Spectral conditions for a graph to contain some subgraphs

Rao Li
Department of Mathematical Sciences
University of South Carolina Aiken
Aiken, SC 29801
USA.
raol@usca.edu

Abstract

In this paper, using the upper bound for the spectral radius for a graph obtained by Cao, we present sufficient conditions based on the spectral radius for a graph to contain some subgraphs.

Keywords: Spectral radius, subgraph.
AMS Subject Classification(2010): 05C50, 05C35.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. For a graph $G=(V, E)$, we use n and e to denote its order $|V|$ and size $|E|$, respectively. The largest and smallest degrees of a graph G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The eigenvalues of a graph are defined as the eigenvalues of its adjacency matrix. The largest eigenvalue of a graph G, denoted $\rho(G)$, is called the spectral radius of G. If no confusion arises, we may drop G for those invariants. We use C_{k} to denote a cycle of length k. We also call C_{3} as a triangle. The circumference of a graph is defined as the length of the longest cycle in the graph.

Cao [3] obtained the following upper bound for the spectral radius of a graph.

Theorem 1.1. [3] Let G be a graph of order n and size e with minimum degree $\delta \geq 1$ and maximum degree Δ. Then $\rho(G) \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta}$ with equality if and only if G is regular, a star plus copies of K_{2}, or a complete graph plus a regular graph with smaller degree of vertices.

2 Main Results

Using Theorem 1.1, Li [4] obtained sufficient conditions which are based on the spectral radius for some Hamiltonian properties of graphs. In this note, we use some of the ideas in [4] to obtain spectral conditions for a connected graph to contain some subgraphs.

Theorem 2.1. Let G be a connected graph of order n and size e. Suppose $k \geq 2$ is an integer. If $\rho>\sqrt{\left(1-\frac{1}{k}\right) n^{2}-\delta(n-1)+(\delta-1) \Delta}$, then G contains K_{k+1}.

Proof: Let G be a connected graph satisfying the conditions in Theorem 2.1. Turán [6] proved that if a graph G does not contain K_{k+1} then $e \leq\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}$.

Suppose that G does not contain K_{k+1}. Then, by Theorem 1.1, we have that

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{\left(1-\frac{1}{k}\right) n^{2}-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.

Let $k=2$ in Theorem 2.1. Then we have the following corollary.
Corollary 2.2. Let G be a connected graph of order n and size e. If $\rho>\sqrt{\frac{n^{2}}{2}-\delta(n-1)+(\delta-1) \Delta}$, then G contains a triangle.

Let $H=K_{r, r}$, where $r \geq 2$. Then, for any $\epsilon>0$,

$$
r=\rho(H)>r-\epsilon=\sqrt{\frac{(n(H))^{2}}{2}-\delta(H)(n(H)-1)+(\delta(H)-1) \Delta(H)}-\epsilon
$$

and H does not contain a triangle. Thus Corollary 2.2 is best possible.

Theorem 2.3. Let G be a connected graph of order n and size e. Suppose G is not bipartite. If

$$
\rho>\sqrt{\frac{(n-1)^{2}}{2}+2-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains a triangle.

Proof: Let G be a connected graph satisfying the conditions in Theorem 2.3. By Exercise $7.3 .3(c)$ on Page 111 in [2], we have that if a non-bipartite graph G does not contain a triangle then $e \leq \frac{(n-1)^{2}}{4}+1$. Suppose that the non-bipartite graph G does not contain a triangle. Then, by Theorem 1.1, we have

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{\frac{(n-1)^{2}}{2}+2-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.

Theorem 2.4. Let G be a connected graph of order n and size e. If

$$
\rho>\sqrt{\frac{n}{2}(1+\sqrt{4 n-3})-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains C_{4}.

Proof: Let G be a connected graph satisfying the given conditions. Reiman [5] proved that if a graph G does not contain C_{4}, then $e \leq \frac{n}{4}(1+\sqrt{4 n-3})$. Suppose that G does not contain C_{4}. Then, by Theorem 1.1, we have that

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{\frac{n}{2}(1+\sqrt{4 n-3})-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.
Theorem 2.5. Let G be a connected graph of order n and size e. If

$$
\rho>\sqrt{n \sqrt{(r-1) n}+\frac{n}{2}-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains $K_{2, r}(r \geq 2)$.
Proof: Let G be a connected graph satisfying the given conditions. By Exercise 7.3.4(b) on Page 111 in [2], we have that if a graph G does not contain $K_{2, r}(r \geq 2)$ then $e \leq \frac{n \sqrt{(r-1) n}}{2}+\frac{n}{4}$.

