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Abstract

Let G = (V,E) be a graph without isolated vertices. A dominating set S of G is a neighbor-
hood total dominating set (ntd-set) if the induced subgraph 〈N(S)〉 of G has no isolated vertices.
The neighborhood total domination number γnt(G) is the minimum cardinality of a ntd-set. The
minimum number of colours required to colour all the vertices such that no two adjacent vertices
have same colour is the chromatic number χ(G) of G. In this paper we find an upper bound for sum
of the ntd-number and chromatic number and characterize the corresponding extremal graphs.
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1 Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor multiple edges.

The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer

to Chartrand and Lesniak [2].

Let G = (V,E) be a graph and let v ∈ V . The open neighborhood and the closed neighborhood of

v are denoted by N(v) and N [v] = N(v) ∪ {v} respectively. If S ⊆ V , then N(S) =
⋃

v∈S N(v) and

N [S] = N(S) ∪ S. A support is a vertex with at least one of its neighbor has degree one.

A subset S of V is called a dominating set of G if N [S] = V . The minimum cardinality of a

dominating set is called a domination number of G and is denoted by γ(G). S. Arumugam and C.

Sivagnanm [1] introduced the concept of neighborhood total domination. A dominating set S of a graph

G is called a neighborhood total dominating set (ntd-set) if the induced subgraph 〈N(S)〉 has no isolated

vertices. The minimum cardinality of a ntd-set ofG is called the neighborhood total domination number

(ntd-number) of G and is denoted by γnt(G). The chromatic number χ(G) of a graph G is defined to

be the minimum number of colours required to colour all the vertices such that no two adjacent vertices

receive the same colour.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination

parameter and a graph theoretic parameter and characterizing the corresponding extremal graphs. In [3],

J. Paulraj Joseph and S. Arumugam proved that γ + χ ≤ n + 1. They also characterized the class of

graphs for the upper bound is attained. In this paper, we obtain upper bounds for the sum of ntd-number

and chromatic number and characterize the extremal graphs. We need the following theorems.
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Theorem 1.1. [2] For any graph G, χ ≤ 1 + ∆.

Theorem 1.2. [2] If G is a connected graph that is neither an odd cycle nor a complete graph, then

χ ≤ ∆.

Theorem 1.3. [1]Let G be a graph with ∆ = n− 1. Then γnt(G) = 1 or 2. Further γnt(G) = 2 if and

only if G has exactly one vertex v with deg v = n− 1 and v is adjacent to a vertex of degree 1.

Theorem 1.4. [1] For any path Pn,

γnt(Pn) =

{
dn3 e if n ≡ 1 (mod 3),

dn3 e+ 1 otherwise.

Theorem 1.5. [1] For the cycle Cn,

γnt(Cn) =

{
dn3 e+ 1 if n ≡ 2 (mod 3),

dn3 e otherwise.

Theorem 1.6. [1] For any graph G, γnt(G) ≤
⌈
n
2

⌉
.

Theorem 1.7. [1] For any graph G, γnt(G) ≤ n−∆ + 1.

Theorem 1.8. [1] Let G be a connected graph with ∆ < n− 1. Then γnt(G) ≤ n−∆.

2 Definitions and Notations

Definition 2.1. H(m1,m2, · · · ,mn) denotes the graph obtained from the graph H by attaching mi

edges to the vertex vi ∈ V (H), 1 ≤ i ≤ n.

Definition 2.2. H(Pm1 , Pm2 , · · · , Pmn) is the graph obtained from the graph H by attaching an end

vertex of Pmi to the vertex vi in H , 1 ≤ i ≤ n.

Definition 2.3. Let H1and H2 be two copies of C3 with vertex sets V (H1) = {v(1)1 , v
(1)
2 , v

(1)
3 } and

V (H2) = {v(2)1 , v
(2)
2 , v

(2)
3 }. Then the graph C(2)

3 is obtained from H1 ∪H2 by joining the vertices v(1)i

and v(2)i , 1 ≤ i ≤ 3, by an edge.

2.1 Graphs and Notations

We define the following graphs.

G1 is the graph obtained from C3(P3, P2, P2) by attaching a P2 to the vertex of degree 2.

G2 is the graph obtained from C3(P4, P2, P1) by attaching a P2 to the vertex u 6∈ V (C) of degree 2,

where C is a cycle in C3(P4, P2, P1).

G3 is the graph obtained from C3(P3, P2, P1) by attaching a P2 to the vertex u 6∈ V (C) of degree

2,where C is a cycle in C3(P3, P2, P1).
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G4 is the graph obtained from C3(P4, P1, P1) by attaching a P2 to the vertex u 6∈ V (C) of degree

2,where C is a cycle in C3(P4, P1, P1).

