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Abstract

In this paper, two-person matrix games is considered whose elements of pay-off matrix are
triangular fuzzy numbers (TFNs). To solve such game a new method based on α-cut of TFN is
developed for each of the players. In this method, two auxiliary bi-objective linear programming
(BOLP) models are derived. Then using average weighted approach these two BOLP models are
decomposed into two auxiliary crisp linear programming (LP) problems. Finally, the value of the
matrix game for each player is obtained by solving two corresponding auxiliary LP problems using
the existing simplex method. Validity and applicability of this method are illustrated with practical
example compared to existing methods.
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1 Introduction

Game theory is a mathematical tool for analysis of conflicting interests situations, which includes

players or decision makers (DM) who select various strategies from the set of available strategies. Al-

though the traditional game theory assumes well suited information and precise data it is difficult to

assess information exactly in real game situation due to lack of information on the exact values on

some parameters and fuzzy understanding of situations by players. In such situations, the fuzzy sets

introduced by, Zadeh [24], is very useful tool in game theory.

Various attempts have been made in the literature to study fuzzy game theory. Campos [4] introduced

fuzzy linear programming model to solve fuzzy matrix game. Sakawa and Nishizaki [21] introduced

max-min solution procedure for multi-objective fuzzy games. Nayak and Pal [16, 17] studied the interval
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and fuzzy matrix games. Li [9] implemented multi-objective programming approach to solve fuzzy

games. Maeda [15] studied about the characterization of the equilibrium strategy of the fuzzy games.

Bector et al. [2] studied matrix games with fuzzy goals and utilized fuzzy linear programming duality

([1]), to solve such games by solving the equivalent primal-dual pair of fuzzy linear programming

problems. This approach has further been extended by Bector et al. [3] to matrix games with fuzzy pay

offs where duality in linear programming with fuzzy parameters becomes the basic tool. Vijay et al. [22,

23] extended their duality results using aspiration level approach and also studied a generalized fuzzy

relation approach to solve matrix games with fuzzy goals and fuzzy pay-offs. Some recent references

on fuzzy matrix games are ([14], [5], [8], [11, 13]).

Obviously, in the aforementioned methods ([4], [3]) though the pay-offs matrix is fuzzy as it’s el-

ements are TFNs, the value of the game for each players are assumed to be crisp numbers. But from

logical point of view it seems natural that if the pay-offs matrix is fuzzy the values of the game for play-

ers I and II should also be fuzzy. However, in the above methods defuzzification approaches are used

whose solutions closely depend on ranking functions, therefore only defuzzified values of the game for

both the players were obtained. In the methodology [22, 23] aspiration level approach and fuzzy pref-

erence relation approach is used which is more or less dependent in subjective factors such as attitude,

judgment and preference of the players. In our proposed method, we do not have require any defuzzi-

fication function which otherwise may be difficult to decide in practice. Also the value of the game for

each players obtained in this method as TFNs which is desirable. Li [10] solved the fuzzy matrix games

with pay-offs of TFNs by solving auxiliary multi-objective programming models using lexicographic

method in which the value of the game for each players’ obtained as TFNs. Here, it may be noted that

the solution of the fuzzy game in our approach is “close to” that of [10], though different methodologies

are used to solve the game.

This paper is arranged as follows. Section 2 briefly reviews some concepts such as TFNs, α-cut sets,

basic arithmetic and order relation of interval numbers. Section 3 formulates matrix games with payoffs

of TFNs which are arbitrary and develops a new method based on α-cut sets of payoffs. In Section 4,

the proposed method is illustrated with a numerical example and the results obtained is compared with

existing one. Conclusion is made in Section 5.

2 Definition and Preliminaries

In this section, we recall some definitions and preliminaries. TFNs, their arithmetic operations and

α-cut sets are defined according to [6].

Definition 2.1. A TFN ã = (à, a, á) is a special type of fuzzy set on the set < of real numbers, whose

membership function is defined as follows

µã(x) =


x− à
a− à

, à ≤ x ≤ a
á− x
á− a

, a < x ≤ á
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where a is the mean value of ã, à and á represents the left and right spread respectively. Note that if

à = á = a, then ã is reduced to a crisp number. The set of all TFNs are denoted by F̃(<).

