International Journal of Mathematics and Soft Computing Vol.5, No.1 (2015), 129 - 141.

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

Some new families of 5-cordial graphs

M.V. Modha¹, K. K. Kanani²

¹ M. D. Science College Porbandar, Gujarat, India.

² Government Engineering College Rajkot, Gujarat, India.

Abstract

In this paper, we discuss here 5-cordial labeling of some new graph families. We prove that prisms are 5-cordial. We also prove that web graph, flower graph and closed helm admit 5-cordial labeling.

Keywords: Abelian Group; 5-cordial labeling. **AMS Subject Classification(2010):** 05C78.

1 Introduction

Throughout this work, by a graph we mean finite, connected, undirected, simple graph G = (V(G), E(G)) of order |V(G)| and size |E(G)|.

A *graph labeling* is an assignment of integers to the vertices or edges or both subject to certain condition(s) If the domain of the mapping is the set of vertices(edges) then the labeling is called a *vertex labeling(an edge labeling.)* The latest survey on various graph labeling techniques can be found in Gallian[1].

Definition 1.1. Let $\langle A, * \rangle$ be any Abelian group. A graph G = (V(G), E(G)) is said to be *A*-cordial if there is a mapping $f : V(G) \to A$ which satisfies the following two conditions when the edge e = uv is labeled as f(u) * f(v)

(i) $|v_f(a) - v_f(b)| \le 1$; for all $a, b \in A$,

(ii) $|e_f(a) - e_f(b)| \le 1$; for all $a, b \in A$.

where

 $v_f(a)$ =the number of vertices with label a;

 $v_f(b)$ =the number of vertices with label b;

 $e_f(a)$ =the number of edges with label a;

 $e_f(b)$ =the number of edges with label b.

We note that if $A = \langle Z_k, +_k \rangle$, that is additive group of modulo k then the labeling is known as k-cordial labeling. Here we consider $A = \langle Z_5, +_5 \rangle$, that is additive group of modulo 5.

The concept of A-cordial labeling was introduced by Hovey[3]. He proved that all connected graphs and trees are 3-cordial, all trees are also 4-cordial and cycles are k-cordial for all odd k. Youssef[5] proved that the complete graph K_n is 4-cordial $\iff n \leq 6$, the complete bipartite graph $K_{m,n}$ is 4-cordial $\iff m$ or $n \neq 2 \pmod{4}$. Also he proved that the graph C_n^2 is 4-cordial $\iff n \neq 2 \pmod{4}$.

We consider the following definitions of standard graphs.

- The prism $P_m \times C_n$ is obtained taking the cartesian product of path P_m with cycle C_n .
- The web graph W(2, n) is obtained by joining pendant vertices of helm H_n to form a cycle and then adding a pendant edge to each vertex of outer cycle.
- The *flower graph* Fl_n is obtained from helm H_n by joining each pendant vertex to the central vertex of the helm.
- The closed helm CH_n is obtained from helm H_n by joining each pendant vertex to form a cycle.

For any undefined term in graph theory we rely upon Gross and Yellen[2].

2 Main Results

Theorem 2.1. All the prisms $P_m \times C_n$ are 5-cordial.

Proof: Let $G = P_m \times C_n$ be the prism. Let $v_1, v_2, ..., v_{mn}$ be vertices of the prism arranged in a clockwise direction consecutively. Let $v_1, v_2, v_3, ..., v_n$ be vertices of outer most cycle. We start the labeling pattern from $v_1, v_2, v_3, ..., v_n$. Let v_{n+1} be the vertex of first inner cycle which is adjacent to v_n . Again label the vertices $v_{n+1}, v_{n+2}, v_{n+3}, ..., v_{2n}$ in the clockwise direction. Continue this pattern up to last inner cycle. We note that |V(G)| = mn and |E(G)| = 2mn - n.

To define 5- cordial labeling $f: V(G) \to Z_5$ we consider the following cases.

Case 1: $n \equiv 0, 1, 3 \pmod{5}$ and $m \equiv 0, 1, 2, 3, 4 \pmod{5}$.