G5 is the graph obtained from C3(P3, P1, P1) by attaching a P2 to the vertex u 6∈ V (C) of degree 2,

where C is a cycle in C3(P3, P1, P1).

G6 is the graph obtained from C3(P4, P1, P1) by attaching a P2 to the vertex of degree 3.

G7 is the graph obtained from C3(P3, P1, P1) by attaching a P2 to the vertex of degree 3.

G8 is the graph obtained from C3(P3, P1, P1) by attaching a P3 to the vertex of degree 3.

G9 is the graph obtained from C3(2, 1, 0) by attaching a P2 to a pendant vertex whose support has

degree 4.

G10 is the graph obtained from C3(2, 0, 0) by attaching a P3 to the vertex u ∈ V (C) of degree 2, where

C is a cycle in C3(2, 0, 0).

G11 is the graph obtained from C3(2, 1, 0) by attaching a P2 to the vertices whose support has degree 4.

G12 is the graph obtained from C3(2, 1, 1) by attaching a P2 to a pendant vertex whose support has

degree 4.

2.2 Sets of graphs

We define the following sets of graphs.

A1 = {C3(3, 0, 0)}

A2 = {C4(P3, P1, P1, P1), C4(1, 0, 0, 0)}

A3 = {C7}

A4 = {G1, C3(P3, P3, P2), C3(P3, P2, P2)}

A5 = {G2, G3, C5(P3, P2, P1, P1, P1), C5(P3, P1, P2, P1, P1), C5(P2, P2, P1, P1, P1), C5(P2, P1, P2,

P1, P1), C3(P5, P2, P1), C3(P4, P2, P1), C3(P3, P3, P1)}

A6 = {G4, G5, C5(P4, P1, P1, P1, P1), C5(P3, P1, P1, P1, P1), C3(P5, P1, P1), C3(P4, P1, P1)}

A7 = {C5(2, 0, 0, 0, 0), C3(2, 1, 0), C3(2, 1, 1) and Gi : 6 ≤ i ≤ 12}

A8 = {C4, C3(2, 0, 0), C3(1, 1, 1), C3(1, 1, 0), C3(P1, P2, P3), C3(P1, P1, P3),

C5(1, 0, 0, 0, 0)}

2.3 Family of graphs

Let F1 be the family of connected unicyclic graphs of order nwith odd cycleC = (v1, v2, · · · , vk, v1)
satisfy the following conditions: (i) 6 ≤ n ≤ 9 (ii) ∆ = 3 (iii) s = |{v ∈ C : degv = ∆}|.

Let F2 be the family of connected unicyclic graphs of order nwith odd cycleC = (v1, v2, · · · , vk, v1)
satisfy the following conditions (i) 6 ≤ n ≤ 9 (ii) ∆ = 4.

We assume through out that the graph G has no isolated vertices.
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3 Main Results

Theorem 3.1. Let G be a graph without isolated vertices. Then γnt(G) + χ(G) ≤ n + 2 and equality

holds if and only if G is isomorphic to sK2.

Proof: By Theorem 1.7, γnt(G) ≤ n−∆ + 1 and by Theorem 1.1, χ(G) ≤ ∆ + 1. Hence γnt(G) +

χ(G) ≤ n+ 2.

Let G be a graph with γnt(G) + χ(G) = n + 2. Then γnt(G) = n − ∆ + 1 and χ(G) = ∆ + 1.

Suppose G is connected. Then G is either a complete graph or an odd cycle. If G = Kn, n ≥ 3 or an

odd cycle, then γnt(G) ≤ n−∆. Hence G is isomorphic to K2.

Suppose G is disconnected. We claim that ∆(G) = 1. Suppose ∆(G) ≥ 2. Let G1 be a component

of G with ∆(G1) = ∆(G) and let |V (G1)| = n1. Since γnt(G) = n−∆+1, it follows that γnt(G1) =

n1−∆+1. If ∆(G1) < n1−1 then γnt(G1) ≤ n1−∆ and hence γnt(G) ≤ n−∆. If ∆(G1) = n1−1,

then γnt(G1) = 1 or 2. If γnt(G1) = 1, then γnt(G) ≤ n − ∆. If γnt(G1) = 2 then G1 contains a

support vertex and hence χ ≤ ∆, which is a contradiction. Thus ∆ = 1 and each component of G is

isomorphic to K2.

