International Journal of Mathematics and Soft Computing Vol.5, No.1 (2015), 111 - 117.

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

Graceful labeling for grid related graphs

V J Kaneria¹, H M Makadia², Meera Meghapara³

¹Department of Mathematics Saurashtra University Rajkot - 360005. kaneria_ vinodray_ j@yahoo.co.in

²Govt. Engineering College Rajkot - 360005. makadia.hardik@yahoo.com

³Om Engineering College Junagadh-362001. meera.meghpara@gmail.com

Abstract

In this paper we present graceful labelings for $C(t \cdot P_n \times P_m)$, $(P_n \times P_m)^*$ and path union of t copies of the grid graph $P_n \times P_m$.

Keywords: Graceful labeling, star of a graph, cycle of a graph, path union of a graph. **AMS Subject Classification(2010):** 05C78.

1 Introduction

The graceful labeling was introduced by Rosa [8]. Golomb [4] named such labeling as graceful labeling, which was called earlier as β -valuation. Bu and Cau [2] have discussed gracefulness of complete bipartite graph and its union with path. Acharya and Gill [1] have investigated graceful labeling for the grid graph $(P_n \times P_m)$. Kaneria and Makadia [6] discussed gracefulness of $(P_n \times P_m) \cup (P_r \times P_s)$, $C_{2f+3} \cup (P_n \times P_m) \cup (P_r \times P_s)$, tensor product $P_2(T_p)P_n$ and star of cycle C_n^* $(n \equiv 0 \pmod{4})$. For a dynamic survey on graph labeling we refer to Gallian [3].

We begin with a simple, undirected finite graph G = (V, E) with |V| = p and |E| = q. For all terminology and notations we follows Harary [5].

Definition 1.1. A function f is called *graceful labeling* of a graph G = (V, E) if $f : V \longrightarrow \{0, 1, ..., q\}$ is injective and the induce function $f^* : E \longrightarrow \{1, 2, ..., q\}$ defined as $f^*(e) = |f(u) - f(v)|$ is bijective for every edge $e = (u, v) \in E$. A graph G is called *graceful graph* if it admits a graceful labeling.

Definition 1.2. [9] Let G be a graph on n vertices. The graph obtained by replacing each vertex of the star $K_{1,n}$ by a copy of G is called a star of G and is denoted by G^* .

Definition 1.3. [7] If each vertex of a cycle C_n is replaced by connected graphs G_1, G_2, \ldots, G_n then the resulting graph is known as *cycle of graphs* and is denoted by $C(G_1, G_2, \ldots, G_n)$. If we replace each vertex by a graph G, that is, $G_1 = G$, $G_2 = G$, ..., $G_n = G$, then the cycle of the graph G is denoted by $C(n \cdot G)$.

Definition 1.4. Let G be a graph and $G_1, G_2, \ldots, G_n, n \ge 2$ be n copies of graph G. Then the graph obtained by adding an edge from G_i to G_{i+1} $(1 \le i \le n-1)$ is called *path union* of G.

In this paper we establish graceful labelings of some grid related graphs.

2 Main Results

Theorem 2.1. Cycle of grid graph $C(t \cdot P_n \times P_m)$ $(t \equiv 0 \pmod{2})$ is graceful, where $m, n \geq 2$.

Proof: Let $V(P_n \times P_m) = \{u_1 = v_{1,1}, u_2, \dots, u_n, u_{n+1}, \dots, u_{mn} = v_{m,n}\}$ be the vertices of grid graph $P_n \times P_m$. It is proved that $P_n \times P_m$ is graceful [1]. In the proof we can observe that the labeling are given diagonally by an increasing sequence and a decreasing sequence alternatively with $f(v_{1,1}) = q$ and $f(v_{n,m}) = \lfloor \frac{q}{2} \rfloor$, as shown in Figure 1.

Figure 1: A grid graph on q edges with its graceful labeling.

Let G be a cycle of the graph $P_n \times P_m$ with t copies. We have $G = C(t \cdot P_n \times P_m)$ ($t \equiv 0 \pmod{2}$), with $|V(C(t \cdot P_n \times P_m))| = tmn$ vertices and $Q = |E(C(t \cdot P_n \times P_m))| = t(2mn - (m+n) + 1)$ edges. Let $u_{i,j}$ ($1 \le j \le mn$) be the vertices of i^{th} copy of $P_n \times P_m$ in $G, \forall i = 1, 2, ..., t$, where the vertex set of i^{th} copy of $P_n \times P_m$ is p = mn and the edge set of i^{th} copy of $P_n \times P_m$ is q = 2mn - (m+n).