For $1 \le i \le mn$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v_i) = 1; \quad i \equiv 1 \pmod{5}$, $f(v_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v_i) = 3; \quad i \equiv 2 \pmod{5}$, $f(v_i) = 4; \quad i \equiv 0 \pmod{5}$. **Case 2:** $n \equiv 2 \pmod{5}$. **Subcase (i):** $m \equiv 0 \pmod{5}$. For $1 \le i \le mn - 3$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v_i) = 1; \quad i \equiv 1 \pmod{5}$, $f(v_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v_i) = 3; \quad i \equiv 2 \pmod{5}$, $f(v_i) = 4; \quad i \equiv 0 \pmod{5}$. Subcase (ii): $m \equiv 1, 4 \pmod{5}$. For $1 \leq i \leq mn - 2$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}, \qquad f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5}, \qquad f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}, \ f(v_{mn-1}) = 2, \ f(v_{mn}) = 3.$ Subcase (iii): $m \equiv 2(mod5)$. For $1 \leq i \leq mn - 3$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5},$ $f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5}, \qquad f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 4;$ $i \equiv 0 \pmod{5}, f(v_{mn-2}) = 2, f(v_{mn-1}) = 3, f(v_{mn}) = 0.$ Subcase (iv): $m \equiv 3(mod5)$. For $1 \leq i \leq mn$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5},$ $f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}.$ Case 3: $n \equiv 4(mod5)$. Subcase (i): $m \equiv 0 \pmod{5}$. For $1 \leq i \leq mn - 5$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5},$ $f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}.$ $f(v_{mn-4}) = 4, f(v_{mn-3}) = 1, f(v_{mn-2}) = 0, f(v_{mn-1}) = 2, f(v_{mn}) = 3.$ Subcase (ii): $m \equiv 1 \pmod{5}$. For $1 \leq i \leq mn - 1$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}, \qquad f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}.$ $f(v_{mn}) = 4.$ Subcase (iii): $m \equiv 2, 3, 4 \pmod{5}$. For $1 \leq i \leq mn$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}, \qquad f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}.$

Table 1 shows that above defined labeling pattern satisfies the vertex conditions and edge conditions for 5-cordial labeling. Hence the prism $P_m \times C_n$ is 5-cordial.

h	d	where $n = 5a + b$, $m = 5c + a$,	$u, b, c, u \in \mathbb{N} \cup \{0\}.$
D	a	vertex conditions	Edge conditions
0	0,1,2,3,4	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
1	0	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
	1	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
		$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
	2	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
	3	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	4	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
2	0	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$
		$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4)$
	1	$v_f(0) + 1 = v_f(1) + 1 = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
	2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2) + 1$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4) + 1$
	3	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
		$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	4	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
3	0	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) = e_f(2) + 1$
		$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4)$
	1	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2) + 1$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	2	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2) + 1$
		$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	3	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	4	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2) + 1$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
4	0	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2) + 1$
		$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4) + 1$

Table 1: Vertex and edge conditions for the prism $P_m \times C_n$, where n = 5a + b, m = 5c + d, $a, b, c, d \in N \cup \{0\}$.

b	d	Vertex conditions	Edge conditions
4	1	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2) + 1$
		$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
	2	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2) + 1$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	3	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
		$= v_f(3) = v_f(4) + 1$	$= e_f(3) = e_f(4)$
	4	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2)$
		$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4) + 1$

Illustration 2.2. The	prism $P_3 \times$	C_7 and its 5–	cordial labeling	is shown i	n Figure 2.
-----------------------	--------------------	------------------	------------------	------------	-------------

Figure 1: 5-Cordial labeling of prism $P_3 \times C_7$.

Theorem 2.3. All web graphs W(2, n) are 5-cordial.

Proof: Let G = W(2, n) be the web graph. Let v_0 be the central vertex. Let $v_1, v_2, ..., v_n$ be the rim vertices and $v'_1, v'_2, ..., v'_n$ be the pendent vertices of the helm H_n which are to be joined to form an outer cycle. Let $v''_1, v''_2, ..., v''_n$ be the pendent vertices to obtain the pendent edges $v'_i v''_i$ of the web graph W(2, n). We note that |V(G)| = 3n + 1 and |E(G)| = 5n.