Theorem 3.2. Let G be a connected graph. Then γnt(G) + χ(G) = n + 1 if and only if G = C5 or

Kn; (n ≥ 3) or Kn − Y where Y is a set of edges incident with a vertex of Kn with |Y | = n− 2.

Proof: Let G be a connected graph with γnt(G) + χ(G) = n+ 1.

Case 1: ∆ < n− 1.

Then γnt ≤ n−∆. Since γnt + χ = n+ 1, it follows that χ ≥ ∆ + 1 and hence χ = ∆ + 1. Thus

G is an odd cycle and γnt = n−∆ = n− 2. Hence G = C5.

Case 2: ∆ = n− 1.

Then γnt ≤ 2. If γnt = 1 then χ = n and hence G is isomorphic to Kn, n ≥ 3. Suppose γnt = 2.

It follows from Theorem 1.3 that G has exactly one vertex v with degv = n − 1 and v is adjacent to a

vertex of degree 1. Since χ(G) = n− 1, it follows that G− v has exactly two components H1 and H2

where H1 = K1 and 〈V (H2) ∪ {v}〉 = Kn−1. Hence G = Kn − Y where Y is a set of edges incident

with a vertex of Kn with |Y | = n− 2. The converse is obvious.

Corollary 3.3. LetG be a graph with γnt(G)+χ(G) = n+1. ThenG is isomorphic to sK2∪H where

H is isomorphic to C5 or Kn−2s (n− 2s 6= 2) or Kn−2s − Y where Y is the set of edges incident with

a vertex of Kn−2s with |Y | = n− 2s− 2.

Theorem 3.4. Let T be a tree of order n. Then γnt + χ = n if and only if T is isomorphic to P4 or P5

or K1,3.

Proof: Suppose γnt + χ = n. Since χ = 2 for any nontrivial tree, γnt = n − 2. If ∆ = n − 1, then

γnt = 2 so that n = 4 and T = K1,3. Suppose ∆ < n − 1. Then γnt ≤ n −∆. Since γnt = n − 2, it

follows that ∆ ≤ 2, so that T is a path. Hence γnt ≤
⌈
n
2

⌉
which implies n ≤ 5. Since ∆ < n− 1, T is

isomorphic to either P4 or P5. The converse is obvious.
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Theorem 3.5. Let G be a connected unicyclic graph of order n with cycle C = (v1, v2, . . . , vk, v1).

Then γnt + χ = n if and only if G ∈ A8.

Proof: Suppose γnt + χ = n.

Case 1: ∆ = n− 1.

Then γnt ≤ 2. If γnt = 1 then G is K3 and in this case γnt + χ = 4 > n. Hence γnt = 2 and

χ = n − 2. If k is even then χ = 2 and n = 4 and k = 4 so that ∆ 6= n − 1 which is a contradiction.

Hence k is odd, χ = 3, so that n = 5 and ∆ = 4. Hence k = 3 and G is isomorphic to C3(2, 0, 0).

Case 2. ∆ < n− 1.

If k is even, then χ = 2 and γnt = n − 2. Since γnt ≤
⌈
n
2

⌉
, it follows that n ≤ 5. If n = 5, then

k = 4 and there exists a vertex not in C which is adjacent to a vertex in C. For this graph γnt + χ 6= n.

Hence n = 4 and G is isomorphic to C4.

If k is odd, then χ = 3 and γnt = n− 3. Since ∆ < n− 1 we have γnt ≤ n−∆ and hence ∆ ≤ 3.

Also γnt ≤
⌈
n
2

⌉
, which gives n ≤ 7.

If ∆ = 2, then G is isomorphic to C3 or C5 or C7 and for these graphs γnt + χ 6= n. Thus ∆ = 3.

Let X be the set of all pendent vertices of G. Since γnt = n − 3, |X| ≤ 3 and C contains at

most three vertices of degree 3. Suppose C contains three vertices of degree 3. Then k = 3. Let

C = (v1, v2, v3, v1) and uivi ∈ E, i = 1, 2, 3. Since γnt + χ = n, it follows that deg ui = 1 for all i

and G is isomorphic to C3(1, 1, 1).

Suppose C contains two vertices of degree 3. Then k = 3 or 5. If k = 5, then n = 7, and in this

case γnt + χ 6= n. Hence k = 3. Let C = (v1, v2, v3, v1), deg v1 = deg v2 = 3 and u1v1, u2v2 ∈ E. If

deg u1 = deg u2 = 1, then G is isomorphic to C3(1, 1, 0). If deg u1 = deg u2 = 2, then γnt + χ 6= n.

