Cosplitting and co-regular graphs

Selvam Avadayappan, M. Bhuvaneshwari
Department of Mathematics
VHNSN College, Virudhunagar - 626001, India. selvam_avadayappan@yahoo.co.in bhuvanakamaraj28@yahoo.com

Abstract

The graph $S(G)$ obtained from a graph $G(V, E)$, by adding a new vertex w for every vertex $v \in V$ and joining w to all neighbours of v in G, is called the splitting graph of G. The cosplitting graph $C S(G)$ is obtained from G, by adding a new vertex w for each vertex $v \in V$ and joining w to those vertices of G which are not adjacent to v in G. In this paper, we introduce the concept of cosplitting graph and characterise the graphs for which splitting and cosplitting graphs are isomorphic.

Keywords: Cosplitting graph, splitting graph, degree splitting graph, co - regular graph.
AMS Subject Classification (2010): 05C(Primary).

1 Introduction

Throughout this paper, we consider only finite, simple and undirected graphs. For notations and terminology, we follow [2]. A graph G is said to be r-regular if every vertex of G has degree r. For r $\neq k$, a graph G is said to be (r, k) - biregular if $\mathrm{d}(v)$ is either r or k for any vertex v in G. A $l-$ factor of G is a 1 - regular spanning subgraph of G and it is denoted by F. For any vertex $v \in V$ in a graph $G(V, E)$, the open neighbourhood $N(v)$ of v is the set of all vertices adjacent to v. That is, $N(v)=\{u \in V$ $/ u v \in E\}$. The closed neighbourhood $N[v]$ of v is defined by $N[v]=N(v) \cup\{v\}$.

A vertex of degree one is called a pendant vertex. A vertex v is said to be a k-regular adjacency vertex (or simply a $k-R A$ vertex) if $\mathrm{d}(u)=k$ for all $u \in N(v)$. A vertex is called an $R A$ vertex if it is a $k-$ RA vertex for some $k \geq 1$. A graph G in which every vertex is an RA vertex, is said to be an $R A$ graph. A full vertex of a graph G is a vertex which is adjacent to all other vertices of G.

Let G_{1} and G_{2} be any two graphs. The graph $G_{1} \circ G_{2}$ obtained from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining each vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2} to the $\mathrm{i}^{\text {th }}$ vertex of G_{1} is called the corona of G_{1} and G_{2}.

The cartesian product of G_{1} and G_{2} is denoted by $G_{1} \times G_{2}$, whereas, the join of G_{1} and G_{2} is denoted by $G_{1} \vee G_{2} . \quad \gamma(G)$ denotes the domination number of a graph G and $\chi(G)$ denotes its chromatic number.

The concept of splitting graph was introduced by Sampath Kumar and Walikar [4]. The graph $S(G)$, obtained from G, by adding a new vertex w for every vertex $v \in V$ and joining w to all vertices of G adjacent to v, is called the splitting graph of G. For example, a graph G and its splitting graph $S(G)$ are shown in Figure 1.

G

Figure 1: A graph G and its splitting graph $S(G)$.
In [4], the following result has been proved.
Result 1.1. [4] A graph G is a splitting graph if and only if $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that there exists a bijective mapping f from V_{1} to V_{2} and $N(f(v))=N(v) \cap V_{1}$, for any $v \in V_{1}$.

On a similar line, Ponraj and Somasundaram [3] have introduced the concept of degree splitting graph $D S(G)$ of a graph G. For a graph $G=(V, E)$ with vertex set partition $V_{\mathrm{i}}=\{v \in V / \mathrm{d}(v)=i\}$, the degree splitting graph $D S(G)$ is obtained from G, by adding a new vertex w_{i} for each partition V_{i} that contains at least two vertices and joining w_{i} to each vertex of V_{i}. For example, a graph G and its degree splitting graph $D S(G)$ are shown in Figure 2.

G

$D S(G)$

Figure 2: A graph G and its degree splitting graph $D S(G)$.
It is obvious that every graph is an induced subgraph of $D S(G)$. The following results on $D S(G)$ have been proved in [1]:

Result 1.2. [1] The degree splitting graph $D S(G)$ is regular if and only if $G \cong K_{r}, r \geq 1$ or $\left(K_{2 k}-F\right) \vee$ K_{1}, where F is a 1-factor of $K_{2 k}$ and $k \geq 1$.

If $K_{n, 2 n+1}$ is the complete bipartite graph with bipartition (X, Y) where $X=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $Y=\left\{w_{1}, w_{2}, \ldots, w_{2 n+1}\right\}$, then $K_{n, 2 n+1}^{*}$ denotes the graph obtained from $K_{n, 2 n+1}$ by deleting the edges $v_{i} w_{2 i-1}$ and $v_{i} w_{2 i}$ for all $i, 1 \leq i \leq n$.