Definition 2.2. (α-cut sets): A α-cut set of a TFN, ã = (à, a, á) is a crisp subset of <, which is

defined as ãα = {x : µã(x) ≥ α} where 0 ≤ α ≤ 1. Using the membership function µã(x) it can be

easily proved that âα is a closed interval and ãα = [à + α(a − à), á − α(á − a)] = [aαL, a
α
R]. where

aαL = à+α(a− à) and aαR = á−α(á− a). The set of all α-cut values of TFNs is denoted by F̃α(<).

2.1 Basic Interval Arithmetic

Definition 2.3. ([20]): An interval number is defined as â = [aL, aR] = {x ∈ < : aL ≤ x ≤ aR}, <
is the set of all real numbers. The numbers aL, aR are called respectively the lower and upper limits of

the interval â. An interval number â can also be represented in mean-width form as â = 〈m(a), w(a)〉,

where m(a) =
1

2
(aL + aR) and w(a) =

1

2
(aR − aL)

are the mid point and half-width of the interval â. The set of all interval numbers in < is denoted by

I(<).

The basic interval arithmetic are given as follows. Let â = [aL, aR] and b̂ = [bL, bR] be two interval

numbers. Then

â+ b̂ = [aL + bL, aR + bR], â− b̂ = [aL − bR, aR − bL] and λâ =

{
[λaL, λaR] if λ ≥ 0

(λaR, λaL] if λ < 0

where λ is a real scalar.

The ranking order relation between intervals is a difficult problem. An extensive research and wide

coverage on interval arithmetic and its application can be found in [20]. According to Moore’s concept

of set inclusion, a brief comparison on different interval orders is given in [17].

Definition 2.4. ([17]) The satisfactory crisp equivalent forms of interval inequality constraints âz ≤I b̂
and âz ≥I b̂ are defined as

âz ≤I b̂⇒

 aRz ≤ bR
m(âz)−m(b)

w(âz) + w(b)
≤ β

and âz ≥I b̂⇒

 aLz ≥ bL
m(b)−m(âz)

w(âz) + w(b)
≤ β.

(1)

where ≤I and ≥I denote the interval number inequalities and β ∈ [0, 1] represents the minimal accep-

tance degree of the inequality constraints which may be allowed to violate.

Definition 2.5. ([7]) Let â = [aL, aR] be an interval. The maximization and minimization problem with

the interval valued objective function are described as follows

max{â|â ∈ Ω1} and min{â|â ∈ Ω2}



82 Mijanur Rahaman Seikh, Prasun Kumar Nayak and Madhumangal Pal

which are equivalent to the following bi-objective mathematical programming problems:

max{aL,m(â)|â ∈ Ω1} and min{aR,m(â)|â ∈ Ω2}

where Ω1 and Ω2 are the set of constraints in which the variable â should satisfy according to require-

ments in real situations.

3 Mathematical Model of a Matrix Game

Let i ∈ {1, 2, . . . ,m} be a pure strategy available for player I and j ∈ {1, 2, . . . , n} be a pure

strategy available for player II . When player I chooses a pure strategy i and the player II chooses a

pure strategy j, then aij is the payoff for player I and −aij be a payoff for player II . The two-person

zero-sum matrix game G can be represented as a pay-off matrix A = (aij)m×n.

3.1 Mixed Strategy

Consider the game G with no saddle point, i.e. max
i
{min

j
aij} 6= min

j
{max

i
aij}. To solve such game,

Neumann [18] introduced the concept of mixed strategy in classical form. We denote the sets of all

mixed strategies, called strategy spaces, available for the players I, II by

SI = {x = (x1, x2, . . . , xm) ∈ <m+ : xi ≥ 0; i = 1, 2, . . . ,m and
m∑
i=1

xi = 1}

SII = {y = (y1, y2, . . . , yn) ∈ <n+ : yj ≥ 0; j = 1, 2, . . . , n and
n∑
j=1

yj = 1},

where <m+ denotes them−dimensional non-negative Euclidean space. Thus by a crisp two-person zero-

sum matrix game G we mean the triplet G = (SI , SII , A). Since each player is uncertain about what

strategy he/she will choose, he/she will choose a probability distribution over the set of alternatives

available to him/her or a mixed strategy in terms of game theory.

3.2 Matrix Game with Fuzzy Pay-offs

Let SI , SII be the strategy spaces for player I and player II respectively and Ã = (ãij) be the pay-off

matrix where each ãij = (àij , aij , áij) is a TFN defined as in Section 2. Then a two-person zero-sum

matrix game with fuzzy pay-offs is the triplet (SI , SII , Ã).

