Total edge Fibonacci irregular labeling of some star graphs

S. Karthikeyan ${ }^{1}$, S. Navanaeethakrishnan ${ }^{2}$, R. Sridevi ${ }^{3}$
${ }^{1,3}$ Department of Mathematics
Sri S.R.N.M.College, Sattur - 626203
Tamil Nadu, India
karthikeyan11pm30@gmail.com r.sridevi_2010@yahoo.com
${ }^{2}$ Department of Mathematics
V.O.C.College, Tuticorin - 628008
Tamil Nadu, India.
snk.voc@gmail.com

Abstract

A total edge Fibonacci irregular labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, K\}$ of a graph $G=$ (V, E) is a labeling of vertices and edges of G in such a way that for any different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $f(x)+f(x y)+f(y)$ and $f\left(x^{\prime}\right)+f\left(x^{\prime} y^{\prime}\right)+f\left(y^{\prime}\right)$ are distinct Fibonacci numbers. The total edge Fibonacci irregularity strength, $\operatorname{tefs}(G)$ is defined as the minimum K for which G has a total edge Fibonacci irregular labeling. If a graph has a total edge Fibonacci irregular labeling, then it is called a total edge Fibonacci irregular graph. In this paper, we prove $K_{1, n}$, bistar $<\left(B_{n, n}\right)>$, subdivision of bistar $\left\langle\left(B_{n, n} ; W\right)>\right.$ and $<\left(B_{2, n} ; W_{i}\right)>(1 \leq i \leq n)$ are total edge Fibonacci irregular graphs.

Keywords: Total vertex irregular labeling, edge irregular total K-labeling, total edge Fibonacci irregular labeling.
AMS Subject Classification(2010): 05C78.

1 Introduction

By a graph, we mean a finite, undirected graph without loops and multiple edges. For terms not defined here, we refer to Harary [2]. A total vertex irregular labeling on a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is $w t(v)=\lambda(v)+\sum_{u v \in E} \lambda(u v)$. The total vertex irregularity strength of G, denoted by $\operatorname{tvs}(G)$, is the minimum value of the largest label over all such irregular assignments. For a graph $G=(V, E)$, define a labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, K\}$ to be an edge irregular total K-labeling of the graph G if for every two different edges xy and $x^{\prime} y^{\prime}$ of G the edge weights $w t(\mathrm{xy}) \neq w t\left(x^{\prime} y^{\prime}\right)$. The total edge irregularity strength, $\operatorname{tes}(G)$, is defined as the minimum K for which G has an edge irregular total K-labeling. The notion of a total vertex irregular labeling and total edge irregular labeling are introduced by Baca et al [1]

Definition 1.1. The Fibonacci numbers can be defined by the linear recurrence relation

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}
$$

This generates the infinite sequence of integers $0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$

2 Main Results

S. Amutha and K M.Kathiresan introduced the notion of total edge Fibonacci irregular labeling and also they proved that graphs like P_{n}, C_{n} and book with(3 and 4 sides) are total edge Fibonacci irregular graphs.

Definition 2.1. A total edge Fibonacci irregular labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, K\}$ of a graph $G=(V, E)$ is a labeling of vertices and edges of G in such a way that for any different edges $x y$ and $x^{\prime} y^{\prime}$ their weights $f(x)+f(x y)+f(y)$ and $f\left(x^{\prime}\right)+f\left(x^{\prime} y^{\prime}\right)+f\left(y^{\prime}\right)$ are distinct Fibonacci numbers.

The total edge Fibonacci irregularity strength, $\operatorname{tefs}(G)$ is defined as the minimum K for which G has total edge Fibonacci irregular labeling.

Note that if f is a total edge Fibonacci irregular labeling of $G=(V, E)$ with $|V(G)|=p$ and $|E(G)|=q$ then $F_{4}(=3) \leq w t(x y) \leq F_{q+3}$ which implies that tefs $\geq\left\lceil\frac{F_{q+3}}{3}\right\rceil$.

Example 2.2. For the cycle $C_{4}, n=4$, tefs $=\left\lceil\frac{F_{n+3}}{3}\right\rceil$. Therefore, tefs $=\left\lceil\frac{F_{7}}{3}\right\rceil=5$.

Figure 1
Theorem 2.3. The star graph $K_{1, n}$ has a total edge Fibonacci irregular labeling and tefs $\left(K_{1, n}\right) \leq$ $\left\lfloor\frac{F_{n+3}}{2}\right\rfloor$, for any n.

