# Odd and even distance graphs 

S. Saravanakumar, K. Nagarajan<br>Department of Mathematics, Sri S.R.N.M.College<br>Sattur - 626 203, Tamil Nadu, India.<br>sskmaths85@gmail.com, k_nagarajan_srnmc@yahoo.co.in


#### Abstract

Let $G=(V, E)$ be a $(p, q)$ - graph. A shortest path $P$ is called an odd path if $l(P)$ is an odd positive integer. Odd distance graph $O D(G)$ of a graph $G$ is defined as the graph with vertex set $V(G)$ and two vertices are adjacent if the distance between them is odd. In this paper, we deal with the odd distance graph of standard graphs such as path, cycle, star, wheel, complete graph, complete bipartite graph and corona of a complete graph etc. Also we give some properties and characterizations for odd distance graphs.


Keywords: Odd path, odd distance graph , even path, even distance graph, bi-regular.
AMS Subject Classification(2010): 05C12, 05C76.

## 1 Introduction

By a graph, we mean a finite undirected graph without loops and multiple edges. For terms not defined here, we refer to Harary[7].

Distance between the two vertices in a graph is the length of the shortest path between them. In this paper, we find the odd and even distance graphs of some standard graphs such as path, cycle, wheel, star, complete graph, complete bipartite graph, corona of a complete graph etc. It is also found that there are some properties and characterizations for odd and even distance graphs.

Definition 1.1. Let $a, b$ be positive integers, $1 \leq a<b$. A graph $G$ is said to be $(a, b)$ - bi- regular if its vertices have degree either $a$ or $b$.

## 2 Main Results

Definition 2.1. Let $G=(V, E)$ be a $(p, q)$-graph. A shortest path $P$ is called odd path if $l(P)$ is an odd positive integer.

Definition 2.2. Let $G=(V, E)$ be a $(p, q)$-graph. Odd distance graph $O D(G)$ of a graph $G$ is defined as the graph with vertex set $V(G)$ and two vertices are adjacent if the distance between them is odd.

Example 2.3. A graph $G$ and its odd distance graph $O D(G)$ are shown in Figure 1.


Figure 1: A graph G and its odd distance graph $O D(G)$.
Now, the graph $O D(G)$ is redrawn below. Note that $O D(G) \cong K_{2,4}$.


Figure 2
Observation 2.4. Since every edge is an odd path, $G$ is isomorphic to a spanning subgraph of $O D(G)$ for any graph $G$.

Result 2.5. If $G$ is complete, then $O D(G) \cong G$.
Proof: Since $G$ is complete, $d\left(v_{i}, v_{j}\right)=1$, for all $i \neq j$. We observe that the only odd paths in $G$ are edges of $G$ and hence $O D(G) \cong G$.

First, we see that the odd distance graph of a path is either regular or bi-regular graph.
Theorem 2.6. For a path $P_{p}, O D\left(P_{p}\right)$ is either $\frac{p}{2}$ - regular or $\left(\frac{p-1}{2}, \frac{p+1}{2}\right)$ - regular when $p$ is even or odd respectively.

Proof: Suppose $p$ is even.
Then in $P_{p}$, it is clear that the number of vertices having odd distance from each $v_{i}$ is $\frac{p}{2}$. So, in $O D\left(P_{p}\right)$, degree of each vertex is $\frac{p}{2}$. Hence, $O D\left(P_{p}\right)$ is $\frac{p}{2}$ - regular.

Suppose $p$ is odd.
Let $v_{1} v_{2} v_{3} \ldots v_{p-1} v_{p}$ be a path. We note that in $P_{p}$, the number of vertices having odd suffix is $\frac{p+1}{2}$ and that of even suffix is $\frac{p-1}{2}$. Since the distance between the odd suffix vertices and even suffix vertices is odd, in $O D\left(P_{p}\right)$ we join each odd suffix vertex to every even suffix vertices. So, in $O D\left(P_{p}\right)$, degree of each odd suffix vertex is $\frac{p-1}{2}$ and that of even suffix vertex is $\frac{p+1}{2}$. Thus, $O D\left(P_{p}\right)$ is $\left(\frac{p-1}{2}, \frac{p+1}{2}\right)$ regular.

Example 2.7. The paths $P_{8}, P_{9}$ and their odd distance graphs $O D\left(P_{8}\right)$ and $O D\left(P_{9}\right)$ are given in Figure 3.


