International Journal of Mathematics and Soft Computing Vol.5, No.1. (2015), 57 - 64.

Cosplitting and co-regular graphs

Selvam Avadayappan, M. Bhuvaneshwari

Department of Mathematics VHNSN College, Virudhunagar – 626001, India. selvam_avadayappan@yahoo.co.in bhuvanakamaraj28@yahoo.com

Abstract

The graph S(G) obtained from a graph G(V,E), by adding a new vertex w for every vertex $v \in V$ and joining w to all neighbours of v in G, is called the splitting graph of G. The cosplitting graph CS(G) is obtained from G, by adding a new vertex w for each vertex $v \in V$ and joining w to those vertices of G which are not adjacent to v in G. In this paper, we introduce the concept of cosplitting graph and characterise the graphs for which splitting and cosplitting graphs are isomorphic.

Keywords: Cosplitting graph, splitting graph, degree splitting graph, co - regular graph.

AMS Subject Classification (2010): 05C(Primary).

1 Introduction

Throughout this paper, we consider only finite, simple and undirected graphs. For notations and terminology, we follow [2]. A graph *G* is said to be *r* - *regular* if every vertex of *G* has degree *r*. For $r \neq k$, a graph *G* is said to be (r,k) - biregular if d(v) is either *r* or *k* for any vertex *v* in *G*. A 1 - factor of *G* is a 1 - regular spanning subgraph of *G* and it is denoted by *F*. For any vertex $v \in V$ in a graph G(V,E), the open neighbourhood N(v) of *v* is the set of all vertices adjacent to *v*. That is, $N(v) = \{u \in V | uv \in E\}$. The closed neighbourhood N[v] of *v* is defined by $N[v] = N(v) \cup \{v\}$.

A vertex of degree one is called a *pendant vertex*. A vertex *v* is said to be a k – *regular adjacency vertex* (or simply a k – *RA vertex*) if d(u) = k for all $u \in N(v)$. A vertex is called *an RA vertex* if it is a k – RA vertex for some $k \ge 1$. A graph *G* in which every vertex is an RA vertex, is said to be an *RA graph*. A *full vertex* of a graph *G* is a vertex which is adjacent to all other vertices of *G*.

Let G_1 and G_2 be any two graphs. The graph $G_1 \circ G_2$ obtained from one copy of G_1 and $|V(G_1)|$ copies of G_2 by joining each vertex in the ith copy of G_2 to the ith vertex of G_1 is called the *corona* of G_1 and G_2 .

The cartesian product of G_1 and G_2 is denoted by $G_1 \times G_2$, whereas, the join of G_1 and G_2 is denoted by $G_1 \vee G_2$. $\gamma(G)$ denotes the domination number of a graph G and $\chi(G)$ denotes its chromatic number. The concept of splitting graph was introduced by Sampath Kumar and Walikar [4]. The graph S(G), obtained from G, by adding a new vertex w for every vertex $v \in V$ and joining w to all vertices of G adjacent to v, is called the *splitting graph* of G. For example, a graph G and its splitting graph S(G) are shown in Figure 1.

Figure 1: A graph G and its splitting graph *S*(*G*).

In [4], the following result has been proved.

Result 1.1. [4] A graph *G* is a splitting graph if and only if V(G) can be partitioned into two sets V_1 and V_2 such that there exists a bijective mapping *f* from V_1 to V_2 and $N(f(v)) = N(v) \cap V_1$, for any $v \in V_1$.

On a similar line, Ponraj and Somasundaram [3] have introduced the concept of degree splitting graph DS(G) of a graph G. For a graph G = (V, E) with vertex set partition $V_i = \{v \in V / d(v) = i\}$, the *degree splitting graph* DS(G) is obtained from G, by adding a new vertex w_i for each partition V_i that contains at least two vertices and joining w_i to each vertex of V_i . For example, a graph G and its degree splitting graph DS(G) are shown in Figure 2.

Figure 2: A graph G and its degree splitting graph *DS*(*G*).