To define 5- cordial labeling $f: V(G) \to Z_5$ we consider the following cases.

 $\begin{array}{ll} \textbf{Case 1:} n \equiv 0 (mod5). \\ f(v_0) = 0, \\ \text{For } 1 \leq i \leq n, \\ f(v_i) = 0; \quad i \equiv 3 (\text{mod } 5), \qquad f(v_i) = 1; \quad i \equiv 1 (\text{mod } 5), \\ f(v_i) = 2; \quad i \equiv 4 (\text{mod } 5), \qquad f(v_i) = 3; \quad i \equiv 2 (\text{mod } 5), \\ f(v_i) = 4; \quad i \equiv 0 (\text{mod } 5). \\ f(v_i') = 0; \quad i \equiv 3 (\text{mod } 5), \qquad f(v_i') = 1; \quad i \equiv 1 (\text{mod } 5), \\ f(v_i') = 2; \quad i \equiv 4 (\text{mod } 5), \qquad f(v_i') = 3; \quad i \equiv 2 (\text{mod } 5), \end{array}$

$f(v_i') = 4;$	$i \equiv 0 \pmod{5}$.	
$f(v_i'') = 0;$	$i \equiv 3 \pmod{5}$,	$f(v_i^{''})=1; i\equiv 1 ({\rm mod}\ 5),$
$f(v_i'') = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i^{''})=3; i\equiv 2(\mathrm{mod}\;5),$
$f(v_i'') = 4;$	$i \equiv 0 \pmod{5}.$	
Case 2: $n \equiv$	1(mod5).	
$f(v_0) = 3,$		
For $1 \leq i \leq$	<i>n</i> ,	
$f(v_i) = 0;$	$i \equiv 3 \pmod{5}$,	$f(v_i) = 1; i \equiv 1 \pmod{5},$
$f(v_i) = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i) = 3; i \equiv 2 \pmod{5},$
$f(v_i) = 4;$	$i \equiv 0 \pmod{5}.$	
For $1 \leq i \leq$	n - 1,	
$f(v_i^{\prime}) = 0;$	$i \equiv 3 \pmod{5},$	$f(v_i^{'})=1; i\equiv 1(\text{mod }5),$
$f(v_i^{\prime}) = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i^{'})=3; i\equiv 2(\text{mod }5),$
$f(v_i') = 4;$	$i \equiv 0 \pmod{5},$	$f(v_n') = 4,$
$f(v_i'') = 0;$	$i \equiv 3 \pmod{5},$	$f(v_i^{''})=1; i\equiv 1 ({\rm mod}\ 5),$
$f(v_i'') = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i^{''})=3; i\equiv 2(\mathrm{mod}\;5),$
$f(v_i'') = 4;$	$i \equiv 0 \pmod{5}$,	$f(v_n'') = 2.$
Case 3: $n \equiv$	2(mod 5).	
$f(v_0) = 0;$		
For $1 \leq i \leq$	n-2,	
$f(v_i) = 0;$	$i \equiv 3 \pmod{5}$,	$f(v_i) = 1; i \equiv 1 \pmod{5},$
$f(v_i) = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i) = 3; i \equiv 2 \pmod{5},$
$f(v_i) = 4;$	$i \equiv 0 \pmod{5},$	$f(v_{n-1}) = 2, f(v_n) = 3;$
$f(v_i^{\prime}) = 0;$	$i \equiv 3 \pmod{5},$	$f(v_i^{'})=1; i\equiv 1 (\mathrm{mod}\; 5),$
$f(v_i^{'}) = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i^{'})=3; i\equiv 2(\text{mod }5),$
$f(v_i') = 4;$	$i \equiv 0 \pmod{5},$	$f(v_{n-1}^{'}) = 4, f(v_{n}^{'}) = 1,$
For $1 \leq i \leq$	n - 1,	
$f(v_i'') = 0;$	$i \equiv 3 \pmod{5}$,	$f(v_i^{\prime\prime})=1; i\equiv 1 ({\rm mod}\ 5),$
$f(v_i'') = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i^{''})=3; i\equiv 2(\mathrm{mod}\;5),$
$f(v_i'') = 4;$	$i \equiv 0 \pmod{5}$,	$f(v_n'') = 4.$
Case 4: $n \equiv$	3(mod 5).	
$f(v_0) = 0,$		
For $1 \leq i \leq$	п,	
$f(v_i) = 0;$	$i \equiv 3 \pmod{5}$,	$f(v_i) = 1; i \equiv 1 \pmod{5},$
$f(v_i) = 2;$	$i \equiv 4 \pmod{5}$,	$f(v_i) = 3; i \equiv 2 \pmod{5},$
$f(v_i) = 4;$	$i \equiv 0 \pmod{5}.$	