In the following, we shall often call a two-person zero-sum matrix game with fuzzy pay-offs simply

as fuzzy matrix game F̃G = (SI , SII , Ã). The solution concept of F̃G is defined in the following.

Definition 3.1. ([3]) Let ṽ and w̃ be two TFNs. Then (ṽ, w̃) is called an reasonable solution of the game

F̃G, if there exists x∗ ∈ SI and y∗ ∈ SII , satisfying x∗T Ãy � ṽ ∀ y ∈ SII and xT Ãy∗ � w̃ ∀ x ∈
SI . If (ṽ, w̃) is a reasonable solution of F̃G then ṽ (respectively, w̃) is called reasonable value of the

player I (respectively, player II).
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It is worth noticing that Definition 3.1 only gives the notion of the reasonable solution rather than

the notion of optimal solution.

Definition 3.2. ([3]) Let Ṽ and W̃ denote the set of all reasonable values ṽ, w̃ for players I and II

respectively. Assume that there exist ṽ∗ ∈ Ṽ and w̃∗ ∈ W̃ . If there do not exist any ṽ ∈ Ṽ (ṽ 6= ṽ∗)

and w̃ ∈ W̃ (w̃ 6= w̃∗) such that they satisfy the following conditions ṽ∗ � ṽ and w̃∗ � w̃, then

(x∗,y∗, ṽ∗, w̃∗) is called an optimal solution of the F̃G. x∗ (respectively, y∗) is called an optimal

strategy for player I (respectively, player II) and ṽ∗ (respectively, w̃∗) is termed as the value of the game

F̃G for player I (respectively, player II).

By using the above definitions for the game F̃G, we now construct the following pair of problems

for player I and player II respectively.

According to above definitions, the optimal strategies x∗ ∈ SI for player I and y∗ ∈ SII for player

II can be generated by solving the following fuzzy mathematical problems:

max{ṽ} min{w̃}

subject to


xT Ãy � ṽ ∀y ∈ SII

x ∈ SI
ṽ ∈ F̃ (<)

and subject to


xT Ãy � w̃ ∀x ∈ SI

y ∈ SII
w̃ ∈ F̃ (<)

Since SI and SII are convex polytopes it is sufficient to consider only the extreme points (i.e. pure

strategies) of SI and SII . This observation leads to the following two fuzzy mathematical programming

(FMP) models as

max{ṽ} min{w̃}

subject to



m∑
i=1

ãijxi � ṽ (j = 1, 2, . . . , n)

m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and subject to



n∑
j=1

ãijyj � w̃ (i = 1, 2, . . . ,m)

n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n)

respectively.

Using Definition 2.2, the above two FMPs, can be transformed into the following interval mathemat-

ical programming models as

max{ṽα} min{w̃α}

subject to



m∑
i=1

(ãijxi)α ≥I ṽα,

(j = 1, 2, . . . , n)
m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and subject to



n∑
j=1

(ãijyj)α ≤I w̃α,

(i = 1, 2, . . . ,m)
n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n)
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respectively.

Let us consider the α-cut sets of ṽ, w̃ and ãij as

ṽα = [vαL, v
α
R], w̃α = [wαL, w

α
R] and (ãij)α = [aαijL, a

α
ijR],

where [vαL, v
α
R] is an interval and vαL, v

α
R denote lower and upper limits respectively.

Then the above two models can be written as

max{[vαL, vαR]} min{[wαL, wαR]

subject to



m∑
i=1

[aαijL, a
α
ijR]xi ≥I [vαL, v

α
R],

(j = 1, 2, . . . , n)
m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and subject to



n∑
j=1

[aαijL, a
α
ijR]yj ≤I [wαL, w

α
R],

(i = 1, 2, . . . ,m)
n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n)

respectively.

Using Definitions 2.4 and 2.5, the above two problems can be converted into the two bi-objective

mathematical programming models as follows

max

{
vαL,

vαL + vαR
2

}
subject to

m∑
i=1

aαijLxi ≥ vαL (j = 1, 2, . . . , n)

vαR + vαL −
m∑
i=1

(aαijL + aαijR)xi

vαR − vαL +
m∑
i=1

(aαijR − aαijL)xi

≤ β (j = 1, 2, . . . , n) (2)

vαL ≤ vαR
m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and

min

{
wαR,

wαL + wαR
2

}
subject to

n∑
j=1

aαijRyj ≤ wαR (i = 1, 2, . . . ,m)
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n∑
j=1

(aαijL + aαijR)yj − (wαL + wαR)

wαR − wαL +
n∑
j=1

(aαijR − aαijL)yj

≤ β (i = 1, 2, . . . ,m) (3)

wαL ≤ wαR
n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n).