It is obvious that every graph is an induced subgraph of DS(G). The following results on DS(G) have been proved in [1]:

Result 1.2. [1] The degree splitting graph DS(G) is regular if and only if $G \cong K_r$, $r \ge 1$ or $(K_{2k} - F) \lor K_1$, where *F* is a 1-factor of K_{2k} and $k \ge 1$.

If $K_{n,2n+1}$ is the complete bipartite graph with bipartition (X,Y) where $X = \{v_1, v_2, ..., v_n\}$ and $Y = \{w_1, w_2, ..., w_{2n+1}\}$, then $K_{n,2n+1}^*$ denotes the graph obtained from $K_{n,2n+1}$ by deleting the edges $v_i w_{2i-1}$ and $v_i w_{2i}$ for all $i, 1 \le i \le n$.

Result 1.3. [1] Let *G* be a connected graph. Then DS(G) is a biregular RA graph if and only if $G \cong K_{l,n}$ or $K_{n,2n+1}^*$, where $n \ge 2$.

Result 1.4. [1] For any $n \ge 2$, there are *n* non isomorphic graphs whose degree splitting graphs are all isomorphic.

We define the cosplitting graph CS(G) of a graph *G* as follows:

Let *G* be a graph with vertex set $\{v_1, v_2, ..., v_n\}$. The *cosplitting graph CS*(*G*) is the graph obtained from *G*, by adding a new vertex w_i for each vertex v_i and joining w_i to all vertices which are not adjacent to v_i in *G*. For example, a graph *G* and its cosplitting graph *CS*(*G*) are shown in Figure 3.

Figure 3: A graph G and its cosplitting graph *CS*(*G*).

In this paper, we characterise the graphs for which the cosplitting graph is regular, biregular or bipartite. Also we give a necessary and sufficient condition for a graph to be a cosplitting graph. And finally we characterise the graphs for which the splitting graph and the cosplitting graph are isomorphic.

2 Properties of Cosplitting Graph

Let K(m,n) denote the bipartite graph with vertex set bipartition (X,Y) where $X = \{u_1, u_2, ..., u_{m+n}\}$ and $Y = \{v_1, v_2, ..., v_{m+n}\}$ and edge set $E(K(m,n)) = \{u_iv_j / 1 \le i \le m \text{ and } 1 \le j \le m+n\} \cup \{u_iv_j / 1 \le i \le m+n \text{ and } 1 \le j \le n\}$. For example, the graph K(2,3) is shown in Figure 4.

Figure 4: The graph *K*(2,3).

For any graph G of order n, clearly CS(G) contains 2n vertices. Let $v_1, v_2, ..., v_n$ be the vertices of G and $w_1, w_2, ..., w_n$ be the corresponding newly added vertices in CS(G). Let d'(v) and d*(v) denote the degrees of a vertex v in CS(G) and S(G) respectively.

For the cosplitting graph CS(G), the following results can be easily verified:

Result 2.1. $d'(v_i) = n$ and $d'(w_i) + d(v_i) = n$, for all $i, 1 \le i \le n$.

Result 2.2. If G has n vertices and m edges, then CS(G) has 2n vertices and $n^2 - m$ edges.

Result 2.3. For a connected graph G, $1 \le d'(w_i) \le n - 1$. $d'(w_i) = 1$ implies that v_i is a full vertex in G and $d'(w_i) = n - 1$ implies that v_i is a pendant vertex in G.

It is important to note that Result 2.3 is also true for any disconnected graph G unless G contains an isolated vertex. In other words, $d'(w_i) = n$ if and only if v_i is an isolated vertex. Hence $\Delta(CS(G)) = n$. Also CS(G) contains n + m vertices of degree n, if and only if G contains m isolated vertices. Let them be denoted by $u_1, u_2, ..., u_m$. Note that in such case, CS(G) contains $K_{m,m}$ as an induced subgraph. The removal of the 2m vertices that induces $K_{m,m}$ from CS(G) results in a graph which is isomorphic to $CS(G \setminus \{u_1, u_2, ..., u_m\})$.