Hence we may assume that deg u1 = 1 and deg u2 ≥ 2. Since γnt + χ = n, it follows that deg u2 = 2

and if u2w ∈ E(G), then deg w = 1. Hence G is isomorphic to C3(P1, P2, P3).

Suppose C contains exactly one vertex of degree 3. Then k = 3 or 5. If k = 3, and u1v1 ∈ E, then

deg u1 = 2 and if u1w ∈ E, then deg w = 1. Hence G is isomorphic to C3(P3, P1, P1).

If k = 5 and u1v1 ∈ E, then deg u1 = 1 and G is isomorphic to C5(1, 0, 0, 0, 0). The converse is

obvious.

Remark 3.6. There is no cubic graph of order n with γnt + χ = n.

Proof: Let G be a cubic graph with γnt +χ = n. If G is a complete graph then γnt +χ = n+ 1, which

is a contradiction. Hence χ ≤ 3. Then γnt ≥ n−3. It follows from Theorem 1.8, γnt ≤ n−3. Thus we

have γnt = n− 3 and then χ = 3. Theorem 1.6 gives γnt ≤ dn2 e which implies n ≤ 7. Since G is not

a complete graph, we have n = 6. Then γnt = 3 and χ = 3. Since each vertex v of G dominates four

vertices, and all the vertices have degree 3, two vertices are sufficient to dominate six vertices. Hence

there does not exist a cubic graph with γnt + χ = n.

Theorem 3.7. Let T be a tree of order n. Then γnt + χ = n − 1 if and only if T is K1,4 or P6 or it is

obtained from K1,3 by subdividing at least one edge.
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Proof: Let T be a tree with γnt + χ = n − 1. Since χ = 2, we have γnt = n − 3 and hence n ≥ 5.

If ∆ = n − 1 then γnt = 2 so that n = 5 and T = K1,4. Suppose ∆ < n − 1. Then γnt ≤ n − ∆

and hence ∆ ≤ 3. Now from Theorem 1.6, γnt ≤ dn2 e. So that n − 3 ≤ dn2 e which gives n ≤ 7.

Hence 5 ≤ n ≤ 7. If ∆ = 2 then T is a path and hence T = P6. Let ∆ = 3. If n = 5 then T is

obtained from K1,3 by subdividing exactly one edge. Suppose n = 6. Let v ∈ V such that degv = ∆

and let N(v) = {v1, v2, v3}. Let u1, u2 ∈ V − N [v]. If u1, u2 ∈ N(vi) for some i = 1, 2, 3 then

γnc = 2 which is a contradiction. Hence u1 is adjacent to vi and u2 is adjacent to vj , j 6= i. Thus T is

isomorphic to a graph obtained from K1,3 by subdividing two edges once.

Suppose n = 7. Let v be a vertex of degree ∆ and let N(v) = {v1, v2, v3}. Let u1, u2, u3 ∈
V − N [v]. Suppose deg v1 = 1. If deg v2 = 2 and deg v3 = 3 then γnt = 3 6= n − 3 which is a

contradiction. If deg v2 = 1 and deg v3 = 3 then u1 v3, u2 v3 ∈ E(T ). Since T is a tree without

loss of generality we assume u3 is adjacent to u1 then γnt = 3 6= n − 3 which is a contradiction.

Let deg v2 = 1 and deg v3 = 2 and u1 v3 ∈ E(T ). If u1 u2, u1 u3 ∈ E(T ) then γnt = 3 6= n − 3

which is a contradiction. If u1 u2, u2 u3 ∈ E(T ) then γnt 6= n − 3 which is a contradiction. Hence

deg vi = 2, 1 ≤ i ≤ 3 . Thus T is isomorphic to a graph obtained from K1,3 by subdividing all the

edges once. The converse is obvious.

Lemma 3.8. Let G be a connected unicyclic graph of order n and ∆ = n− 1. Then γnt + χ = n− 1

if and only if G ∈ A1.

Proof: Let G be a connected unicyclic graph with cycle C = (v1, v2, · · · , vk, v1), ∆ = n − 1 and let

γnt + χ = n − 1. Then γnt ≤ 2. If γnt = 1 then G is K3 and γnt + χ = n + 1. Hence γnt = 2 and

χ = n − 3. If k ≥ 4 then ∆ < n − 1. Hence k = 3. Thus χ = 3, n = 6 and ∆ = 5. Hence G is

isomorphic to C3(3, 0, 0). The converse is obvious.

Lemma 3.9. Let G be a connected unicyclic graph with even cycle C = (v1, v2, · · · , vk, v1) and ∆ <

n− 1. Then γnt + χ = n− 1 if and only if G ∈ A2.