The equations (2) and (3) are bi-objective linear programming problems (BOLP) on the decision

variables vαL, v
α
R, xi (i = 1, 2, . . . ,m) and wαL, w

α
R, yj (i = 1, 2, . . . , n). There exists several solution

methods for them. However, in this study we use average weighted approach ([11]) to solve equations

(2) and (3) in the sense of pareto optimality.

Therefore, the above two BOLPs become

max

{
3vαL + vαR

4

}
subject to

m∑
i=1

aαijLxi ≥ vαL (j = 1, 2, . . . , n)

m∑
i=1

{
(1 + β)aαijR + (1− β)aαijL

}
xi ≥ (1 + β)vαL + (1− β)vαR (j = 1, 2, . . . , n)

vαL ≤ vαR (4)
m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and

min

{
3wαR + wαL

4

}
subject to

n∑
j=1

aαijRyj ≤ wαR (i = 1, 2, . . . ,m)

n∑
j=1

{
(1 + β)aαijL + (1− β)aαijR

}
yj ≤ (1− β)wαL + (1 + β)wαR (i = 1, 2, . . . ,m)

wαL ≤ wαR (5)
n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n)
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Now, if all TFNs ãij = (à, a, á) are approximated to its α-cut interval ãαij = [aαijL, a
α
ijR], then from

Definition 2.2 we have aαijL = àij + α(aij − àij) and aαijR = áij − α(áij − aij). Therefore, the above

two liner programming problems reduced to

max

{
3vαL + vαR

4

}
subject to

m∑
i=1

{àij + α(aij − àij)}xi ≥ vαL (j = 1, 2, . . . , n)

m∑
i=1

[(1 + β){áij − α(áij − aij)}+ (1− β){àij + α(aij − àij)}]xi

≥ (1 + β)vαL + (1− β)vαR (j = 1, 2, . . . , n) (6)

vαL ≤ vαR
m∑
i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . .m)

and

min

{
3wαR + wαL

4

}
subject to

n∑
j=1

{áij − α(áij − aij)}yj ≤ wαR (i = 1, 2, . . . ,m)

n∑
j=1

[(1 + β){àij + α(aij − àij)}+ (1− β){áij − α(áij − aij)}]yj

≤ (1− β)wαL + (1 + β)wαR (i = 1, 2, . . . ,m) (7)

wαL ≤ wαR
n∑
j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . n)

where the parameters α and β are given by the players/decision makers.

We take β = 0, which indicates that the inequality constraints are not allowed to violate. For given

parameter α, using existing simplex method for linear programming problems, optimal solutions of

equations (6) and (7) can be obtained. We denote them as (x∗, vα∗L , vα∗R ) and (y∗, wα∗L , wα∗R ) respectively.

Thus the optimal strategy x∗ and the corresponding upper and lower bounds of α-cut of the value of

the game, ṽ∗ for player I is obtained for given α. Similarly, for player II, optimal strategy y∗ and the

corresponding upper and lower bounds of α-cut of the value of the game, w̃∗ for player II is obtained

for given α.
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Remark: If all the fuzzy numbers are to be taken as crisp numbers, that is, ãij = aij , (à = 0, á = 0)

then the fuzzy game F̃G reduces to the crisp two-person zero-sum game G. Then the pair of problems

(6) and (7) reduce to the crisp linear programming problems. Thus, this approach is a generalization of

crisp situation.

4 Numerical Example

Suppose that there are two companies I and II to enhance the market share of a new product by

competing in advertising. The two companies are considering two different strategies to increase market

share: strategy I (adv. by TV), II (adv. by Newspaper). Here it is assumed that the targeted market is

fixed, i.e the market share of the one company increases while the market share of the other company

decreases and also each company puts all its advertisements in one. The above problem may be regarded

as matrix game. Namely, the company I and II are considered as players I and II respectively. The

marketing research department of company I establishes the following pay-off matrix

adv. by TV adv. by Newspaper

Ã =
adv. by TV

adv. by Newspaper

(
(175, 180, 190) (150, 156, 158)

(80, 90, 100) (175, 180, 190)

)
.

where the element (175, 180, 190) in the matrix Ã indicates that the sales amount of the company I in-

creases by “about 180” units when the company I and II use the strategy I (adv. by TV) simultaneously.

The other elements in the matrix Ã can be explained similarly.