Figure 3: The paths $P_{8}, P_{9}$ and their odd distance graphs $O D\left(P_{9}\right)$ and $O D\left(P_{9}\right)$.
Now the graphs $O D\left(P_{8}\right)$ and $O D\left(P_{8}\right)$ are redrawn as below.


Figure 4

Note that $O D\left(P_{8}\right)$ is 4 - regular and $O D\left(P_{9}\right)$ is $(4,5)$ - regular.
Next, we shall find the formula for the number of edges in odd distance graph of a path.
Corollary 2.8. For a path $P_{p}$,
$q\left(O D\left(P_{p}\right)\right)= \begin{cases}\frac{p^{2}}{4} & \text { if } p \text { is even. } \\ \frac{p^{2}-1}{4} & \text { if } p \text { is odd. }\end{cases}$
Proof: Suppose $p$ is even. Since $O D\left(P_{p}\right)$ is $\frac{p}{2}$ - regular, we see that $2 q\left(O D\left(P_{p}\right)\right)=\sum d_{i}=p\left(\frac{p}{2}\right)$ and so, $q\left(O D\left(P_{p}\right)\right)=\frac{p^{2}}{4}$.

Suppose $p$ is odd. From Theorem 2.6, $O D\left(P_{p}\right)$ is $\left(\frac{p-1}{2}, \frac{p+1}{2}\right)$ - regular and $\frac{p+1}{2}$ vertices of degree $\frac{p-1}{2}$ and $\frac{p-1}{2}$ vertices of degree $\frac{p+1}{2}$. Then, we see that $2 q\left(O D\left(P_{p}\right)\right)=\sum d_{i}=\left(\frac{p+1}{2}\right)\left(\frac{p-1}{2}\right)+\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)=$ $2\left(\frac{p^{2}-1}{4}\right)$. Hence, $q\left(O D\left(P_{p}\right)\right)=\frac{p^{2}-1}{4}$.

Remark 2.9. From Example 2.7, it can be noted that $q\left(O D\left(P_{8}\right)\right)=\frac{8^{2}}{4}=16$ and $q\left(O D\left(P_{9}\right)\right)=$ $\frac{9^{2}-1}{4}=20$.

Next, we prove some results regarding the regularity of the odd distance graph of a cycle.
Theorem 2.10. For a cycle $C_{p}, p>3, O D\left(C_{p}\right)$ is $\frac{p}{2}$ - regular, if $p$ is even and $\frac{p-1}{2}$ or $\frac{p+1}{2}$ - regular, if $p$ is odd.

Proof: Let $v_{1}, v_{2}, \cdots, v_{p}$ be the vertices of $C_{p}$.
Case (i): Suppose $p$ is even.
Then, $\operatorname{diam} C_{p}$ is $\frac{p}{2}$.
Since $p$ is even, there are two paths between $v_{i}$ and $v_{\frac{p}{2}+i}$. Consider the vertex $v_{i}$ in $C_{p}$ and the two paths of length $\frac{p}{2}$ from $v_{i}$ namely $v_{i}, v_{i+1} \ldots v_{\frac{p}{2}+i}$ and $v_{\frac{p}{2}+i}, v_{\frac{p}{2}+i+1} \ldots v_{i}$ for all $i=1,2, \ldots, p$.

Note that the end vertices of these paths are the same and internal vertices of these paths are distinct. Subcase (i): Suppose $\frac{p}{2}$ is odd.

Then, the above paths have $\frac{p}{2}+1$ vertices and that is even. By Theorem 2.6 , the degree of $v_{i}$ in $O D\left(P_{\frac{p}{2}+1}\right)$ is $\frac{\frac{p}{2}+1}{2}=\frac{p+2}{4}$.