Proof: Let $V=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set and $E=\left\{e_{i}=v v_{i}: i=1,2, \ldots, n\right\}$ be the edge set of $K_{1, n}$. Then $|V|=n+1$ and $|E|=n$.
Define $f: V \cup E \rightarrow\left\{1,2, \ldots,\left\lfloor\frac{F_{n+3}}{2}\right\rfloor\right\}$ by $f(v)=1, f\left(v_{i}\right)=\left\lfloor\frac{F_{i+3}}{2}\right\rfloor ; i=1,2, \ldots, n$ and $f\left(e_{i}\right)=F_{i+3}-\left\lfloor\frac{F_{i+3}}{2}\right\rfloor-1 ; i=1,2, \ldots, n$.
By this labeling, $w t\left(e_{i}\right)=f(v)+f\left(e_{i}\right)+f\left(v_{i}\right) ; i=1,2, \ldots, n$.

$$
\begin{aligned}
& =1+\left(F_{i+3}-\left\lfloor\frac{F_{i+3}}{2}\right\rfloor-1\right)+\left\lfloor\frac{F_{i+3}}{2}\right\rfloor \\
& =F_{i+3}
\end{aligned}
$$

Thus, the weights of $e_{1}, e_{2}, \ldots, e_{n}$ are $F_{4}, F_{5}, \ldots, F_{n+3}$ respectively. Also, tefs $\left(K_{1, n}\right) \leq\left\lfloor\frac{F_{i+3}}{2}\right\rfloor$, for any n.

Example 2.4. The graph $\left(K_{1,8}\right)$ is total edge Fibonacci irregular labeling and tefs $\left(K_{1,8}\right) \leq\left\lfloor\frac{F_{11}}{2}\right\rfloor=$ 44.

Figure 2: Total edge Fibonacci irregular labeling of $\left(K_{1,8}\right)$.
Theorem 2.5. The bistar graph $B_{n, n}$ for $n \geq 2$ has a total edge Fibonacci irregular labeling and tefs $\left(B_{n, n}\right) \leq\left\lfloor\frac{F_{2 n+4}}{2}\right\rfloor-1$.
Proof: Let $V=\left\{u, v, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\} \quad$ be the vertex set and $E=\left\{e=u v, x_{i}=u u_{i}, y_{i}=v v_{i} ; i=1,2, \ldots, n\right\}$ be the edge set. Then $|V|=2 n+2$ and $|E|=2 n+1$.

Define $f: V \cup E \rightarrow\left\{1,2, \ldots,\left\lfloor\frac{F_{2 n+4}}{2}\right\rfloor-1\right\}$ by $f(u)=1, f(v)=3, f\left(u_{1}\right)=1, f\left(v_{1}\right)=4$, $f\left(u_{i}\right)=\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-1 ; i=2,3, \ldots, n, f\left(v_{i}\right)=\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-1 ; i=2,3, \ldots, n$ and $f(e)=1$, $f\left(x_{1}\right)=1, f\left(x_{i}\right)=F_{2 i+3}-\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor ; i=2,3, \ldots, n, f\left(y_{1}\right)=1, f\left(y_{i}\right)=F_{2 i+4}-\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-2$; $i=2,3, \ldots, n$.

By this labeling, $w t(e)=f(u)+f(e)+f(v)$

$$
\begin{aligned}
& \quad=1+1+3=5=F_{5} \\
& w t\left(x_{1}\right)=f(u)+f\left(x_{1}\right)+f\left(u_{1}\right) \\
& \quad=1+1+1=3=F_{4} \\
& w t\left(y_{1}\right)=f(v)+f\left(y_{1}\right)+f\left(v_{1}\right) \\
& \quad=3+1+4=8=F_{6} \\
& w t\left(x_{i}\right)=f(u)+f\left(x_{i}\right)+f\left(u_{i}\right) ; i=2,3, \ldots, n \\
& \quad=1+\left(F_{2 i+3}-\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor\right)+\left(\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-1\right) \\
& \\
& =F_{2 i+3}
\end{aligned}
$$

Thus, the weights of $x_{2}, x_{3}, \ldots, x_{n}$ are $F_{7}, F_{9}, \ldots, F_{2 n+3}$.

$$
\begin{aligned}
w t\left(y_{i}\right) & =f(v)+f\left(y_{i}\right)+f\left(v_{i}\right) ; i=2,3, \ldots, n \\
& =3+\left(F_{2 i+4}-\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-2\right)+\left(\left\lfloor\frac{F_{2 i+4}}{2}\right\rfloor-1\right) \\
& =F_{2 i+4}
\end{aligned}
$$

That is, weights of $y_{2}, y_{3}, \ldots, y_{n}$ are $F_{8}, F_{10}, \ldots, F_{2 n+4}$.
Thus, the weights of edges $e, x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ are $F_{4}, F_{5}, F_{6}, \ldots, F_{2 n+3}, F_{2 n+4}$ respectively and tefs $\left(B_{n, n}\right) \leq\left\lfloor\frac{F_{2 n+4}}{2}\right\rfloor-1$.