To define a labeling function $g: V(C(t \cdot P_n \times P_m)) \longrightarrow \{0, 1, \dots, Q\}$, we consider the following

two cases.

Case 1: q is odd.

$$\begin{split} g(u_{1,j}) &= f(u_j), & \text{if } f(u_j) < \frac{q}{2} \\ &= f(u_j) + Q - q, & \text{if } f(u_j) > \frac{q}{2}, & \forall j = 1, 2, \dots, mn; \\ g(u_{i,j}) &= g(u_{i-1,j}) - (\frac{q+1}{2}), & \text{if } f(u_j) > \frac{q}{2} \\ &= g(u_{i-1,j}) + (\frac{q+1}{2}), & \text{if } f(u_j) < \frac{q}{2}, \\ &\forall j = 1, 2, \dots, mn, \forall i = 2, 3, \dots, \frac{t}{2}; \\ g(u_{\frac{t}{2}+1,j}) &= g(u_{\frac{t}{2},j}) - (\frac{q+1}{2}), & \text{if } f(u_j) > \frac{q}{2} \\ &= g(u_{\frac{t}{2},j}) + (\frac{q+3}{2}), & \text{if } f(u_j) < \frac{q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{i,j}) &= g(u_{i-1,j}) - (\frac{q+1}{2}), & \text{if } f(u_j) > \frac{q}{2} \\ &= g(u_{i-1,j}) + (\frac{q+1}{2}), & \text{if } f(u_j) < \frac{q}{2}, \\ &\forall j = 1, 2, \dots, mn, \forall i = \frac{t}{2} + 2, \frac{t}{2} + 3, \dots, t. \end{split}$$

Case 2: q is even.

$$\begin{split} g(u_{1,j}) &= f(u_j), & \text{if } f(u_j) < \frac{q}{2} \\ &= f(u_j) + Q - q, & \text{if } f(u_j) \geq \frac{q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{2,j}) &= g(u_{1,mn+1-j}) + Q - q, & \text{if } f(u_j) \geq \frac{q}{2} \\ &= g(u_{1,mn+1-j}) - Q + q, & \text{if } f(u_j) \geq \frac{q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{i,j}) &= g(u_{i-2,j}) - (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn, \forall i = 3, 4, \dots, \frac{t}{2}; \\ g(u_{\frac{t}{2}+1,j}) &= g(u_{\frac{t}{2}-1,j}) + (q+1) + \frac{1}{2} + \frac{1}{2}(-1)^{\frac{t}{2}}, & \text{if } g(u_{\frac{t}{2}-1,j}) < \frac{Q}{2} \\ &= g(u_{\frac{t}{2}-1,j}) - (q+1) - \frac{1}{2} + \frac{1}{2}(-1)^{\frac{t}{2}}, & \text{if } g(u_{\frac{t}{2},j}) > \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{\frac{t}{2}+2,j}) &= g(u_{\frac{t}{2},j}) + (q+1) + \frac{1}{2} + \frac{1}{2}(-1)^{\frac{t}{2}}, & \text{if } g(u_{\frac{t}{2},j}) > \frac{Q}{2} \\ &= g(u_{\frac{t}{2},j}) - (q+1) - \frac{1}{2} + \frac{1}{2}(-1)^{\frac{t}{2}}, & \text{if } g(u_{\frac{t}{2},j}) > \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{i,j}) &= g(u_{i-2,j}) - (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ \forall j = 1, 2, \dots, mn, \forall i = \frac{t}{2} + 3, \frac{t}{2} + 4, \dots, t. \end{split}$$

We join the vertices $u_{i,mn}$ and $u_{i+1,1} \forall i = 1, 2, ..., t-1$. Also join $u_{t,mn}$ and $u_{1,1}$ if either $(t \equiv 2 \pmod{4})$ and q is odd or $(t \equiv 0 \pmod{4})$, otherwise join $u_{t,(m-1)n}$ and $u_{1,n+1}$.

The above labeling pattern gives rise a graceful labeling to the graph G.

Illustration 2.2. $C(6 \cdot P_3 \times P_3)$ and its graceful labeling shown in Figure 2.