Since $\frac{p}{2}$ is odd, $v_{i}$ is adjacent to $v_{\frac{p}{2}+i}$ in $O D\left(P_{\frac{p}{2}+1}\right)$. But we have two paths between $v_{i}$ and $v_{\frac{p}{2}+i}$ and in $O D\left(P_{\frac{p}{2}+1}\right)$, these paths form multiple edges from $v_{i}$ to $v_{\frac{p}{2}+i}$. Since $O D\left(P_{\frac{p}{2}+1}\right)$ is a simple graph, the degree of $v_{i}$ is $2\left(\frac{p+2}{4}\right)-1=\frac{p}{2}$. Thus, the degree of each $v_{i}$ in $O D\left(C_{p}\right)$ is $\frac{p}{2}$.
Subcase (ii): Suppose $\frac{p}{2}$ is even.
Then, $\frac{p}{2}+1$ is odd. Hence by Theorem 2.6, the degree of $v_{i}$ in $O D\left(P_{\frac{p}{2}+1}\right)$ is
$\frac{\frac{p}{2}+1-1}{2}=\frac{p}{4}$. Since $\frac{p}{2}$ is even, $v_{i}$ is not adjacent to $v_{\frac{p}{2}+i}$ in $O D\left(P_{\frac{p}{2}+1}\right)$. Hence, degree of $v_{i}$ is $2\left(\frac{p}{4}\right)=\frac{p}{2}$. Thus, the degree of each $v_{i}$ in $O D\left(C_{p}\right)$, is $\frac{p}{2}$ and so, $O D\left(C_{p}\right)$ is $\frac{p}{2}$ - regular.
Case (ii): Suppose $p$ is odd.
Then, $\operatorname{diam} C_{p}$ is $\frac{p-1}{2}$. In $C_{p}$, we observe that for each $v_{i}$ there exist exactly two vertices $v_{j}$ and $v_{k}$, for all $i \neq j$ and $i \neq k$, such that $d\left(v_{i}, v_{j}\right)=\frac{p-1}{2}$ and $d\left(v_{i}, v_{k}\right)=\frac{p-1}{2}$. Also the paths $v_{i}-v_{j}$ and $v_{i}-v_{k}$ are distinct and each path have $\frac{p+1}{2}$ vertices.

Subcase (i): Suppose $\frac{p-1}{2}$ is odd.
Then by Theorem 2.6, the degree of each vertex in $O D\left(P_{\frac{p+1}{2}}\right)$ is $\frac{p+1}{4}$. Here we have two paths, so the degree of each vertex in $O D\left(C_{p}\right)$ is $\frac{p+1}{2}$. Thus, in this case $O D\left(C_{p}\right)$ is $\frac{p+1}{2}$ - regular.
Subcase (ii): Suppose $\frac{p-1}{2}$ is even.
Then by Theorem 2.6, the degree of each vertex in $O D\left(P_{\frac{p+1}{2}}\right)$ is $\frac{\frac{p+1}{2}-1}{2}=\frac{p-1}{4}$. Here we have two paths, so the degree of each vertex in $O D\left(C_{p}\right)$ is $\frac{p-1}{2}$.

Thus, in this case $O D\left(C_{p}\right)$ is $\frac{p-1}{2}$ - regular.
Hence, $O D\left(C_{p}\right)$ is either $\frac{p-1}{2}$ or $\frac{p+1}{2}$ - regular if $p$ is odd.
Example 2.11. The cycle $C_{10}$ and its odd distance graph are given in Figure 5.


Figure 5: The cycle $C_{10}$ and its odd distance graph $O D\left(C_{10}\right)$.
Note that $O D\left(C_{10}\right)$ is 5- regular.
Example 2.12. The cycle $C_{8}$ and its odd distance graph are given in Figure 6.


Figure 6: The cycle $C_{8}$ and its odd distance graph $O D\left(C_{8}\right)$.
Example 2.13. The cycle $C_{11}$ and its odd distance graph are given in Figure 7.


Figure 7: The cycle $C_{11}$ and its odd distance graph $O D\left(C_{11}\right)$.
Note that $O D\left(C_{11}\right.$ is 6 - regular.
Example 2.14. The cycle $C_{9}$ and its odd distance graph are given in Figure 8 .


Figure 8: The cycle $C_{9}$ and its odd distance graph $O D\left(C_{9}\right)$.
Note that $O D\left(C_{9}\right)$ is 4 -regular. Next, we find the formula for the number of edges of the odd distance graph of cycle.