Suppose that G does not contain $K_{2, r}$. Then, by Theorem 1.1, we have

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{n \sqrt{(r-1) n}+\frac{n}{2}-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.
Theorem 2.6. Let G be a connected graph of order n and size e. If

$$
\rho>\sqrt{(r-1)^{\frac{1}{r}} n^{2-\frac{1}{r}}+(r-1) n-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains $K_{r, r}$.
Proof: Let G be a connected graph satisfying the given conditions. By Exercise 7.3.5 on Page 112 in [2], we have that if a graph G does not contain $K_{r, r}$ then $e \leq \frac{(r-1)^{\frac{1}{r}} n^{2-\frac{1}{r}}}{2}+\frac{(r-1) n}{2}$.

Suppose that G does not contain $K_{r, r}$. Then by Theorem 1.1, we have

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{(r-1)^{\frac{1}{r}} n^{2-\frac{1}{r}}+(r-1) n-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.
Theorem 2.7. Let G be a connected graph of order n and size e. Suppose c satisfies $3 \leq c \leq n$. If $\rho \geq \sqrt{(n-1)(c-1-\delta)+(\delta-1) \Delta+2}$, then the circumference of G is at least c.

Proof: Let G be a connected graph satisfying the given conditions. By Theorem 4.9 on Page 137 in [1], we have that if the circumference of a graph G is less than c then $e<\frac{(c-1)(n-1)}{2}+1$.

Suppose that the circumference of G is less than c. Then, by Theorem 1.1, we have

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta}<\sqrt{(n-1)(c-1-\delta)+(\delta-1) \Delta+2},
$$

which is a contradiction. This completes the proof.

Theorem 2.8. Let G be a connected graph of order n and size e. Suppose c is the circumference of G. If

$$
\rho>\sqrt{\frac{c(2 n-c)}{2}-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains C_{r} for each r with $3 \leq r \leq c$.

Proof: Let G be a connected graph satisfying the given conditions. By Theorem 5.2 on Page 149 in [1], we have that if G does not contain C_{r} for some r with $3 \leq r \leq c$ then $e \leq \frac{c(2 n-c)}{4}$. Suppose that G does not contain C_{r} for some r with $3 \leq r \leq c$. Then, by Theorem 1.1, we have that

$$
\rho \leq \sqrt{2 e-\delta(n-1)+(\delta-1) \Delta} \leq \sqrt{\frac{c(2 n-c)}{2}-\delta(n-1)+(\delta-1) \Delta}
$$

which is a contradiction. This completes the proof.

Obviously, Theorem 2.8 has the following corollary.
Corollary 2.9. Let G be a connected graph of order n and size e. Suppose G is Hamiltonian. If

$$
\rho>\sqrt{\frac{n^{2}}{2}-\delta(n-1)+(\delta-1) \Delta}
$$

then G contains C_{r} for each r with $3 \leq r \leq n$.

Let $H=K_{r, r}$, where $r \geq 2$. Then H is Hamiltonian and, for any $\epsilon>0$,

$$
r=\rho(H)>r-\epsilon=\sqrt{\frac{(n(H))^{2}}{2}-\delta(H)(n(H)-1)+(\delta(H)-1) \Delta(H)}-\epsilon,
$$

and H does not contain C_{s} when s is odd such that $3 \leq s \leq n(H)$. Thus Corollary 2.9 is possible.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press Inc., London, 1978.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[3] D. Cao, Bounds on eigenvalues and chromatic numbers, Linear Algebra Appl., 270(1998), 1-13.
[4] R. Li, Spectral radius and some Hamiltonian properties of graphs, Manuscript, Sept. 2014.
[5] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar, 9(1958), 269 279.
[6] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok, 48(1941), 436-452.