Figure 2: A cycle of the grid graph $P_3 \times P_3$ and its graceful labeling.

Theorem 2.3. Star of the grid graph $P_n \times P_m$ is graceful, $\forall m, n \ge 2$.

Proof: Let $G = (P_n \times P_m)^*$ be the star of the grid graph $P_n \times P_m$. We know that the grid graph $P_n \times P_m$ is a graceful graph on p = mn vertices and q = 2mn - (m + n) edges. Let $f : V(P_n \times P_m) \longrightarrow \{0, 1, \ldots, q\}$ be the graceful labeling with two sequences of labels, one is increasing and another is decreasing which starts with $f(v_{1,1}) = q$ and ends with $f(v_{n,m}) = \lfloor \frac{q}{2} \rfloor$.

Let $V(P_n \times P_m) = \{u_1 = v_{1,1}, u_2, ..., u_n, u_{n+1}, ..., u_{mn} = v_{m,n}\}$. That is, we have $f(u_1 = q$ and $f(u_{mn}) = \lfloor \frac{q}{2} \rfloor$, as shown in Figure 1.

We have $G = (P_n \times P_m)^*$, with $|V((P_n \times P_m)^*)| = p(p+1)$ vertices and the number of edges $Q = |E((P_n \times P_m)^*)| = (p+1)(q+1) - 1$, where p = mn and q = 2mn - (m+n). Let $u_{0,j}$ $(1 \le j \le mn)$ be vertices of the central copy $P_n \times P_m$ in G and $u_{i,j}$ $(1 \le j \le mn)$ be vertices of i^{th} copy of $P_n \times P_m$ in G, $\forall i = 1, 2, ..., mn$. We define the labeling function $g : V((P_n \times P_m)^*) \longrightarrow \{0, 1, ..., Q\}$ as follows:

$$\begin{split} g(u_{0,j}) &= f(u_j), & \text{if } f(u_j) < \frac{q}{2} \\ &= f(u_j) + Q - q, & \text{if } f(u_j) \geq \frac{q}{2}, & \forall j = 1, 2, \dots, mn; \\ g(u_{1,j}) &= g(u_{0,j}) + p(q+1), & \text{if } g(u_{0,j}) < \frac{Q}{2} \\ &= g(u_{0,j}) - p(q+1), & \text{if } g(u_{0,j}) > \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{l,j}) &= g(u_{l-2,j}) + (q+1), & \text{if } g(u_{l-2,j}) < \frac{Q}{2} \\ &= g(u_{l-2,j}) - (q+1), & \text{if } g(u_{l-2,j}) > \frac{Q}{2}, \\ &\forall j = 1, 2, \dots, mn, \forall l = 2, 3, \dots, mn. \end{split}$$

The above labeling function g gives rise to the edge labels $1, 2, \ldots, q, q+2, q+3, \ldots, 2q+1, 2q+1$

 $3, \ldots, p(q+1)-1, p(q+1)+1, p(q+1)+2, \ldots, Q = (p+1)(q+1)-1$. In order to make $(P_n \times P_m)^*$ as a graceful graph, we require edge labels $q + 1, 2(q+1), \ldots, p(q+1)$.

We see that the difference of vertex labels for the central copy $(P_n \times P_m)^{(0)}$ of G and the other copies $(P_n \times P_m)^{(i)}$ $(1 \le i \le mn)$ are precisely $p(q+1), (q+1), (p-1)(q+1), 2(q+1), \dots, \lfloor \frac{p}{2} \rfloor (q+1)$.

Using this sequence, we produce the required edge labels by joining the corresponding vertices of $(P_n \times P_m)^{(0)}$ with the other copies $(P_n \times P_m)^{(i)}$ $(1 \le i \le mn)$ in G. Thus, G admits graceful labeling.

Illustration 2.4. The star of $P_3 \times P_3$ and its graceful labeling shown in Figure 3.

Figure 3: A star of the grid $P_3 \times P_3$ and its graceful labeling.

Theorem 2.5. The path union of finite copies of the grid graph $P_n \times P_m$, $\forall m, n \ge 2$ is graceful.

Proof: Let G be a path union of t copies of the grid graph $P_n \times P_m$, $\forall t, m, n \ge 2$. Let f be the graceful labeling of $P_n \times P_m$ as we mentioned in Theorem 2.1, where we have $V(P_n \times P_m) = \{u_1, u_2, \ldots, u_n, u_{n+1}, \ldots, u_{mn}\}$.