Result 2.4. $CS(K_n) \cong K_n \circ K_1$, $CS(K_n^c) \cong K_{n,n}$ and $CS(K_{m,n}) \cong K(m,n)$.

It is easy to observe that $G \circ K_I$ is a spanning subgraph of CS(G) and $G \circ K_I = CS(G)$ if and only if $G \cong K_n$.

Result 2.5. Every graph G is an induced subgraph of its cosplitting graph CS(G).

Result 2.6. In CS(G), the subgraph induced by the set of all vertices of degree n is isomorphic to G.

Result 2.7. For any graph G, the cosplitting graph CS(G) is always connected. But in case of splitting graph, S(G) is connected if and only if G is connected.

Result 2.8. The cosplitting graph CS(G) is *r* - regular if and only if $G \cong K_r^c$.

Result 2.9. The cosplitting graph CS(G) is (r, n - r) – biregular if and only if *G* is an *r* – regular graph for any positive integer *r*.

Result 2.10. In the cosplitting graph of a connected graph, every newly added vertex that corresponds to a non - full vertex lies on at least one new cycle.

Result 2.11. For any graph G, $\chi(CS(G)) = \chi(G)$ or $\chi(G) + 1$.

The following theorem gives a characterisation of cosplitting graphs.

Theorem 2.12. A graph *G* is a cosplitting graph if and only if V(G) can be partitioned into two sets V_1 and V_2 such that there exists a bijection *f* from V_1 to V_2 which satisfies the following conditions: (i) $N(v) \cup N(f(v)) = V \setminus f(N(v))$ and

(ii) $N(v) \cap N(f(v)) = \phi$, for any $v \in V_1$.

Proof: Let *G* be a cosplitting graph of a graph *H*. To construct *G* from *H*, we add a new vertex *w* for each vertex *v* of *H* and join *w* with every vertex of *H* which is not adjacent to *v*. Let $V_1 = V(H)$ and $V_2 = V(G) \setminus V(H)$. For $v_i \in V_1$, let $w_i \in V_2$, be the corresponding newly added vertex where $1 \le i \le |V_1|$.

Now define a function $f: V_1 \rightarrow V_2$ by $f(v_i) = w_i$, $1 \le i \le |V_1|$. Then clearly f is a bijection from V_1 onto V_2 . Also by definition $N(f(v_i)) = V_1 \setminus N(v_i)$. Hence (ii) is proved. In H, each v_i is adjacent not only to its neighbours in G, but also to all newly added vertices corresponding to its non-neighbours. Therefore we get $N(v_i) \cup N(f(v_i)) = V \setminus f(N(v_i))$.

Conversely, let the given conditions be true for a graph *G*. Let *H* be the subgraph of *G* induced by V_1 . We claim that $CS(H) \cong G$. Since *f* is bijective, it is clear that for every vertex v_i in *H*, there is a unique vertex $f(v_i)$ in $G \setminus H$. Also by the assumptions (i) and (ii), v_i and $f(v_i)$ are adjacent for every *i*, $1 \le i \le n$ and every vertex in V_1 is a neighbour of either v_i or $f(v_i)$ but not both.

Let us prove that $\langle G \mid H \rangle$ contains no edge. Suppose not, let $f(v_i)$ and $f(v_j)$ be adjacent for some $i \neq j$. Then by assumption (ii), $f(v_j) \notin N(v_i)$. In other words, $v_i \notin N(f(v_j))$ which implies that $v_i \in N(v_j)$ which is a contradiction to (i) since $N(v_i) \cup N(f(v_i))$ does not contain any vertex of $f(N(v_i))$. Therefore $\langle G \mid H \rangle$ is a null graph. Hence if we consider $f(v_i)$ to be the corresponding newly added vertex for v_i , then G is the cosplitting graph of H.

The following theorem characterises all bipartite cosplitting graphs.

Theorem 2.13. For any graph G, CS(G) is bipartite if and only if $G \cong K_{m,n}$ or K_n^c .

Proof: Let G be any graph for which CS(G) is bipartite. Since G is an induced subgraph of CS(G), G is also bipartite. Let (X,Y) be the bipartition of G.