For
$$1 \le i \le n - 1$$
,
 $f(v'_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v'_i) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v'_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v'_i) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'_i) = 4; \quad i \equiv 0 \pmod{5}$, $f(v''_n) = 2$.
For $1 \le i \le n - 3$,
 $f(v''_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v''_{n-2}) = 4, f(v''_{n-1}) = 4, f(v''_n) = 2$.
Case 5: $n \equiv 4 \pmod{5}$, $f(v_i) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v_i) = 0$,
For $1 \le i \le n - 2$,
 $f(v_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v_i) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v_{n-1}) = 2, f(v_n) = 4$.
 $f(v'_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v'_i) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v'_i) = 2; \quad i \equiv 4 \pmod{5}$, $f(v'_{n-1}) = 2, f(v_n) = 4$.
For $1 \le i \le n - 3$
 $f(v''_i) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_n) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_n) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_n) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_n) = 2; \quad i \equiv 4 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v''_n) = 0; \quad i \equiv 3 \pmod{5}$, $f(v''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v'''_n) = 2; \quad i \equiv 4 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 2; \quad i \equiv 4 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 2; \quad i \equiv 4 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v'''_n) = 1; \quad i \equiv 1 \pmod{5}$,
 $f(v'''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,
 $f(v'''_n) = 4; \quad i \equiv 0 \pmod{5}$, $f(v'''_n) = 3; \quad i \equiv 2 \pmod{5}$,

Table 2 shows that above defined labeling pattern satisfies the vertex conditions and edge conditions for 5-cordial labeling. Hence, the web graph W(2, n) is5-cordial.

b	Vertex conditions	Edge conditions
0	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4)$
1	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
2	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4)$	$= e_f(3) = e_f(4)$
3	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
4	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4)$	$= e_f(3) = e_f(4)$

Table 2: Vertex conditions and edge conditions for W(2, n) where $n = 5a + b, a, b \in N \cup \{0\}$.

Illustration 2.4. The web graph W(2, 6) and its 5- cordial labeling is shown in Figure 2.

Figure 2: 5-Cordial labeling of web graph W(2, 6).

Theorem 2.5. All the flower graphs Fl_n are 5-cordial.

Proof: Let $G = Fl_n$ be the flower graph. Let v_0 be the central vertex. Let $v_1, v_2, ..., v_n$ be the rim vertices and $v'_1, v'_2, ..., v'_n$ be the pendent vertices of the helm H_n . By joining $v'_1, v'_2, ..., v'_n$ with the central vertex, we obtain the flower graph Fl_n . We note that |V(G)| = 2n + 1 and |E(G)| = 4n.