Corollary 2.15. For a cycle $C_{p}, p>3, q\left(O D\left(C_{p}\right)\right)=\left\{\begin{array}{l}\frac{p^{2}}{4} \text { if } p \text { is even } \\ \frac{p(p-1)}{4} \text { or } \frac{p(p+1)}{4} \text { if } p \text { is odd. }\end{array}\right.$
Proof: Suppose $p$ is even. From Theorem 2.6, $O D\left(C_{p}\right)$ is $\frac{p}{2}$ - regular, we see that $2 q\left(O D\left(C_{p}\right)\right)=$ $\sum d_{i}=p\left(\frac{p}{2}\right)$ and so, $q\left(O D\left(C_{p}\right)\right)=\frac{p^{2}}{4}$.

Suppose $p$ is odd. From Theorem 2.6, $O D\left(C_{p}\right)$ is either $\frac{p-1}{2}$ or $\frac{p+1}{2}$ - regular .
Suppose $O D\left(C_{p}\right) \frac{p-1}{2}$ - regular, we see that $2 q\left(O D\left(C_{p}\right)\right)=\sum d_{i}=\frac{p(p-1)}{2}$ and so $q\left(O D\left(C_{p}\right)\right)=$ $\frac{p(p-1)}{4}$.

Suppose $O D\left(C_{p}\right) \frac{p+1}{2}$ - regular, we see that $2 q\left(O D\left(C_{p}\right)\right)=\sum d_{i}=\frac{p(p+1)}{2}$ and so $q\left(O D\left(C_{p}\right)\right)=$ $\frac{p(p+1)}{4}$.

Remark 2.16. From Examples 2.12, 2.14 and 2.13, it can be noted that, $q\left(O D\left(C_{8}\right)\right)=\frac{8^{2}}{4}=16$, $q\left(O D\left(C_{9}\right)\right)=\frac{9(9-1)}{4}=18$ and $q\left(O D\left(C_{11}\right)\right)=\frac{11(11+1)}{4}=33$.

Next, we shall find the necessary and sufficient condition for a graph is isomorphic to its odd distance graph.

Theorem 2.17. For any graph $G, O D(G) \cong G$ if and only if diam $G$ is at most 2 .

Proof: Suppose $O D(G) \cong G$.
Then, we prove that $\operatorname{diamG}$ is atmost 2 .
Suppose diam $G$ is greater than 2 . Then in $G$, we have paths of length greater than or equal to 3 . Take one path of length 3 . In $O D(G)$, the end vertices of this path must be adjacent and so, $O D(G) \nsubseteq G$.

This is a contradiction. Thus, $\operatorname{diam} G$ is at most 2.
Conversely, Suppose $\operatorname{diamG}$ is atmost 2 .
Then the maximum length of any path in $G$ is 2 and the end vertices of this path are not adjacent in $O D(G)$. Thus, edges are only odd paths in $G$.

Hence, $O D(G) \cong G$.

Remark 2.18. Since the graphs $K_{m, n}, W_{p}$ and $K_{1, p}$ have diameter 2, they are isomorphic to their respective odd distance graphs.

Next, we shall find the necessary and sufficient condition for odd distance graph of a graph is isomorphic to a cycle.

Theorem 2.19. Let $G$ be a $(p, q)$ - graph. Then $O D(G) \cong C p$ if and only if $G$ is a cycle of diameter atmost 2 or $G \cong P_{4}$.

Proof: Suppose $G$ is a cycle of diameter atmost 2 .
Then, by Theorem 2.17, $O D(G) \cong C_{p}$. Suppose $G \cong P_{4}$.
Then, $O D(G) \cong C_{4}$.
Thus, in both the cases, $O D(G) \cong C_{p}$.
Conversely, suppose $O D(G) \cong C_{p}$.
Then, from the Observation 2.4, $G$ is isomorphic to a connected spanning subgraph of $C_{p}$. But, $P_{p}$ and $C_{p}$ are only connected spanning subgraphs of $C_{p}$. Hence $G$ is isomorphic to either $P_{p}$ or $C_{p}$
Case (i): Suppose $G$ is isomorphic to $P_{p}$. Suppose $p \neq 4$, then $O D(G)$ is a path if $p \leq 3$ and $O D(G)$ has atleast one vertex of degree atleast 3 which is a contradiction. Hence, $G$ isomorphic to $P_{4}$.

Case (ii): Suppose $G$ is isomorphic to $C_{p}$.
Suppose $\operatorname{diam}\left(C_{p}\right) \geq 3$, then $O D(G)$ has atleast one vertex of degree 3 and hence $O D(G)$ is not isomorphic to $C_{p}$.