Proof: Since k is even χ = 2 and γnt = n− 3. It follows from Theorem 1.6 that γnt ≤ dn2 e and hence

n ≤ 7 .

Case 1: n = 7.

Then k = 4 or 6. If k = 4 then C = (v1, v2, v3, v4, v1). Let u1, u2, u3 be the vertices not on C.

If degui = 1 for all i = 1, 2, 3 then G is isomorphic to C4(1, 1, 1, 0) or C4(2, 1, 0, 0) or C4(2, 0, 1, 0)

or C4(3, 0, 0, 0). For this graphs γnt 6= n − 3. Let degu1 = degu2 = 1. If degu3 = 2 then G is

isomorphic to C4(P3, P2, P1, P1) or C4(P3, P1, P2, P1). But γnt = 3 6= n − 3. If degu3 = 3 then

G is a graph obtained from C4(P3, P1, P1, P1) by attaching a P2 to the vertex u 6∈ V (C) of degree 2.

For this graph γnt = 3 6= n − 3. If degu1 = 1 and degui 6= 1, i = 2, 3 then degu2 = degu3 = 2.

Hence G is isomorphic to C4(P4, P1, P1, P1). But γnt = 3 6= n − 3. If k = 6 then G is isomorphic to

C6(1, 0, 0, 0, 0, 0). But γnt = 3 6= n− 3.
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Case 2: n = 6.

Then k = 4 or 6. If k = 6 then G is C6.But γnt(C6) = 2. Hence k = 4. Then G is any one of the

following graph (i) H1 = C4(1, 1, 0, 0) (ii) H2 = C4(2, 0, 0, 0) (iii) H3 = C4(P3, P1, P1, P1). But

γnt(H1) = γnt(H2) = 2. Hence G is isomorphic to C4(P3, P1, P1, P1).

If n = 5 then k = 4 and G is isomorphic to C4(1, 0, 0, 0). If n = 4 then G is C4 and γnt 6= n − 3.

The converse is obvious.

Lemma 3.10. Let G ∈ F1 and s = 3. Then γnt + χ = n− 1 if and only if G ∈ A4.

Proof: Since k is odd χ = 3 and γnt = n− 4, also s = 3 gives k = 3 or 5. If k = 5 then G is isomor-

phic toC5(P3, P2, P2, P1, P1) orC5(P2, P2, P2, P1, P1) orC5(P2, P2, P1, P2, P1) orC5(P3, P1, P2, P2,

P1) or C5(P3, P2, P1, P1, P2) or C5(P3, P2, P1, P2, P1). For this graphs γnt 6= n− 4 which is a contra-

diction. Thus k = 3. Let C = (v1, v2, v3, v1) and ui vi ∈ E, 1 ≤ i ≤ 3. If degui = 1, 1 ≤ i ≤ 3 then

G is isomorphic to C3(1, 1, 1). But γnt[C3(1, 1, 1)] = 3 6= n−4 which is a contradiction. If degu1 = 3

then at most one of u2 and u3 has degree 2. Let degu2 = 2. Then degu3 = 1. For this graph

γnt = 4 6= n− 4 which is a contradiction. If degu2 = 1 and degu3 = 1 then the graph G is isomorphic

to G1. Suppose degu1 = 2. Then (degu2 = 2 and degu3 = 2) or (degu2 = 2 and degu3 = 1) or

(degu2 = 1 and degu3 = 1).

If degu1 = 2, degu2 = 2 and degu3 = 2 then G is isomorphic to C3(P3, P3, P3). But γnt[C3(P3,

P3, P3)] = 4 6= n − 4 which is a contradiction. If degu1 = 2, degu2 = 2 and degu3 = 1 then G

is isomorphic to C3(P3, P3, P2). If degu1 = 2, degu2 = 1 and degu3 = 1 then G is isomorphic to

C3(P3, P2, P2). The converse is obvious.

Lemma 3.11. Let G ∈ F1 and s = 2. Then γnt + χ = n− 1 if and only if G ∈ A5.

Proof: Since k is odd χ = 3 and γnt = n− 4. Also s = 2 gives k = 3 or 5 or 7.

Case 1: k = 7.

Then G is isomorphic to the graph obtained from C7 by attaching P2 to any two vertices. But

γnt < n− 4 which is a contradiction.

Case 2: k = 5.

Let C = (v1, v2, v3, v4, v5, v1) and let x be a pendant vertex in G. It is clear that d(x,C) ≤ 3. If

d(x,C) = 3 then G is isomorphic to C5(P4, P2, P1, P1, P1) or C5(P4, P1, P2, P1, P1). For this graphs

γnt 6= n− 4 which is a contradiction.