Case (i): Suppose *G* is connected. Let $x \in X$ and $y \in Y$. We claim that *x* and *y* are adjacent in *G*. Suppose not, then there exists an (x, y) – path *P* of odd length in *G*. Also the newly added vertex *w* corresponding to *x*, is adjacent to both *x* and *y* in *CS*(*G*). Therefore the path *P* together with the edges *xw* and *wy* forms a cycle of odd length in *CS*(*G*), which is a contradiction. Therefore every $x \in X$ is adjacent to any $y \in Y$ in *G* and we have $G \cong K_{m,n}$.

Case (ii): Suppose G is disconnected. If $G \not\cong K_n^c$, then there is a component, say G_1 of G containing at least one edge xy. Let v be a vertex of G not in G_1 and let w be the newly added vertex corresponding to v in CS(G). Clearly w is adjacent to both x and y in CS(G). Thus wxyw forms a triangle in CS(G). This is a contradiction to the assumption that CS(G) is bipartite. Hence $G \cong K_n^c$.

Conversely if $G \cong K_{m,n}$ or K_n^c , then $CS(G) \cong K(m,n)$ or $K_{n,n}$ respectively and hence the result follows.

Corollary 2.14. CS(G) is a tree if and only if $G \cong K_{1,1}$ or K_1 .

Proof: Suppose CS(G) is a tree. Then CS(G) is bipartite and *G* is acyclic. Therefore, by the above theorem, $G \cong K_{I,I}$ or K_I . And the converse is obvious.

From the above corollary, P_2 and P_4 are the only cosplitting trees.

Next we prove that $K_3 \circ K_1$ and C_4 are the only unicyclic cosplitting graphs.

Theorem 2.15. The cosplitting graph CS(G) of a graph G is unicyclic if and only if $G \cong K_3 \text{ or } K_2^c$.

Proof: Let G be any graph such that CS(G) is unicyclic with the cycle C. Let $v_1, v_2, ..., v_n$ be the vertices of G and $w_1, w_2, ..., w_n$ be the corresponding newly added vertices in CS(G). Since $\{w_1, w_2, ..., w_n\}$ is independent, either $V(C) \subseteq V(G)$ or $w_i \in V(C)$ for some *i*.

Case (i): Suppose $V(C) \subseteq V(G)$.

It is clear that the cosplitting graph of a disconnected graph other than K_n^c contains more than one triangle. Hence *G* must be connected. Also by Result 2.10, every vertex of *G* is a full vertex and therefore the newly added vertices do not form any new cycle. Hence, $G \cong K_3$.

Case (ii): Suppose $w_i \in V(C)$ for some *i*.

Then *G* is acyclic and so every component of *G* is a tree. Since CS(G) is unicyclic, by Result 2.10 every component of *G* contains only one non full vertex. This is possible only when *G* is empty. If *G* contains more than two isolated vertices, then CS(G) is not unicyclic. Thus $G \cong K_{2}^{c}$

Conversely, the cosplitting graphs of K_3 and K_2^c are $K_3 \circ K_1$ and C_4 respectively which are unicyclic.

Theorem 2.16. No two non – isomorphic graphs can have the same cosplitting graph.

Proof: Suppose there are two non-isomorphic graphs G_1 and G_2 such that $CS(G_1) \cong CS(G_2)$.

Case (i): Suppose G_1 has no isolated vertex. Then by Result 2.3, no newly added vertex in $CS(G_1)$ is of degree *n*. Therefore the subgraph induced by the set of all vertices of degree *n* in $CS(G_1)$ is isomorphic to G_1 . Since $CS(G_1) \cong CS(G_2)$, we have $CS(G_2)$ also contains exactly *n* vertices of degree *n*, and the subgraph induced by them is isomorphic to G_2 . This implies that $G_1 \cong G_2$, a contradiction.