Example 2.6. The graph $\left(B_{5,5}\right)$ is total edge Fibonacci irregular labeling and tefs $\left(B_{5,5}\right) \leq\left\lfloor\frac{F_{14}}{2}\right\rfloor-$ $1=187$.

Figure 3: Total edge Fibonacci irregular labeling of $\left(B_{5,5}\right)$.
Theorem 2.7. The Bistar graph $\left(B_{n, n} ; W\right)$ for $n \geq 2$ has a total edge Fibonacci irregular labeling and tefs $\left(B_{n, n} ; W\right) \leq\left\lfloor\frac{F_{2 n+5}}{2}\right\rfloor-1$.

Proof: Let $V=\left\{u, v, w, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set and $E=\{x=u w, y=$ $\left.w v, x_{i}=u u_{i}, y_{i}=v v_{i} ; i=1,2, \ldots, n\right\}$ be the edge set. Then $|V|=2 n+3$ and $|E|=2 n+2$.

Define $f: V \cup E \rightarrow\left\{1,2, \ldots,\left\lfloor\frac{F_{2 n+5}}{2}\right\rfloor-1\right\}$ by $f(u)=1, f(w)=2, f(v)=3, f\left(u_{1}\right)=1$, $f\left(v_{1}\right)=5, f\left(u_{i}\right)=\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor-1 ; i=2,3, \ldots, n, f\left(v_{i}\right)=\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor-1 ; i=2,3, \ldots, n$ and $f(x)=2, f\left(x_{1}\right)=1, f\left(x_{i}\right)=F_{2 i+4}-\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor ; i=2,3, \ldots, n, f(y)=1, f\left(y_{1}\right)=5$, $f\left(y_{i}\right)=F_{2 i+5}-\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor-2 ; i=2,3, \ldots, n$.

By this labeling, $w t(x)=f(u)+f(x)+f(w)$

$$
\begin{aligned}
& =1+2+2=5=F_{5} \\
w t(y) & =f(w)+f(y)+f(v) \\
& =2+3+3=8=F_{6} \\
w t\left(x_{1}\right) & =f(u)+f\left(x_{1}\right)+f\left(u_{1}\right) \\
& =1+1+1=3=F_{4} \\
w t\left(y_{1}\right) & =f(v)+f\left(y_{1}\right)+f\left(v_{1}\right) \\
& =3+5+5=13=F_{7} \\
w t\left(x_{i}\right) & =f(u)+f\left(x_{i}\right)+f\left(u_{i}\right) ; i=2,3, \ldots, n . \\
& =1+\left(F_{2 i+4}-\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor\right)+\left(\left\lfloor\frac{\left.\left.F_{2 i+5}^{2}\right\rfloor-1\right)}{2}\right\rfloor\right. \\
& =F_{2 i+4}
\end{aligned}
$$

That is, weights of $x_{2}, x_{3}, \ldots, x_{n}$ are $F_{8}, F_{10}, \ldots, F_{2 n+4}$.

$$
\begin{aligned}
w t\left(y_{i}\right) & =f(v)+f\left(y_{i}\right)+f\left(v_{i}\right) ; i=2,3, \ldots, n \\
& \left.=3+\left(F_{2 i+5}-\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor-2\right)+\left\lfloor\frac{F_{2 i+5}}{2}\right\rfloor-1\right) \\
& =F_{2 i+5}
\end{aligned}
$$

That is, weights of $y_{2}, y_{3}, \ldots, y_{n}$ are $F_{9}, F_{11}, \ldots, F_{2 n+5}$.
Thus, the weights of edges $x, y, x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ are $F_{4}, F_{5}, F_{6}, \ldots, F_{2 n+4}, F_{2 n+5}$ respectively and tefs $\leq\left\lfloor\frac{F_{2 n+5}}{2}\right\rfloor-1$.

Example 2.8. The graph $\left(B_{6,6} ; W\right)$ is total edge Fibonacci irregular labeling and tefs $\left(B_{6,6} ; W\right) \leq$ $\left\lfloor\frac{F_{17}}{2}\right\rfloor-1=797$.

Figure 4: Total edge Fibonacci irregular labeling of $\left(B_{6,6} ; W\right)$.
Definition 2.9. [3] Let u, v be the center vertices of $B_{2, n}$. Let u_{1}, u_{2} be the vertices joined with u and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices joined with v. Let $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of the subdivision of edges $v v_{i}(1 \leq i \leq n)$ respectively and is denoted by $\left(B_{2, n} ; W_{i}\right), 1 \leq i \leq n$.