According to the equations (6) and (7) we get the linear programming models as

max

{
3vαL + vαR

4

}
subject to (175 + 5α)x1 + (80 + 10α)x2 ≥ vαL

(150 + 6α)x1 + {175 + 5α)x2 ≥ vαL
{(1 + β)(190− 10α) + (1− β)(175 + 5α)}x1 (8)

+ {(1 + β)(100− 10α) + (1− β)(80 + 10α)}x2 ≥ (1 + β)vαL + (1− β)vαR

{(1 + β)(158− 2α) + (1− β)(150 + 6α)}x1
+ {(1 + β)(190− 10α) + (1− β)(175 + 5α)}x2 ≥ (1 + β)vαL + (1− β)vαR

vαL ≤ vαR
x1 + x2 = 1

x1, x2 ≥ 0

and

min

{
3wαR + wαL

4

}
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subject to (190− 10α)y1 + (158− 2α)y2 ≤ wαR
(100− 10α)y1 + (190− 10α)y2 ≤ wαR
{(1 + β)(175 + 5α) + (1− β)(190− 10α)} y1 (9)

+ {(1 + β)(150 + 6α) + (1− β)(158− 2α)} y2 ≤ (1− β)wαL + (1 + β)wαR

{(1 + β)(80 + 10α) + (1− β)(100− 10α)} y1
+ {(1 + β)(175 + 5α) + (1− β)(190− 10α)} y2 ≤ (1− β)wαL + (1 + β)wαR

wαL ≤ wαR
y1 + y2 = 1

y1, y2 ≥ 0

β = 0 indicates that the inequality constraints are not allowed to violate. For given α we can solve the

above two equations (8) and (9). The upper and lower bounds of α-cut sets of the value of the game ṽ∗

(respectively, w̃∗) for player I (respectively, player II) and the corresponding optimal mixed strategies

for any α ∈ [0, 1] are shown in the following table.

Table 1: Solution of the game F̃G for different values of α.

α x∗1 x∗2 y∗1 y∗2 vα∗L vα∗R wα∗L wα∗R
0 0.7916667 0.2083333 0.2622951 0.7377049 155.21 164.67 156.56 166.39

0.1 0.7914573 0.2085427 0.2574257 0.7425743 155.79 164.31 157.01 165.83

0.2 0.7912458 0.2087542 0.2524917 0.7475083 156.38 163.95 157.46 165.27

0.3 0.7910321 0.2089679 0.2474916 0.7525084 156.96 163.58 157.91 164.72

0.4 0.7908163 0.2091837 0.2424242 0.7575758 157.54 163.22 158.36 164.18

0.5 0.7905983 0.2094017 0.2372881 0.7627119 158.13 162.86 158.81 163.64

0.6 0.7903780 0.2096220 0.2320819 0.7679181 158.71 162.50 159.26 163.11

0.7 0.7901554 0.2098446 0.2268041 0.7731959 159.23 162.14 159.71 162.59

0.8 0.7899306 0.2100694 0.2214533 0.7785467 159.88 161.78 160.16 162.07

0.9 0.7897033 0.2102967 0.2160279 0.7839721 160.47 161.41 160.61 161.56

1 0.7894737 0.2105263 0.2105263 0.7894737 161.05 161.05 161.05 161.05

In the above table we provide the optimal solution for the above two problems (6) and (7) for different

values of α. In particular, for α = 0.8, the optimal strategies for player I and player II are x∗ =

(0.7899306, 0.2100694) and y∗ = (0.2214533, 0.7785467) and the cut set of the value of the game for

player I and player II are the intervals [159.88, 161.78] and [160.16, 162.07], respectively.

It can be easily seen from Table 1 that larger the α values, lower the degree of uncertainty of the

value of the game for both players. Moreover, when α = 0 the cut set of the value of the game of the

player I and II are the intervals [155.21,164.67] and [156.56,166.39] respectively, which are the widest.