We see that |V(G)| = tmn vertices and Q = |E(G)| = t(2mn - (m+n) + 1) - 1 edges in G. Let $u_{i,j}$ $(1 \le j \le mn)$ be the vertices of i^{th} copy of $P_n \times P_m$, $\forall i = 1, 2..., t$.

To define labeling $g: V(G) \longrightarrow \{0, 1, \dots, Q\}$, we consider the following two cases.

Case 1: q is odd.

$$g(u_{1,j}) = f(u_j), \quad \text{if } f(u_j) < \frac{q}{2} \\ = f(u_j) + Q - q, \quad \text{if } f(u_j) > \frac{q}{2} \\ \forall j = 1, 2, \dots, mn;$$

$$g(u_{i,j}) = g(u_{i-1,j}) - (\frac{q+1}{2}), \quad \text{if } g(u_{i-1,j}) > \frac{Q}{2}$$

= $g(u_{i-1,j}) + (\frac{q+1}{2}), \quad \text{if } g(u_{i-1,j}) < \frac{Q}{2}$
 $\forall j = 1, 2, \dots, mn, \forall i = 2, 3, \dots, t.$

Case 2: q is even.

$$\begin{split} g(u_{1,j}) &= f(u_j), & \text{if } f(u_j) < \frac{q}{2} \\ &= f(u_j) + Q - q, & \text{if } f(u_j) \geq \frac{q}{2} \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{2,j}) &= g(u_{1,mn+1-j}) + Q - q, & \text{if } g(u_{1,mn+1-j}) < \frac{Q}{2} \\ &= g(u_{1,mn+1-j}) - Q + q, & \text{if } g(u_{1,mn+1-j}) > \frac{Q}{2} \\ &\forall j = 1, 2, \dots, mn; \\ g(u_{i,j}) &= g(u_{i-2,j}) + (q+1), & \text{if } g(u_{i-2,j}) < \frac{Q}{2} \\ &= g(u_{i-1,j}) - (q+1), & \text{if } g(u_{i-2,j}) > \frac{Q}{2} \\ &\forall j = 1, 2, \dots, mn, \forall i = 3, 4, \dots, t. \end{split}$$

We join these consecutive copies of the grid graph $P_n \times P_m$ by an edge. Also join $u_{i,mn}$ with $u_{i+1,1}$, $\forall i = 1, 2, ..., t - 1$ by an edge to form the path union of t copies of the grid graph $P_n \times P_m$. Above labeling pattern gives rise a graceful labeling to the given graph G.

Illustration 2.6. The path union of 3 copies of $P_3 \times P_5$ (it is related with case 2) and its graceful labeling is shown in Figure 4.

Figure 4: The path union of 3 copies of $P_3 \times P_5$ and its graceful labeling.

Acknowledgement: The authors of this paper would like to thank the reviewers for their valuable suggestions.

References

 B. D. Acharya and M. K. Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs, Indian J. Math., 23(1981), 81–94.

- [2] C. Bu and C. Cao, The gracefulness for a class of disconnected graphs, J. Natural Sci. Heilon gjiang Uni., 12(1995), 6–8.
- [3] J. A. Gallian, The Electronics Journal of Combinatorics, 19, #DS6, 2013.
- [4] S. W. Golomb, *How to number a graph In: Graph Theory and Computing*, (R. C. Read. Ed.) Academic Press. New York, (1972), 23–37.
- [5] F. Harary, Graph theory, Addition Wesley, Massachusetts, 1972.
- [6] V. J. Kaneria and H. M. Makadia, *Some graceful graphs*, J. of Maths, Research CCSE, 4(2012), 54-58.
- [7] V. J. Kaneria, H. M. Makadia and M. M. Jariya, *Graceful labeling for cycle of graphs*, Int. J. of Math. Res., Vol 6(2)(2014), 135-139.
- [8] A. Rosa, *On certain valuation of graph*, Theory of Graphs (Rome, July 1966), Goden and Breach, N. Y. and Paris,(1967), 349-355.
- [9] S. K. Vaidya, S. Srivastav, V. J. Kaneria and G. V. Ghodasara, *Cordial and 3–equitable labeling* of star of a cycle, Mathematics Today, 24(2008), 54-64.