Result 1.3. [1] Let G be a connected graph. Then $D S(G)$ is a biregular RA graph if and only if $G \cong K_{l, n}$ or $K_{n, 2 n+1}^{*}$, where $n \geq 2$.

Result 1.4. [1] For any $n \geq 2$, there are n non isomorphic graphs whose degree splitting graphs are all isomorphic.

We define the cosplitting graph $C S(G)$ of a graph G as follows:
Let G be a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The cosplitting $\operatorname{graph} C S(G)$ is the graph obtained from G, by adding a new vertex w_{i} for each vertex v_{i} and joining w_{i} to all vertices which are not adjacent to v_{i} in G. For example, a graph G and its cosplitting graph $C S(G)$ are shown in Figure 3.

G

$\operatorname{CS}(G)$

Figure 3: A graph G and its cosplitting graph $C S(G)$.
In this paper, we characterise the graphs for which the cosplitting graph is regular, biregular or bipartite. Also we give a necessary and sufficient condition for a graph to be a cosplitting graph. And finally we characterise the graphs for which the splitting graph and the cosplitting graph are isomorphic.

2 Properties of Cosplitting Graph

Let $K(m, n)$ denote the bipartite graph with vertex set bipartition (X, Y) where $X=\left\{u_{1}, u_{2}, \ldots, u_{m+n}\right\}$ and $Y=\left\{v_{l}, v_{2}, \ldots, v_{m+n}\right\}$ and edge set $E(K(m, n))=\left\{u_{i} v_{j} / 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq m+n\right\} \cup\left\{u_{i} v_{j} / 1 \leq i \leq\right.$ $m+n$ and $1 \leq j \leq n\}$. For example, the graph $K(2,3)$ is shown in Figure 4.

Figure 4: The graph $K(2,3)$.

For any graph G of order n, clearly $C S(G)$ contains $2 n$ vertices. Let $v_{l}, v_{2}, \ldots, v_{n}$ be the vertices of G and $w_{l}, w_{2}, \ldots, w_{n}$ be the corresponding newly added vertices in $\operatorname{CS}(G)$. Let $\mathrm{d}^{\prime}(v)$ and $\mathrm{d}^{*}(v)$ denote the degrees of a vertex v in $C S(G)$ and $S(G)$ respectively.

For the cosplitting graph $C S(G)$, the following results can be easily verified:
Result 2.1. $\mathrm{d}^{\prime}\left(v_{i}\right)=n$ and $\mathrm{d}^{\prime}\left(w_{i}\right)+\mathrm{d}\left(v_{i}\right)=n$, for all $i, 1 \leq i \leq n$.
Result 2.2. If G has n vertices and m edges, then $C S(G)$ has $2 n$ vertices and $n^{2}-m$ edges.
Result 2.3. For a connected graph $G, 1 \leq \mathrm{d}^{\prime}\left(w_{i}\right) \leq n-1$. $\mathrm{d}^{\prime}\left(w_{i}\right)=1$ implies that v_{i} is a full vertex in G and $\mathrm{d}^{\prime}\left(w_{i}\right)=n-1$ implies that v_{i} is a pendant vertex in G.

It is important to note that Result 2.3 is also true for any disconnected graph G unless G contains an isolated vertex. In other words, $\mathrm{d}^{\prime}\left(w_{i}\right)=n$ if and only if v_{i} is an isolated vertex. Hence $\Delta(C S(G))=n$. Also $C S(G)$ contains $n+m$ vertices of degree n , if and only if G contains m isolated vertices. Let them be denoted by $u_{1}, u_{2}, \ldots, u_{m}$. Note that in such case, $C S(G)$ contains $K_{m, m}$ as an induced subgraph. The removal of the $2 m$ vertices that induces $K_{m, m}$ from $\operatorname{CS}(G)$ results in a graph which is isomorphic to $C S\left(G \backslash\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}\right)$.

Result 2.4. $C S\left(K_{n}\right) \cong K_{n} \circ K_{l}, C S\left(K_{n}^{c}\right) \cong K_{n, n}$ and $C S\left(K_{m, n}\right) \cong K(m, n)$.
It is easy to observe that $G \circ K_{l}$ is a spanning subgraph of $C S(G)$ and $G \circ K_{l}=C S(G)$ if and only if $G \cong K_{n}$.

Result 2.5. Every graph G is an induced subgraph of its cosplitting graph $C S(G)$.
Result 2.6. In $C S(G)$, the subgraph induced by the set of all vertices of degree n is isomorphic to G.
Result 2.7. For any graph G, the cosplitting graph $\operatorname{CS}(G)$ is always connected. But in case of splitting graph, $S(G)$ is connected if and only if G is connected.

Result 2.8. The cosplitting graph $C S(G)$ is r-regular if and only if $G \cong K_{r}^{c}$.
Result 2.9. The cosplitting graph $C S(G)$ is $(r, n-r)$ - biregular if and only if G is an r - regular graph for any positive integer r.