Next, we shall find the necessary and sufficient condition for odd distance graph of a graph is isomorphic to a path.

Theorem 2.20. Let $G$ be a $(p, q)$ - graph. Then $O D(G) \cong p$ if and only if $G$ is a path of length atmost two.

Proof: Suppose $G$ is a path of length atmost 2.
Then by Theorem 2.17, $O D(G) \cong P_{p}$.
Conversely, assume that $O D(G) \cong P_{p}$.
From the Observation $2.4, G$ is a spanning subgraph of $P_{p}$. Also we observe that, the spanning subgraph of $P_{p}$ is $P_{p}$ only.

We claim that $G$ is a path of length atmost 2 .
Suppose $G$ is a path of length greater than 2 . Then, $O D(G)$ is either a cycle or has atleast one vertex of degree atleast 3 . Thus, $O D(G) \nsubseteq P_{p}$. Hence, $G$ must be a path of length atmost two.

Next, we shall find the necessary and sufficient condition for odd distance graph of a graph is isomorphic to a complete graph.

Theorem 2.21. Let $G$ be a $(p, q)$ - graph. Then $O D(G) \cong K_{p}$ if and only if $G \cong K_{p}$.
Proof: Suppose $G \cong K_{p}$. Then $\operatorname{diam}_{p}=1$.
Then by Theorem 2.17, $O D(G) \cong K_{p}$.
Conversely, Suppose $O D(G) \cong K_{p}$.
Suppose $G \nsubseteq K_{p}$. Then, $G$ contains a path of length atleast two. Thus, in $O D(G)$, we have atleast two vertices which are non adjacent. Thus, $O D(G) \nsubseteq K_{p}$.

Hence, $G \nsubseteq K_{p}$.
Theorem 2.22. For a tree $T$, then $O D(T)$ is either isomorphic to $T$ or contains a cycle.

Proof: Suppose edges of $G$ are the only odd paths of $G$, then it is clear that $O D(G) \cong G$. Suppose $G$ has odd paths other than edges, then in $O D(G)$, we join the end vertices of that odd path which produces a cycle in $O D(G)$.

Next, we shall find the odd distance graph of corona of a complete graph.
Theorem 2.23. For a graph $K_{p}^{+}, p \geq 3, O D\left(K_{p}^{+}\right) \cong K_{p} \square K_{p}$

Proof: Let $u_{1}, u_{2}, \ldots, u_{p}$ be the vertices of $K_{p}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be the pendent vertices attached to $u_{1}, u_{2}, \ldots, u_{p}$ respectively. We note that $K_{p}^{+}$has $2 p$ vertices and $\frac{p(p+1)}{2}$ edges.
In $K_{p}^{+}$, we observe that
(i) $d\left(u_{i}, u_{j}\right)=1$, for all $i \neq j$.
(ii) $d\left(v_{i}, v_{j}\right)=3$, for all $i \neq j$.
(iii) $d\left(u_{i}, v_{j}\right)=$ either 1 or 2 , for $i=1,2, \ldots, p$ and $j=1,2, \ldots, p$.

The following table gives the number of vertices having the distance 1 or 2 or 3 from the vertices of $K_{p}^{+}$.

| Vertex $v$ | Distance $D$ | Number of vertices having distance $d$ from $v$ |
| :---: | :---: | :---: |
| $u_{i}$ | 1 | $p$ |
|  | 2 | $p-1$ |
|  | 3 | 0 |
| $v_{i}$ | 1 | 1 |
|  | 2 | $p-1$ |
|  | 3 | $p-1$ |

From the table, it is found that in $K_{p}^{+}$, the number of vertices having distance 1 from $u_{i}$ is $p$ and that of distance 2 from $u_{i}$ is $p-1$ and that of distance 3 from $u_{i}$ is 0 .

The number of vertices having distance 1 from $v_{i}$ is 1 and that of distance 2 from $v_{i}$ is $p-1$ and that of distance 3 from $v_{i}$ is $p-1$.

