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Abstract

In this paper we present graceful labelings for C(t ·Pn ×Pm), (Pn ×Pm)? and path union of t
copies of the grid graph Pn × Pm.
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1 Introduction

The graceful labeling was introduced by Rosa [8]. Golomb [4] named such labeling as graceful

labeling, which was called earlier as β−valuation. Bu and Cau [2] have discussed gracefulness of com-

plete bipartite graph and its union with path. Acharya and Gill [1] have investigated graceful labeling for

the grid graph (Pn×Pm). Kaneria and Makadia [6] discussed gracefulness of (Pn×Pm)∪ (Pr ×Ps),

C2f+3 ∪ (Pn × Pm) ∪ (Pr × Ps), tensor product P2(Tp)Pn and star of cycle C?
n (n ≡ 0 (mod 4)). For

a dynamic survey on graph labeling we refer to Gallian [3].

We begin with a simple, undirected finite graph G = (V,E) with |V | = p and |E| = q. For all

terminology and notations we follows Harary [5].

Definition 1.1. A function f is called graceful labeling of a graphG = (V,E) if f : V −→ {0, 1, . . . , q}
is injective and the induce function f? : E −→ {1, 2, . . . , q} defined as f?(e) = |f(u) − f(v)| is bi-

jective for every edge e = (u, v) ∈ E. A graph G is called graceful graph if it admits a graceful

labeling.

Definition 1.2. [9] Let G be a graph on n vertices. The graph obtained by replacing each vertex of the

star K1,n by a copy of G is called a star of G and is denoted by G?.
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Definition 1.3. [7] If each vertex of a cycle Cn is replaced by connected graphs G1, G2, . . . , Gn then

the resulting graph is known as cycle of graphs and is denoted by C(G1, G2, . . . , Gn). If we replace

each vertex by a graph G, that is, G1 = G, G2 = G, . . ., Gn = G, then the cycle of the graph G is

denoted by C(n ·G).

Definition 1.4. Let G be a graph and G1, G2, . . . , Gn, n ≥ 2 be n copies of graph G. Then the graph

obtained by adding an edge from Gi to Gi+1 (1 ≤ i ≤ n− 1) is called path union of G.

In this paper we establish graceful labelings of some grid related graphs.

2 Main Results

Theorem 2.1. Cycle of grid graph C(t · Pn × Pm) (t ≡ 0 (mod 2)) is graceful, where m,n ≥ 2.

Proof: Let V (Pn × Pm) = {u1 = v1,1, u2, . . . , un, un+1, . . . , umn = vm,n} be the vertices of grid

graph Pn × Pm. It is proved that Pn × Pm is graceful [1]. In the proof we can observe that the labeling

are given diagonally by an increasing sequence and a decreasing sequence alternatively with f(v1,1) = q

and f(vn,m) = b q2c, as shown in Figure 1.
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Figure 1: A grid graph on q edges with its graceful labeling.

LetG be a cycle of the graph Pn×Pm with t copies. We haveG= C(t ·Pn×Pm) (t ≡ 0 (mod2)), with

|V (C(t · Pn × Pm))| = tmn vertices and Q = |E(C(t · Pn × Pm))| = t(2mn− (m+ n) + 1) edges.

Let ui,j (1 ≤ j ≤ mn) be the vertices of ith copy of Pn × Pm in G, ∀ i = 1, 2, . . . , t, where the vertex

set of ith copy of Pn × Pm is p = mn and the edge set of ith copy of Pn × Pm is q = 2mn− (m+ n).

To define a labeling function g : V (C(t · Pn × Pm)) −→ {0, 1, . . . , Q}, we consider the following
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two cases.

Case 1: q is odd.

g(u1,j) = f(uj), if f(uj) < q
2

= f(uj) +Q− q, if f(uj) > q
2 , ∀ j = 1, 2, . . . ,mn;

g(ui,j) = g(ui−1,j)− ( q+1
2 ), if f(uj) > q

2

= g(ui−1,j) + ( q+1
2 ), if f(uj) < q

2 ,

∀ j = 1, 2, . . . ,mn, ∀ i = 2, 3, . . . , t2 ;

g(u t
2
+1,j) = g(u t

2
,j)− ( q+1

2 ), if f(uj) > q
2

= g(u t
2
,j) + ( q+3

2 ), if f(uj) < q
2 ,

∀ j = 1, 2, . . . ,mn;

g(ui,j) = g(ui−1,j)− ( q+1
2 ), if f(uj) > q

2

= g(ui−1,j) + ( q+1
2 ), if f(uj) < q

2 ,

∀ j = 1, 2, . . . ,mn, ∀ i = t
2 + 2, t2 + 3, . . . , t.