Theorem 2.10. The graph $G=\left(B_{2, n} ; W_{i}\right), 1 \leq i \leq n$, where $n \geq 2$ is a total edge Fibonacci irregular labeling and tefs $=\left\lceil\frac{F_{2 n+6}}{3}\right\rceil$

Proof: Let $V=\left\{u, v, u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the vertex set and $E=\{e=$ $\left.u v, x=u u_{1}, y=u u_{2}, x_{i}=v w_{i}, y_{i}=w_{i} v_{i} ; i=1,2, \ldots, n\right\}$ be the edge set. Then $|V|=2 n+4$ and $|E|=2 n+3$.

Define $f: V \cup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{F_{2 n+6}}{3}\right\rceil\right\}$ by $f(u)=1, f\left(u_{1}\right)=1, f\left(u_{2}\right)=3, f(v)=3$, $f\left(v_{1}\right)=8, f\left(w_{1}\right)=5, f\left(v_{i}\right)=\left\lceil\frac{F_{2 i+6}}{3}\right\rceil ; i=2,3, \ldots, n, f\left(w_{i}\right)=F_{2 i+6}-2\left\lceil\frac{F_{2 i+6}}{3}\right\rceil ; i=$ $2,3, \ldots, n$ and $f(e)=1, f(x)=1, f(y)=4, f\left(x_{1}\right)=5, f\left(x_{i}\right)=F_{2 i+5}+2\left\lceil\frac{F_{2 i+6}}{3}\right\rceil-F_{2 i+6}-3$ $; i=2,3, \ldots, n, f\left(y_{1}\right)=8, f\left(y_{i}\right)=\left\lceil\frac{F_{2 i+6}}{3}\right\rceil ; i=2,3, \ldots, n$.

By this labeling, $w t(e)=f(u)+f(e)+f(v)$
$=1+1+3=5=F_{5}$
$w t(x)=f(u)+f(x)+f\left(u_{1}\right)$
$=1+1+1=3=F_{4}$
$w t(y)=f(u)+f(y)+f\left(u_{2}\right)$
$=1+4+3=8=F_{6}$
$w t\left(x_{1}\right)=f(v)+f\left(x_{1}\right)+f\left(w_{1}\right)$

$$
\begin{aligned}
& =3+5+5=13=F_{7} \\
w t\left(y_{1}\right) & =f\left(w_{1}\right)+f\left(y_{1}\right)+f\left(v_{1}\right) \\
& =5+8+8=21=F_{8} \\
w t\left(x_{i}\right) & =f(v)+f\left(x_{i}\right)+f\left(w_{i}\right) ; i=2,3, \ldots, n \\
& =3+\left(F_{2 i+5}+2\left\lceil\frac{F_{2 i+6}}{3}\right\rceil-F_{2 i+6}-3\right)+\left(F_{2 i+6}-2\left\lceil\frac{F_{2 i+6}}{3}\right\rceil\right) \\
& =F_{2 i+5}
\end{aligned}
$$

Therefore, the weights of $x_{2}, x_{3}, \ldots, x_{n}$ are $F_{9}, F_{11}, \ldots, F_{2 n+5}$.

$$
\begin{aligned}
w t\left(y_{i}\right) & =f\left(w_{i}\right)+f\left(y_{i}\right)+f\left(v_{i}\right) ; i=2,3, \ldots, n \\
& =\left(F_{2 i+6}-2\left\lceil\frac{F_{2 i+6}}{3}\right\rceil\right)+\left\lceil\frac{F_{2 i+6}}{3}\right\rceil+\left\lceil\frac{F_{2 i+6}}{3}\right\rceil \\
& =F_{2 i+6}
\end{aligned}
$$

That is, weights of $y_{2}, y_{3}, \ldots, y_{n}$ are $F_{8}, F_{10}, F_{12}, \ldots, F_{2 n+6}$.
Thus, the weights of edges $e, x, y, x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ are $F_{4}, F_{5}, F_{6}, F_{7}$, $\ldots, F_{2 n+5}, F_{2 n+6}$ respectively and tefs $\left(B_{2,6} ; W_{6}\right)=\left\lceil\frac{F_{2 n+6}}{3}\right\rceil$.

Example 2.11. The graph $\left(B_{2,6} ; W_{6}\right)$ is total edge Fibonacci irregular labeling and tefs $\left(B_{2,6} ; W_{6}\right)=$ $\left\lceil\frac{F_{18}}{3}\right\rceil=862$.

Figure 5: Total edge Fibonacci irregular labeling of $\left(B_{2,6} ; W_{6}\right)$.

References

[1] M. Baca, M. Stanislav Jendrol, Miller and Joseph Ryan, On irregular total labeling, Discrete Math., 307(2007), 137-138.
[2] F. Harary, Graph Theory, Addition- Wesley, Reading, Mass, 1972.
[3] R.Sridevi, S.Navaneethakrishnan and K. Nagarajan, Almost Super Fibonacci Graceful Labeling, Scientia Magna, Vol.6, No.3.(2010), 99-125.