Suppose d(x,C) = 2. Then n = 8 or 9. Suppose n = 8. Let deg v1 = 3 and (v1, x1, x) be a path

in G. Since n = 8 there is a vertex x2 in V (G) and x2 is adjacent to v2 or v3 or v4 or v5. Hence G

is isomorphic to C5(P3, P2, P1, P1, P1) or C5(P3, P1, P2, P1, P1). Suppose n = 9. Then there are two

vertices x2, x3 ∈ V (G). If degx2 = degx3 = 1 then x2 v2 or x2v3 ∈ E and x1 x3 ∈ E. For these

graphs γnt 6= n − 4 which is a contradiction. If degx2 = 2 then degx3 = 1 and x2 x3 ∈ E. Hence G

is isomorphic to C5(P3, P3, P1, P1, P1) or C5(P3, P1, P3, P1, P1). For this graphs γnt 6= n− 4.
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If d(x,C) = 1 then G is isomorphic to C5(P2, P2, P1, P1, P1) or C5(P2, P1, P2, P1, P1).

Case 3: k = 3.

Let C = (v1, v2, v3, v1) and let x be a pendant vertex in G. Then d(x,C) ≤ 5. If d(x,C) = 5 then

n = 9 and G is isomorphic to C3(P6, P2, P1). But γnt 6= n− 4 which is a contradiction.

Sub Case 3.1: d(x,C) = 4.

Let (v1, x1, x2, x3, x) be the v1 − x path. Then n = 8 or 9. Suppose n = 8 then G is isomorphic to

C3(P5, P2, P1). If n = 9 there exist two vertices x4 and x5 such that x4 v2 ∈ E and x5 is adjacent to

any one of x1, x2, x3 and x4. All these cases γnt 6= n− 4.

Sub Case 3.2: d(x,C) = 3.

Let (v1, x1, x2, x) be the v1 − x path. Then 7 ≤ n ≤ 9. If n = 7 then G is isomorphic to

C3(P4, P2, P1). Let n = 8 and x3 v2 ∈ E. Then there is a vertex x4 which is adjacent to any one of

x1, x2 and x3. Hence G is isomorphic to C3(P4, P3, P1) or G2. But γnt(C3(P4, P3, P1)) 6= n − 4.

Hence G is isomorphic to G2.Let n = 9 and x3 v2 ∈ E. Then there are two vertices x4 and x5 with

x2 x4, x3 x5 ∈ E or x2 x4, x1 x5 ∈ E or x1 x5, x3 x4 ∈ E. All these cases γnt 6= n− 4.

Sub Case 3.3: d(x,C) = 2.

Let (v1, x1, x) be the v1−x path and let x2 v2 ∈ E. Then 6 ≤ n ≤ 9. If n = 6 then G is isomorphic

to C3(P3, P2, P1). For this graph γnt 6= n − 4. If n = 7 then G is isomorphic to C3(P3, P3, P1) or

G3. If n = 8 then G is a graph obtained from C3(P3, P3, P1) by attaching a P2 to the vertex u 6∈ V (C)

of degree 2. For this graph γnt 6= n − 4. If n = 9 then G is a graph obtained from C3(P3, P3, P1) by

attaching a pendant vertex to all the vertices of degree 2 which are not on C. For this graph γnt 6= n−4.

If d(x,C) = 1 then G is isomorphic to C3(P2, P2, P1). But γnt 6= n − 4 which is a contradiction.

The converse is obvious.

Lemma 3.12. Let G ∈ F1 and s = 1. Then γnt + χ = n− 1 if and only if G ∈ A6.

Proof: Since k is odd, χ = 3 and γnt = n− 4. Also s = 1 gives k = 3 or 5 or 7.

Case 1: k = 7.

Then G is isomorphic to C7(P3, P1, P1, P1, P1, P1, P1) or C7(P2, P1, P1, P1, P1, P1, P1). For these

graphs γnt 6= n− 4.

Case 2: k = 5.

Let C = (v1, v2, v3, v4, v5, v1) and let x be a pendant vertex in G. Also let us assume deg v1 = 3.