Case 2: q is even.

g(u1,j) = f(uj), if f(uj) < q
2

= f(uj) +Q− q, if f(uj) ≥ q
2 ,

∀ j = 1, 2, . . . ,mn;

g(u2,j) = g(u1,mn+1−j) +Q− q, if f(uj) < q
2

= g(u1,mn+1−j)−Q+ q, if f(uj) ≥ q
2 ,

∀ j = 1, 2, . . . ,mn;

g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2 ,

∀ j = 1, 2, . . . ,mn, ∀ i = 3, 4, . . . , t2 ;

g(u t
2
+1,j) = g(u t

2
−1,j) + (q + 1) + 1

2 + 1
2(−1)

t
2 , if g(u t

2
−1,j) <

Q
2

= g(u t
2
−1,j)− (q + 1)− 1

2 + 1
2(−1)

t
2 , if g(u t

2
−1,j) >

Q
2 ,

∀ j = 1, 2, . . . ,mn;

g(u t
2
+2,j) = g(u t

2
,j) + (q + 1) + 1

2 + 1
2(−1)

t
2 , if g(u t

2
,j) <

Q
2

= g(u t
2
,j)− (q + 1)− 1

2 + 1
2(−1)

t
2 , if g(u t

2
,j) >

Q
2 ,

∀ j = 1, 2, . . . ,mn;

g(ui,j) = g(ui−2,j)− (q + 1), if g(ui−2,j) >
Q
2

= g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2 ,

∀ j = 1, 2, . . . ,mn, ∀ i = t
2 + 3, t2 + 4, . . . , t.

We join the vertices ui,mn and ui+1,1 ∀ i = 1, 2, . . . , t− 1. Also join ut,mn and u1,1 if either (t ≡ 2

(mod 4) and q is odd or (t ≡ 0 (mod 4)), otherwise join ut,(m−1)n and u1,n+1.

The above labeling pattern gives rise a graceful labeling to the graph G.

Illustration 2.2. C(6 · P3 × P3) and its graceful labeling shown in Figure 2.
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Figure 2: A cycle of the grid graph P3 × P3 and its graceful labeling.

Theorem 2.3. Star of the grid graph Pn × Pm is graceful, ∀m,n ≥ 2.

Proof: LetG= (Pn×Pm)? be the star of the grid graph Pn×Pm. We know that the grid graph Pn×Pm

is a graceful graph on p = mn vertices and q = 2mn − (m + n) edges. Let f : V (Pn × Pm) −→
{0, 1, . . . , q} be the graceful labeling with two sequences of labels, one is increasing and another is

decreasing which starts with f(v1,1) = q and ends with f(vn,m) = b q2c.
Let V (Pn × Pm) = {u1 = v1,1, u2, . . . , un, un+1, . . . , umn = vm,n}. That is, we have f(u1 = q

and f(umn) = b q2c, as shown in Figure 1.

We have G = (Pn × Pm)?, with |V ((Pn × Pm)?)| = p(p + 1) vertices and the number of edges

Q = |E((Pn × Pm)?)| = (p + 1)(q + 1) − 1, where p = mn and q = 2mn − (m + n). Let u0,j
(1 ≤ j ≤ mn) be vertices of the central copy Pn × Pm in G and ui,j (1 ≤ j ≤ mn) be vertices of ith

copy of Pn × Pm in G, ∀ i = 1, 2, . . . ,mn. We define the labeling function g : V ((Pn × Pm)?) −→
{0, 1, . . . , Q} as follows:

g(u0,j) = f(uj), if f(uj) < q
2

= f(uj) +Q− q, if f(uj) ≥ q
2 , ∀ j = 1, 2, . . . ,mn;

g(u1,j) = g(u0,j) + p(q + 1), if g(u0,j) < Q
2

= g(u0,j)− p(q + 1), if g(u0,j) > Q
2 ,

∀ j = 1, 2, . . . ,mn;

g(ul,j) = g(ul−2,j) + (q + 1), if g(ul−2,j) <
Q
2

= g(ul−2,j)− (q + 1), if g(ul−2,j) >
Q
2 ,

∀ j = 1, 2, . . . ,mn, ∀ l = 2, 3, . . . ,mn.