Case (ii): Let $G_1 = H_1 \cup K_m^c$, where H_1 contains no isolated vertex. Then $CS(G_1)$ contains n + m vertices of degree n and it contains $K_{m,m}$ as an induced subgraph. Since $CS(G_1) \cong CS(G_2)$, it is clear that $CS(G_2)$ also contains n + m vertices of degree n. Therefore, $G_2 = H_2 \cup K_m^c$, for some graph H_2 which contains no isolated vertex. From Result 2.3, by removing 2m vertices that induces $K_{m,m}$ in $CS(G_1)$ and $CS(G_2)$, we get $CS(H_1)$ and $CS(H_2)$ respectively. This implies that $CS(H_1) \cong CS(H_2)$. Now using Case (i), we conclude that $H_1 \cong H_2$ and so $G_1 \cong G_2$, which is again a contradiction. Hence the result follows.

3 Co-regular Graphs

In this section, we define a new type of graphs called co - regular graphs and prove that co - regular graphs are the only graphs for which splitting and cosplitting graphs are isomorphic.

Let *G* be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$. Then the *co* – *regular graph* of *G* denoted by *CR*(*G*) is the graph with vertex set $V(CR(G)) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ and edge set E(CR(G))= $\{u_i u_j, w_i w_j / v_i v_j \in E(G), i \neq j \text{ and } 1 \leq i, j \leq n\} \cup \{u_i w_j / v_i v_j \notin E(G) \text{ and } 1 \leq i, j \leq n\}$.

For example, a graph G and its co-regular graph CR(G) are shown in Figure 5.

Figure 5: A graph G and its co-regular graph CR(G).

The following results can be easily verified for a co-regular graph:

Result 3.1. A co – regular graph is an n – regular graph on 2n vertices.

Result 3.2. $G \times P_2$ is a spanning subgraph of CR(G). In particular, $CR(K_n) = K_n \times P_2$.

Result 3.3. $CR(K_n^c) = K_n^c \lor K_n^c = K_{n,n}$

Result 3.4. For any graph G, CR(G) is connected.

For, if G is connected since $G \times P_2$ is a spanning subgraph of CR(G), then CR(G) is also connected. If G is disconnected, then every vertex in each component of one copy of G is adjacent to all vertices in the other components of another copy of G and hence CR(G) is connected.

Result 3.5. For any graph G, $\gamma(CR(G)) = 2$.

For, CR(G) does not contain a full vertex and hence $\gamma(CR(G)) \neq 1$, and $\{u_i, w_i\}$ is a minimum dominating set of CR(G) for any $i, 1 \le i \le n$.

Theorem 3.6. A graph *G* is co – regular if and only if its vertex set can be partitioned into two element subsets $\{u_i, w_i\}$, $1 \le i \le n$, such that for any *i*, $N(u_i)$ and $N(w_i)$ form a partition of V(G), that is, such that $N(u_i) \cup N(w_i) = V(G)$ and $N(u_i) \cap N(w_i) = \phi$, for every i = 1, 2, ..., n.

Proof: Let *G* be the co – regular graph of some graph *H*. Let $V(G) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ such that $\langle u_1, u_2, ..., u_n \rangle \geq \leq \langle w_1, w_2, ..., w_n \rangle \geq H$. Without loss of generality, let u_i be the isomorphic image of w_i . Consider the pair $\{u_i, w_i\}$. By the definition of co – regular graph, any vertex u_j , $1 \leq j \leq n$, $i \neq j$, is adjacent to either u_i or w_i but not both. Similar condition holds with any w_j , $1 \leq j \leq n$, $i \neq j$. Since u_i and w_i are adjacent, $u_i \in N(w_i)$ and $w_i \in N(u_i)$. Therefore, the neighbour sets of u_i and w_i form a partition of V(G).

Conversely, suppose the vertex set of any graph *G* can be partitioned into two element subsets such that any vertex in *G* is a neighbour of any one vertex but not to both in each subset. Therefore *G* contains even number of vertices. Let $V(G) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ such that $\{u_1, w_1\}, \{u_2, w_2\}, ..., \{u_n, w_n\}$ be the partition of V(G).