From (i), $(i i)$ and (iii) we see that in $O D\left(K_{p}^{+}\right)$each $u_{i}$ is adjacent to $u_{j}$ for all $i \neq j$ and each $v_{i}$ is adjacent to $v_{j}$ for all $i \neq j$. Then, in $O D\left(K_{p}^{+}\right)$, the vertices $u_{1}, u_{2}, \ldots u_{p}$ induces a complete subgraph of order $p$ and so the vertices $v_{1}, v_{2}, \ldots v_{p}$. By the construction of $K_{p}^{+}, d\left(u_{i}, v_{i}\right)=1$ for $i=1,2,3, \ldots p$. So, in $O D\left(K_{p}^{+}\right)$each $u_{i}$ is adjacent to $v_{i}$ for $i=1,2,3, \ldots p$. Then, in $O D\left(K_{p}^{+}\right)$the corresponding vertices of these two complete subgraphs are adjacent.

Thus, $O D\left(K_{p}^{+}\right) \cong K_{p} \square K_{p}$.
Example 2.24. The graph $K_{4}^{+}$and its its odd distance graph are given in Figure 9.


Figure 9: The graph $K_{4}^{+}$and its odd distance graph $O D\left(K_{4}^{+}\right)$.

Definition 2.25. Let $G=(V, E)$ be a $(p, q)$-graph. The even distance graph $E D(G)$ of a graph $G$ has the vertex set $V=V(G)$ and two vertices in $E D(G)$ are adjacent if the distance between them is even in $G$.

Example 2.26. The graph $G$ and its even distance graph $E D(G)$ are shown in Figure 10.


Figure 10: A graph $G$ and its even distance graph $E D(G)$.

Now, we redraw the above $E D(G)$ as follows.


Figure 11
Observation 2.27. Since every edge is not a even distance path, for any graph $G, E D(G)$ is isomorphic to a subgraph of $\bar{G}$.

Theorem 2.28. For any graph $G, E D(G) \cong \overline{O D(G)}$.

Proof: Two vertices in $E D(G)$ are adjacent if they have an even distance path between them and two vertices in $\overline{O D(G)}$ are adjacent if they do not have an odd distance path between them. Thus, two vertices in $\overline{O D(G)}$ are adjacent if they have an even distance path between them.

Thus, $E D(G) \cong \overline{O D(G)}$.

Note 2.29. From the above theorem, we observe that many of the results related to even distance graphs came from odd distance graphs. We state some results without proof.

Result 2.30. If $G$ is complete then $E D(G) \cong \bar{G}$.

Result 2.31. For a path $P_{p}$,
$E D\left(P_{p}\right) \cong \begin{cases}2 K_{\frac{p}{2}} & \text { if } p \text { is even } \\ K_{\frac{p+1}{2}} \cup K_{\frac{p-1}{2}} & \text { if } p \text { is odd. }\end{cases}$
Result 2.32. For a cycle $C_{p}, p>3, E D\left(C_{p}\right) \cong 2 K_{\frac{p}{2}}$, if $p$ is even and $\frac{p-1}{2}$ or $\frac{p-3}{2}$ - regular, if $p$ is odd.
Result 2.33. For a graph $K_{p}^{+}, p \geq 3, E D\left(K_{p}^{+}\right)$is a bi-partite graph.

## References

[1] T.M. Apostol, Introduction to Analytic Number Theory, Third edition, Narosa edition, 1991.
[2] R. Aravamudhan and B. Rajendran, Graph Equations involving antipodal graphs, Presented at the Seminar on Combinatorics and applications.ISI, Calcutta, 1984, 40-43.
[3] R. Aravamudhan and B. Rajendran. On antipodal graphs, Discrete Math.49, 1984, 193-195.
[4] J.A. Bondy and U.S.R. Murty, Graph theory with Applications, North Holland, 1983 Fifth Printing.
[5] F. Buckley and F. Harary, Distance in graphs, Addison-wesely, Reading, 1990.
[6] David M. Burton, Elementary Number Theory, Tata McGraw-Hill Publishing company Limited, 2006.
[7] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass, 1972.
[8] K.M. Kathiresan and G. Marimuthu, A Study on radial graphs, Ars Combinatoria, 2010, 96, 353-360.
[9] S. Saravanakumar and K.Nagarajan, Distant Divisor Graphs, International Journal of Mathematical Sciences and Engineering Applications, 2013, Vol. 7 No.IV, 83-97.
[10] S. Saravanakumar and K. Nagarajan, Distant Divisor Graph of Subdivision of a Graph, International Journal of Mathematics and Soft Computing , Vol.4, No.1(2014), 51-60.