To define 5- cordial labeling $f: V(G) \to Z_5$ we consider the following cases.

```
Case 1: n \equiv 0 \pmod{5}.
f(v_0) = 0,
For 1 \leq i \leq n,
                                              f(v_i) = 1; \quad i \equiv 1 \pmod{5},
f(v_i) = 0; \quad i \equiv 3 \pmod{5},
                                               f(v_i) = 3; \quad i \equiv 2 \pmod{5},
f(v_i) = 2; \quad i \equiv 4 \pmod{5},
f(v_i) = 4; \quad i \equiv 0 \pmod{5}.
                                           f(v_i') = 1; \quad i \equiv 1 (\text{mod } 5),
f(v'_i) = 0; \quad i \equiv 3 \pmod{5},
                                          f(v'_i) = 3; \quad i \equiv 2 \pmod{5},
f(v_i^{'})=2; \quad i\equiv 4 ({\rm mod}\; 5),
f(v'_i) = 4; \quad i \equiv 0 \pmod{5}.
Case 2: n \equiv 1 \pmod{5}.
f(v_0) = 0,
For 1 \leq i \leq n,
f(v_i) = 0; \quad i \equiv 3 \pmod{5},
                                        f(v_i) = 1; \quad i \equiv 1 \pmod{5},
                                               f(v_i) = 3; \quad i \equiv 2 \pmod{5},
f(v_i) = 2; \quad i \equiv 4 \pmod{5},
f(v_i) = 4; \quad i \equiv 0 \pmod{5}.
For 1 \leq i \leq n-1,
f(v'_i) = 0; \quad i \equiv 3 \pmod{5}, \qquad f(v'_i) = 1; \quad i \equiv 1 \pmod{5},
```

 $f(v'_i) = 2; \quad i \equiv 4 \pmod{5}, \qquad f(v'_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v'_i) = 4; \quad i \equiv 0 \pmod{5},$ $f(v'_{r}) = 4.$ Case 3: $n \equiv 2(mod5)$. $f(v_0) = 0,$ For $1 \leq i \leq n-2$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5},$ $f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5},$ $f(v_{n-1}) = 4,$ $f(v_n) = 3.$ For $1 \leq i \leq n-1$, $\begin{array}{ll} f(v_i^{'})=0; & i\equiv 3({\rm mod}\ 5), & f(v_i^{'})=1; & i\equiv 1({\rm mod}\ 5), \\ f(v_i^{'})=2; & i\equiv 4({\rm mod}\ 5), & f(v_i^{'})=3; & i\equiv 2({\rm mod}\ 5), \end{array}$ $f(v'_{n}) = 2.$ $f(v'_i) = 4; \quad i \equiv 0 \pmod{5},$ Case 4: $n \equiv 3(mod5)$. $f(v_0) = 0,$ For $1 \leq i \leq n$, $f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 0; \quad i \equiv 3 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5}.$ For $1 \leq i \leq n-2$, $f(v_i^{'})=0; \quad i\equiv 3 ({\rm mod}\ 5), \qquad \quad f(v_i^{'})=1; \quad i\equiv 1 ({\rm mod}\ 5),$ $f(v'_i) = 2; \quad i \equiv 4 \pmod{5}, \qquad f(v'_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v'_i) = 4; \quad i \equiv 0 \pmod{5}, \qquad f(v'_i) = 2, \quad f(v'_i) = 4$ $f(v'_{n-1}) = 2, f(v'_n) = 4.$ $f(v'_i) = 4; \quad i \equiv 0 \pmod{5},$ Case 5: $n \equiv 4(mod5)$. $f(v_0) = 0,$ For $1 \leq i \leq n-2$, $f(v_i) = 0; \quad i \equiv 3 \pmod{5}, \qquad f(v_i) = 1; \quad i \equiv 1 \pmod{5},$ $f(v_i) = 3; \quad i \equiv 2 \pmod{5},$ $f(v_i) = 2; \quad i \equiv 4 \pmod{5},$ $f(v_{n-1}) = 2,$ $f(v_n) = 4.$ $f(v_i) = 4; \quad i \equiv 0 \pmod{5},$ For $1 \leq i \leq n-3$, $\begin{aligned} f(v'_i) &= 0; \quad i \equiv 3 \pmod{5}, & f(v'_i) = 1; \quad i \equiv 1 \pmod{5}, \\ f(v'_i) &= 2; \quad i \equiv 4 \pmod{5}, & f(v'_i) = 3; \quad i \equiv 2 \pmod{5}, \end{aligned}$ $f(v'_i) = 4; \quad i \equiv 0 \pmod{5},$ $f(v'_{n-2}) = 2,$ $f(v'_{n-1}) = 3,$ $f(v'_{n}) = 4.$

Table 3 shows that above defined labeling pattern satisfies the vertex conditions and edge conditions for 5-cordial labeling. Hence, the flower graph Fl_n is 5-cordial.

b	Vertex conditions	Edge conditions
0	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4)$
1	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4)$	$= e_f(3) + 1 = e_f(4)$
2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) + 1 = e_f(1) + 1 = e_f(2)$
	$= v_f(3) = v_f(4)$	$= e_f(3) = e_f(4)$
3	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2) + 1$
	$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4)$
4	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2) + 1$
	$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4) + 1$

Table 3: Vertex and edge conditions for Fl_n where $n = 5a + b, a, b \in N \cup \{0\}$.