First we claim that $\langle u_1, u_2, ..., u_n \rangle \geq \langle w_1, w_2, ..., w_n \rangle \geq$. Suppose u_r is adjacent to u_s . Then $u_s \notin N(w_r)$ and hence $w_r \in N(w_s)$. In a similar way, we prove that if u_r and u_s are non adjacent, then w_r and w_s are non adjacent. Since *r* and *s* are arbitrary, $\langle u_1, u_2, ..., u_n \rangle \geq \langle w_1, w_2, ..., w_n \rangle \geq H$, say.

For $1 \le i \le n$, since $N(u_i) \cup N(w_i) = V(G)$, we have $u_i \in N(w_i)$. Hence, u_i is adjacent to w_i . Also since $N(u_i) \cap N(w_i) = \phi$, both u_i and w_i have no common neighbours. Combining the two conditions we get $[N(u_i)]^c = N(w_i)$. Thus we conclude that G = CR(H).

Theorem 3.7. Let *G* be any graph of order *n*. Then $S(G) \cong CS(G)$ if and only if $G \cong CR(H)$ for some graph *H*.

Proof: Let G be any graph of order n such that its splitting graph S(G) is isomorphic to its cosplitting graph CS(G). Hence by Result 2.7, G is connected. For any vertex u in G, $d^*(u) = 2d(u)$ and d'(u) = n. Since $S(G) \cong CS(G)$, we have d(u) = n/2 for all $u \in V(G)$. That is, G is an n/2 – regular graph on n vertices.

Let $V(G) = \{u_1, u_2, ..., u_n\}$ and let $v_1, v_2, ..., v_n$ be the newly added vertices in S(G). From the definition of splitting graph, for every vertex v_i , there exists a unique vertex $u_k \notin N(v_i)$ in G such that $N(u_k) \cap V(G) = N(v_i)$ by Result 1.1. Since $S(G) \cong CS(G)$, there will be a one to one correspondence between the newly added vertices in S(G) and CS(G). Therefore from the definition of cosplitting graph, corresponding to every v_i , there exists a unique vertex $u_m \in N(v_i)$ in G such that $N(v_i) = V(G) \setminus N(u_m)$ by Theorem 2.12.

Combining the above two conditions we get $N(u_m) \cup N(u_k) = V(G)$, $N(u_m) \cap N(u_k) = \phi$. Then clearly u_k and u_m are adjacent. Thus u_k and u_m are two adjacent vertices in G, whose neighbour sets form a partition of V(G). In a similar manner, we can pair off vertices of G such that each pair has distinct neighbour set whose union is V(G) itself. Thus by the above theorem, G is isomorphic to CR(H) for some H.

Conversely, assume that *G* is a co – regular graph of a graph *H*. Let $V(G) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ such that $\langle u_1, u_2, ..., u_n \rangle \geq \langle w_1, w_2, ..., w_n \rangle \geq H$. Without loss of generality, let u_i be the isomorphic image of w_i . Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$ and $c_1, c_2, ..., c_n, d_1, d_2, ..., d_n$ be the newly added vertices in S(G) and CS(G) respectively corresponding to the vertices $u_1, u_2, ..., u_n, w_1, w_2, ..., w_n$. Then a function $f : S(G) \to CS(G)$ defined by $f(u_i) = u_i, f(w_i) = w_i, f(a_i) = d_i, f(b_i) = c_i$ where $1 \le i \le n$, can be easily verified to be an isomorphism. Hence the theorem is proved.

References

- [1] Selvam Avadayappan and M. Bhuvaneshwari, Degree Splitting Graph, Preprint.
- [2] R. Balakrishnan and K. Ranganathan, *A Text Book of graph Theory*, Springer-verlag, New York, Inc., 1999.
- [3] R. Ponraj and S. Somasundaram, *On the degree splitting graph of a graph*, NATL ACAD SCI LETT, Vol-27, No.7 & 8(2004), 275 278.
- [4] E. Sampath Kumar and H.B. Walikar, *On the Splitting graph of a graph*, Karnatak Uni. Sci., 25: 13, 1980.