The above labeling function g gives rise to the edge labels 1, 2, . . . , q, q + 2, q + 3, . . ., 2q + 1, 2q +
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3, . . . , p(q+1)−1, p(q+1)+1, p(q+1)+2, . . . , Q = (p+1)(q+1)−1. In order to make (Pn×Pm)?

as a graceful graph, we require edge labels q + 1, 2(q + 1), . . . , p(q + 1).

We see that the difference of vertex labels for the central copy (Pn×Pm)(0) ofG and the other copies

(Pn × Pm)(i) (1 ≤ i ≤ mn) are precisely p(q + 1), (q + 1), (p− 1)(q + 1), 2(q + 1), . . . , bp2c(q + 1).

Using this sequence, we produce the required edge labels by joining the corresponding vertices of

(Pn × Pm)(0) with the other copies (Pn × Pm)(i) (1 ≤ i ≤ mn) in G. Thus, G admits graceful

labeling.

Illustration 2.4. The star of P3 × P3 and its graceful labeling shown in Figure 3.
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Figure 3: A star of the grid P3 × P3 and its graceful labeling.

Theorem 2.5. The path union of finite copies of the grid graph Pn × Pm, ∀m,n ≥ 2 is graceful.

Proof: Let G be a path union of t copies of the grid graph Pn × Pm, ∀ t,m, n ≥ 2. Let f be

the graceful labeling of Pn × Pm as we mentioned in Theorem 2.1, where we have V (Pn × Pm) =

{u1, u2 . . . , un, un+1, . . . , umn}.
We see that |V (G)| = tmn vertices and Q = |E(G)| = t(2mn− (m+ n) + 1)− 1 edges in G. Let

ui,j (1 ≤ j ≤ mn) be the vertices of ith copy of Pn × Pm, ∀ i = 1, 2 . . . , t.

To define labeling g : V (G) −→ {0, 1, . . . , Q}, we consider the following two cases.

Case 1: q is odd.

g(u1,j) = f(uj), if f(uj) < q
2

= f(uj) +Q− q, if f(uj) > q
2

∀ j = 1, 2, . . . ,mn;
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g(ui,j) = g(ui−1,j)− ( q+1
2 ), if g(ui−1,j) >

Q
2

= g(ui−1,j) + ( q+1
2 ), if g(ui−1,j) <

Q
2

∀ j = 1, 2, . . . ,mn, ∀ i = 2, 3, . . . , t.

Case 2: q is even.

g(u1,j) = f(uj), if f(uj) < q
2

= f(uj) +Q− q, if f(uj) ≥ q
2

∀ j = 1, 2, . . . ,mn;

g(u2,j) = g(u1,mn+1−j) +Q− q, if g(u1,mn+1−j) <
Q
2

= g(u1,mn+1−j)−Q+ q, if g(u1,mn+1−j) >
Q
2

∀ j = 1, 2, . . . ,mn;

g(ui,j) = g(ui−2,j) + (q + 1), if g(ui−2,j) <
Q
2

= g(ui−1,j)− (q + 1), if g(ui−2,j) >
Q
2

∀ j = 1, 2, . . . ,mn, ∀ i = 3, 4, . . . , t.

We join these consecutive copies of the grid graph Pn×Pm by an edge. Also join ui,mn with ui+1,1,

∀ i = 1, 2, . . . , t − 1 by an edge to form the path union of t copies of the grid graph Pn × Pm. Above

labeling pattern gives rise a graceful labeling to the given graph G.

Illustration 2.6. The path union of 3 copies of P3×P5 (it is related with case 2) and its graceful labeling

is shown in Figure 4.
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Figure 4: The path union of 3 copies of P3 × P5 and its graceful labeling.
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