Thus, in this example it is impossible that the value of the game for player I falls out side of the interval
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[155.21,164.67]. Again for α = 1 the value of the game for player I is 161.05, which is the most likely

value. Similarly, the value of the game for player II never falls outside of the interval [156.56,166.39]

and the most likely value is 161.05. Therefore, the approximate values of the game for players I and II

are obtained as follows:

ṽ∗ = (155.21, 161.05, 164.67)

and w̃∗ = (156.56, 161.05, 166.39)

respectively, which are TFNs. It means that the sales amount increases of the company I is “approxi-

mately 161.05”. In other words, company I’s minimum reward is 155.21 while his maximum reward is

164.67. Similar interpretation can also be given to player II.

4.1 Results obtained by Li’s Approach

Li[10] assumed that the value of the game for player I and for player II, respectively as TFNs,

denoted by ṽl = (v̀l, vl, v́l) and w̃l = (ẁl, wl, ẃl). Then, player I’s LP problem in the level 1 is

constructed as follows

max{vl}

subject to 175x1 + 80x2 ≥ v̀l

150x1 + 175x2 ≥ v̀l

180x1 + 90x2 ≥ vl

156x1 + 180x2 ≥ vl (10)

190x1 + 100x2 ≥ v́l

158x1 + 190x2 ≥ v́l

x1 + x2 = 1

v̀l ≤ vl ≤ v́l

x1, x2 ≥ 0.

Solving (10) by using the simplex method of linear programming we obtain the optimal solution

(x∗l, v̀0l, v∗l, v́0l), where x∗l = (0.7895, 0.2108)T , v̀0l = 61.398, v∗l = 161.05, v́0l = 163.063.

Now, player I’s LP problem in the level 2 are constructed as follows:

max{v̀l}

subject to v̀l ≤ 175× 0.7895 + 80× 0.2105

v̀l ≤ 150× 0.7895 + 175× 0.2105 (11)

v̀l ≤ 161.05
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and

max{v́l}

subject to v́l ≤ 190× 0.7895 + 100× 0.2105

v́l ≤ 158× 0.7895 + 190× 0.2105 (12)

v́l ≥ 161.05

It can be seen that equations (11) and (12) have the optimal solutions v̀∗l = 155.0025 and v́∗l =

164.736. Therefore, optimal mixed strategy and corresponding value of the game for player I are x∗l =

(0.7895, 0.2105)T and ṽ∗l = (155.0025, 161.05, 164.736), respectively.

Similarly, it is easily computed that optimal mixed strategy and corresponding value of the game for

player II are y∗l = (0.2105, 0.7895) and w̃∗l = (155.2655, 161.05, 171.055), respectively.

4.2 Discussion

Campos [4] solved the matrix games with payoff of TFNs and obtained crisp values of value of

the game for player I and player II which is not desirable. Bector et al.’s [3] method was developed on

certain duality of LP with fuzzy parameters. Campos’s [4] method and Bector et al.’s [3] method are

defuzzification approaches, which are close dependent on ranking functions, parameters. Moreover, two

methods cannot explicitly describe the membership functions of the value of the game for two players.

Also the approach followed by Vijoy et al. [22] to study fuzzy matrix games requires the two players to

prescribe their aspiration levels.

However, in our proposed method and Li’s [10] method, it is ensured that any matrix game with

pay-offs of TFNs has TFNs type value and the membership functions of the value of the game can be

explicitly defined. Although Li’s model was developed on the basis of the ordering relations of TFNs.

But, in our method no ranking criteria or any type of aspiration levels are required, which are difficult

to do since different ranking criteria generates different solutions.

The proposed method in this paper can explicitly generates the fuzzy values of the game for player

I and II as ṽ∗ = (155.21, 161.05, 164.67) and w̃∗ = (156.56, 161.05, 166.39), respectively. Also Li’s

[10] method gives the fuzzy values of the game for player I and II as ṽ∗l = (155.0025, 161.05, 164.736)

and w̃∗l = (155.2625, 161.05, 171.055), respectively.

It can be noted that the solution of the fuzzy game in our approach is close to the solution that is

reported in Li [10], although significantly different approaches are used to solve the game.

5 Conclusion

In this paper, two-person zero-sum matrix game is considered where each elements of the pay-off

matrix is a TFN and a new approach is derived to solve such games based on α-cut sets of TFNs. For

this, a pair of interval programming models is established for each player, which are transformed into

bi-objective linear programming models based on the maximization and minimization problems with
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interval objective functions and using the interval inequality relations. Applying the weighted average

method, two simpler auxiliary linear programming models are constructed to determine the upper and

lower bounds of α-cut sets of the values of the game for player I and II respectively, for any given α.

The main advantage of this method is that besides unifying the fuzzy matrix game theory it does not

require any defuzzification function or any specification of aspiration levels which otherwise may be

difficult to decide in practice.

However, the major limitation in this approach is that unlike crisp situations, we do not have any

duality results for such linear programming approach. Therefore, these problems need a further investi-

gation in the future.
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