Illustration 2.6. The flower graph Fl_6 and its 5– cordial labeling is shown in Figure 3.

Figure 3: 5-Cordial labeling of flower graph Fl_6 .

Theorem 2.7. All the closed Helms CH_n are 5-cordial.

Proof: Let $G = CH_n$ be the closed helm. Let v_0 be the central vertex. Let $v_1, v_2, ..., v_n$ be the rim vertices and $v'_1, v'_2, ..., v'_n$ be the pendent vertices of H_n . Join the pendent vertices to obtain CH_n . We note that |V(G)| = 2n + 1 and |E(G)| = 4n.

To define 5- cordial labeling $f: V(G) \to Z_5$ we consider the following cases. **Case 1:** $n \equiv 0 \pmod{5}$.

$$\begin{split} f(v_0) &= 0, \\ \text{For } 1 \leq i \leq n, \\ f(v_i) &= 0; \quad i \equiv 3 \pmod{5}, \\ f(v_i) &= 2; \quad i \equiv 4 \pmod{5}, \\ f(v_i) &= 4; \quad i \equiv 0 \pmod{5}. \end{split} \qquad \begin{array}{ll} f(v_i) &= 1; \quad i \equiv 1 \pmod{5}, \\ f(v_i) &= 3; \quad i \equiv 2 \pmod{5}, \\ f(v_i) &= 4; \quad i \equiv 0 \pmod{5}. \end{split}$$

 $\begin{array}{ll} f(v_i)=4; & i\equiv 0(\bmod{5}).\\ f(v_{n-2})=2, & f(v_{n-1})=3, \, f(v_n)=4.\\ \mbox{For } 1\leq i\leq n-4,\\ f(v_i')=0; & i\equiv 3(\bmod{5}), & f(v_i')=1; & i\equiv 1(\bmod{5}),\\ f(v_i')=2; & i\equiv 4(\bmod{5}), & f(v_i')=3; & i\equiv 2(\bmod{5}),\\ f(v_i')=4; & i\equiv 0(\bmod{5}).\\ f(v_{n-3}')=4, & f(v_{n-2}')=2,\\ f(v_{n-1}')=3, & f(v_n')=1. \end{array}$

Table 4 shows that above defined labeling pattern satisfies the vertex conditions and edge conditions for 5-cordial labeling. Hence, the closed Helm CH_n is 5-cordial.

b	Vertex conditions	Edge conditions
0	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4) + 1$	$= e_f(3) = e_f(4)$
1	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
	$= v_f(3) + 1 = v_f(4)$	$= e_f(3) = e_f(4) + 1$
2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$
	$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4)$
3	$v_f(0) + 1 = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2)$
	$= v_f(3) = v_f(4) + 1$	$= e_f(3) + 1 = e_f(4) + 1$
4	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2) + 1$
	$= v_f(3) = v_f(4)$	$= e_f(3) + 1 = e_f(4) + 1$

Table 4: Vertex and edge conditions for CH_n where n = 5a + b, $a, b \in N \cup \{0\}$.

Illustration 2.8. The closed helm CH_8 and its 5- cordial labeling is shown in Figure 4.

Figure 4: 5-Cordial labeling of closed helm CH_8 .

References

- [1] J A Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2013), #DS6.
- [2] J Gross and J Yellen, Handbook of graph theory, CRC Press, 2004.
- [3] M. Hovey, A-cordial graphs, Discrete Math., Vol 93(1991), 183-194.
- [4] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math. Sci., 11 (1998), 227-229.
- [5] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., Vol 43(2009), 31-37.