Then d(x,C) ≤ 4. If d(x,C) = 4 then n = 9 and G is isomorphic to C5(P5, P1, P1, P1, P1). But

γnt 6= n − 4. Let d(x,C) = 3 and let (v1, x1, x2, x) be the v1 − x path. If degx1 = 3 or degx2 = 3

then γnt 6= n− 4. Hence G is isomorphic to C5(P4, P1, P1, P1, P1). Let d(x,C) = 2 and let (v1, x1, x)

be the v1 − x path. Then n = 7 or 8. If n = 7 then G is isomorphic to C5(P3, P1, P1, P1, P1). If n = 8

then there is a vertex x2 such that x2 x1 ∈ E. For this graph γnt 6= n − 4. If d(x,C) = 1 then G is

isomorphic to C5(P2, P1, P1, P1, P1). But γnt 6= n− 4.
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Case 3: k = 3.

Let C = (v1, v2, v3, v1) and let x be a pendant vertex in G. Also let us assume deg v1 = 3. Then

d(x,C) ≤ 6. If d(x,C) = 6 then n = 9 and G is isomorphic to C3(P7, P1, P1). But γnt 6= n− 4.

Let d(x,C) = 5 and let (v1, x1, x2, x3, x4, x) be the v1 − x path. If degxi = 2, 1 ≤ i ≤ 4 then G

is isomorphic to C3(P6, P1, P1).But γnt(C3(P6, P1, P1)) 6= n− 4. If degxi = 3 for some i, 1 ≤ i ≤ 4

then γnt 6= n− 4.

Let d(x,C) = 4 and let (v1, x1, x2, x3, x) be the v1 − x path. If degxi = 2, 1 ≤ i ≤ 3 then G is

isomorphic to C3(P5, P1, P1). If degxi = 3 for some i, 1 ≤ i ≤ 3 then γnt 6= n− 4.

Let d(x,C) = 3 and let (v1, x1, x2, x) be the v1 − x path. Then 6 ≤ n ≤ 9. If n = 6 then G is

isomorphic to C3(P4, P1, P1). If n = 7 then degx1 = 3 or degx2 = 3. Hence G is isomorphic to G4.

If n = 8 then degxi = 3, 1 ≤ i ≤ 2 or degx1 = 3 and degx2 = 2 and x1 is not a support vertex. For

these graphs γnt 6= n− 4. If n = 9 then degxi = 3, 1 ≤ i ≤ 2 and x1 is not a support vertex. For this

graph γnt 6= n− 4.

Let d(x,C) = 2 and let (v1, x1, x) be the v1 − x path. If degx1 = 2 then n = 5 which is a

contradiction. Thus degx1 = 3 and hence G is isomorphic to G5.

If d(x,C) = 1 then n = 4 which is a contradiction. The converse is obvious.

Lemma 3.13. Let G ∈ F2. Then γnt + χ = n− 1 if and only if G ∈ A7.

Proof: Since k is odd χ = 3 and γnt = n− 4.

Case 1: C contains a vertex of degree ∆.

Then k = 3 or 5 or 7. If k = 7 then G is isomorphic to C7(2, 0, 0, 0, 0, 0, 0) and γnt 6= n− 4.

Sub case 1.1: k = 5.

Let C = (v1, v2, v3, v4, v5, v1). If x is a pendant vertex then d(x,C) ≤ 3. If d(x,C) = 3 then

γnt 6= n − 4. If d(x,C) = 2 then by similar arguments given in Lemma 3.11 and 3.12 γnt 6= n − 4.

If d(x,C) = 1 then n = 7 or 8 or 9. If n = 8 or 9 we have γnt 6= n − 4. Then G is isomorphic to

C5(2, 0, 0, 0, 0).

Sub Case 1.2: k = 3.

Let C = (v1, v2, v3, v1). If x is a pendant vertex then d(x,C) ≤ 5. If d(x,C) = 5 or 4 then

γnt 6= n − 4. If d(x,C) = 3 then n = 7 or 8 or 9. If n = 8 or 9 then by similar arguments given

in Lemma 3.11 and Lemma 3.12 γnt 6= n − 4. If n = 7 then G is isomorphic to G6. If d(x,C) = 2

then 6 ≤ n ≤ 9. If n = 6 then G is isomorphic to G7. If n = 7 then G is isomorphic to G8 or G9 or

G10. If n = 8 then G is isomorphic to G11 or G12. If n = 9 then no graph exists. If d(x,C) = 1 then

6 ≤ n ≤ 9. Then by similar arguments given in Lemma 3.11 and Lemma 3.12 there is no graph of order

8 and 9. If n = 6 then G is isomorphic to C3(2, 1, 0). If n = 7 then G is isomorphic to C3(2, 1, 1).

Case 2: C does not contains maximum degree vertex.

Then k = 3 or 5. If k = 5 then G is a graph obtained from C5(P3, P1, P1, P1, P1) by attaching two
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P2 to the vertex u 6∈ V (C) of degree 2. For this graph γnt 6= n− 4. If k = 3 then by similar arguments

given in Lemma 3.11 and 3.12 there is no graph. The converse is obvious.

