in V(C)$ of degree 2 and let $u_{1}, u_{2}, u_{3}, u_{4} \in V(G-C)$. Then $\operatorname{deg} u_{i}=1,1 \leq i \leq 4$ and $S=V-\left\{v, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a ntd set of cardinality $n-5$ which is a contradiction. Hence $s \leq 3$. Then $G \in \mathscr{F}_{1}$ or \mathscr{F}_{2}. Hence from Lemmas $3.10,3.11,3,12,3,13$ the result follows. The converse is obvious.

Theorem 3.15. Let G be a connected cubic graph of order n. Then $\gamma_{n t}+\chi=n-1$ if and only if $G=C_{3}^{(2)}$.

Proof: Let G be a connected cubic graph with $\gamma_{n t}+\chi=n-1$. If G is a complete graph then $\gamma_{n t}+\chi=n+1$ which is a contradiction. Hence $\chi \leq 3$. Then $\gamma_{n t} \geq n-4$. It follows from Theorem $1.8, \gamma_{n t} \leq n-3$. Thus we have $\gamma_{n t}=n-4$ or $n-3$.

Case 1: $\gamma_{n t}=n-3$.
Then $\chi=2$. It follows from Theorem 1.6 that $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 7$. Since G is not a complete graph we have $n=6$. Then $\gamma_{n t}=3$ and $\chi=2$. Since each vertex v of G dominates four vertices and all the vertices having degree three, two vertices are sufficient to dominate six vertices. Hence $\gamma_{n t} \leq 2$ which is a contradiction.
Case 2: $\gamma_{n t}=n-4$.
Then $\chi=3$. It follows from Theorem 1.6 that $\gamma_{n t} \leq\left\lceil\frac{n}{2}\right\rceil$ which gives $n \leq 9$. Since G is not a complete graph we have $n=6$ or 8 .

Suppose $n=6$. Then $\gamma_{n t}=2$ and $\chi=3$
Let $S=\left\{v_{1}, v_{2}\right\}$ be the $\gamma_{n t}$-set of G and let $V-S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
Sub case 2.1: $\langle S\rangle=\overline{K_{2}}$.
Let v_{1} be adjacent to u_{1}, u_{2} and u_{3}. If v_{2} is also adjacent to u_{1}, u_{2} and u_{3} then u_{4} is adjacent to u_{1}, u_{2}, and u_{3}. For this graph $\chi=2$ which is a contradiction. Suppose v_{2} is adjacent to u_{1}, u_{2} and u_{4}. If $u_{1} u_{2} \in E$ then G is not a cubic graph. Hence u_{1} is adjacent to u_{3} or u_{4}. If $u_{1} u_{3} \in E$ then
$u_{2} u_{4}, u_{3} u_{4} \in E$. Then the graph G is isomorphic to the graph $C_{3}^{(2)}$. If $u_{1} u_{4} \in E$ then $u_{2} u_{3}, u_{3} u_{4} \in E$. Then the graph G is isomorphic to $C_{3}^{(2)}$.
Sub case 2.2: $\langle S\rangle=K_{2}$.
Let v_{1} be adjacent to u_{1} and u_{2}. If v_{2} is also adjacent to u_{1} and u_{2} then G is not a cubic graph. Suppose v_{2} is adjacent to u_{1} and u_{3}. Then u_{4} is adjacent to u_{1}, u_{2} and u_{3} and hence $u_{2} u_{3} \in E$. Then G is isomorphic to the graph $C_{3}^{(2)}$. Suppose v_{2} is adjacent to u_{3} and u_{4}. If $u_{1} u_{2} \in E$ then $u_{2} u_{4}, u_{3} u_{4}, u_{1} u_{4} \in E$. Then G is isomorphic to $C_{3}^{(2)}$. If $u_{1} u_{2} \notin E$ then $u_{1} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{2} u_{4} \in$ $E(G)$. For this graph $\chi=2$ which is a contradiction.

Suppose $n=8$ then $\gamma_{n t}=4$ and $\chi=3$. Since each vertex v of G dominates four vertices and all the vertices having degree three maximum of three vertices are sufficient to dominate eight vertices. Hence $\gamma_{n t} \leq 3$ which is a contradiction. The converse is obvious.

References

[1] S. Arumugam and C. Sivagnanam, Neighborhood Total domination in graphs, Opuscula Math., 31(2011), 519-531.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, 2005.
[3] J. Paulraj Joseph and S. Arumugam, Domination and colouring in graphs, International journal of management and systems, 15 (1999), 37-44.
[4] C. Sivagnanam, Studies in graph theory - Neighborhood connected and Neighborhood total domination in graphs, Ph.D thesis, 2008, Anna University, Chennai, Tamilnadu, India.