Theorem 3.14. Let G be a connected unicyclic graph of order n. Then γnt + χ = n− 1 if and only if

G ∈
7⋃

i=1
Ai.

Proof: Let G be a unicyclic graph with cycle C = (v1, v2, · · · , vk, v1) and let γnt + χ = n − 1. If

∆ = n− 1 or ∆ < n− 1 with k is even then G ∈ A1 ∪A2.

Suppose ∆ < n − 1 and k is odd.Then χ = 3 and γnt = n − 4. Also it follows from Theorem 1.6

that γnt ≤ dn2 e so that 6 ≤ n ≤ 9. Further since ∆ < n − 1 we have γnt ≤ n −∆ and hence ∆ ≤ 4.

If ∆ = 2 then G is isomorphic to C7 or C9. But γnt(C9) = 3 6= n − 4. Hence G is isomorphic to C7.

Thus G ∈ A3. Since γnt = n − 4, G contains at most four pendant vertices and hence C contains at

most four vertices of degree 3. Then s ≤ 4. If s = 4 then k = 5. Let v ∈ V (C) of degree 2 and let

u1, u2, u3, u4 ∈ V (G− C). Then degui = 1, 1 ≤ i ≤ 4 and S = V − {v, u1, u2, u3, u4} is a ntd set

of cardinality n− 5 which is a contradiction. Hence s ≤ 3. Then G ∈ F1 or F2. Hence from Lemmas

3.10, 3.11, 3, 12, 3, 13 the result follows. The converse is obvious.

Theorem 3.15. Let G be a connected cubic graph of order n. Then γnt + χ = n − 1 if and only if

G = C
(2)
3 .

Proof: Let G be a connected cubic graph with γnt + χ = n − 1. If G is a complete graph then

γnt + χ = n + 1 which is a contradiction. Hence χ ≤ 3. Then γnt ≥ n− 4. It follows from Theorem

1.8, γnt ≤ n− 3. Thus we have γnt = n− 4 or n− 3.

Case 1: γnt = n− 3.

Then χ = 2. It follows from Theorem 1.6 that γnt ≤ dn2 e which gives n ≤ 7. Since G is not a

complete graph we have n = 6. Then γnt = 3 and χ = 2. Since each vertex v of G dominates four

vertices and all the vertices having degree three, two vertices are sufficient to dominate six vertices.

Hence γnt ≤ 2 which is a contradiction.

Case 2: γnt = n− 4.

Then χ = 3. It follows from Theorem 1.6 that γnt ≤ dn2 e which gives n ≤ 9. Since G is not a

complete graph we have n = 6 or 8.

Suppose n = 6. Then γnt = 2 and χ = 3

Let S = {v1, v2} be the γnt-set of G and let V − S = {u1, u2, u3, u4}

Sub case 2.1: 〈S〉 = K2.

Let v1 be adjacent to u1, u2 and u3. If v2 is also adjacent to u1, u2 andu3 then u4 is adjacent to

u1, u2, andu3. For this graph χ = 2 which is a contradiction. Suppose v2 is adjacent to u1, u2 and

u4. If u1u2 ∈ E then G is not a cubic graph. Hence u1 is adjacent to u3 or u4. If u1u3 ∈ E then
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u2u4, u3u4 ∈ E. Then the graphG is isomorphic to the graphC(2)
3 . If u1u4 ∈ E then u2u3, u3u4 ∈ E.

Then the graph G is isomorphic to C(2)
3 .

Sub case 2.2: 〈S〉 = K2.

Let v1 be adjacent to u1 and u2. If v2 is also adjacent to u1 and u2 then G is not a cubic graph.

Suppose v2 is adjacent to u1 and u3. Then u4 is adjacent to u1, u2 andu3 and hence u2 u3 ∈ E.

Then G is isomorphic to the graph C(2)
3 . Suppose v2 is adjacent to u3 and u4. If u1 u2 ∈ E then

u2 u4, u3 u4, u1 u4 ∈ E. ThenG is isomorphic toC(2)
3 . If u1 u2 6∈ E then u1 u3, u1 u4, u2 u3, u2u4 ∈

E(G). For this graph χ = 2 which is a contradiction.

Suppose n = 8 then γnt = 4 and χ = 3. Since each vertex v ofG dominates four vertices and all the

vertices having degree three maximum of three vertices are sufficient to dominate eight vertices. Hence

γnt ≤ 3 which is a contradiction. The converse is obvious.
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