Result 2.10. In the cosplitting graph of a connected graph, every newly added vertex that corresponds to a non - full vertex lies on at least one new cycle.

Result 2.11. For any graph $G, \chi(C S(G))=\chi(G)$ or $\chi(G)+1$.
The following theorem gives a characterisation of cosplitting graphs.
Theorem 2.12. A graph G is a cosplitting graph if and only if $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that there exists a bijection f from V_{1} to V_{2} which satisfies the following conditions:
(i) $N(v) \cup N(f(v))=V \backslash f(N(v))$ and
(ii) $N(v) \cap N(f(v))=\phi$, for any $v \in V_{1}$.

Proof: Let G be a cosplitting graph of a graph H. To construct G from H, we add a new vertex w for each vertex v of H and join w with every vertex of H which is not adjacent to v. Let $V_{1}=V(H)$ and $V_{2}=$ $V(G) \backslash V(H)$. For $v_{\mathrm{i}} \in V_{1}$, let $w_{\mathrm{i}} \in V_{2}$, be the corresponding newly added vertex where $1 \leq i \leq\left|V_{1}\right|$.

Now define a function $f: V_{1} \rightarrow V_{2}$ by $f\left(v_{i}\right)=w_{i}, 1 \leq i \leq\left|V_{1}\right|$. Then clearly f is a bijection from V_{1} onto V_{2}. Also by definition $N\left(f\left(v_{i}\right)\right)=V_{l} \backslash N\left(v_{i}\right)$. Hence (ii) is proved. In H, each v_{i} is adjacent not only to its neighbours in G, but also to all newly added vertices corresponding to its non-neighbours. Therefore we get $N\left(v_{i}\right) \cup N\left(f\left(v_{i}\right)\right)=V \backslash f\left(N\left(v_{i}\right)\right)$.

Conversely, let the given conditions be true for a graph G. Let H be the subgraph of G induced by V_{1}. We claim that $C S(H) \cong G$. Since f is bijective, it is clear that for every vertex v_{i} in H, there is a unique vertex $f\left(v_{i}\right)$ in $G \backslash H$. Also by the assumptions (i) and (ii), v_{i} and $f\left(v_{i}\right)$ are adjacent for every i, $1 \leq i \leq n$ and every vertex in V_{1} is a neighbour of either v_{i} or $f\left(v_{i}\right)$ but not both.

Let us prove that $\langle G \backslash H\rangle$ contains no edge. Suppose not, let $f\left(v_{i}\right)$ and $f\left(v_{j}\right)$ be adjacent for some i $\neq j$. Then by assumption (ii), $f\left(v_{j}\right) \notin N\left(v_{i}\right)$. In other words, $v_{i} \notin N\left(f\left(v_{j}\right)\right)$ which implies that $v_{i} \in N\left(v_{j}\right)$ which is a contradiction to (i) since $N\left(v_{i}\right) \cup N\left(f\left(v_{i}\right)\right)$ does not contain any vertex of $f\left(N\left(v_{i}\right)\right)$. Therefore $<G \backslash H>$ is a null graph. Hence if we consider $f\left(v_{i}\right)$ to be the corresponding newly added vertex for v_{i}, then G is the cosplitting graph of H.

The following theorem characterises all bipartite cosplitting graphs.
Theorem 2.13. For any graph $G, C S(G)$ is bipartite if and only if $G \cong K_{m, n}$ or K_{n}^{c}.
Proof: Let G be any graph for which $\operatorname{CS}(\mathrm{G})$ is bipartite. Since G is an induced subgraph of $C S(G)$, G is also bipartite. Let (X, Y) be the bipartition of G.

Case (i): Suppose G is connected. Let $x \in X$ and $y \in Y$. We claim that x and y are adjacent in G. Suppose not, then there exists an (x, y) - path P of odd length in G. Also the newly added vertex w corresponding to x, is adjacent to both x and y in $C S(G)$. Therefore the path P together with the edges $x w$ and wy forms a cycle of odd length in $C S(G)$, which is a contradiction. Therefore every $x \in X$ is adjacent to any $y \in Y$ in G and we have $G \cong K_{m, n}$.

Case (ii): Suppose G is disconnected. If $G \nsubseteq K_{n}^{c}$, then there is a component, say G_{1} of G containing at least one edge $x y$. Let v be a vertex of G not in G_{1} and let w be the newly added vertex corresponding to v in $C S(G)$. Clearly w is adjacent to both x and y in $C S(G)$. Thus $w x y w$ forms a triangle in $C S(G)$. This is a contradiction to the assumption that $C S(G)$ is bipartite. Hence $G \cong K_{n}^{c}$.

Conversely if $G \cong K_{m, n}$ or K_{n}^{c}, then $C S(G) \cong K(m, n)$ or $K_{n, n}$ respectively and hence the result follows.

Corollary 2.14. $C S(G)$ is a tree if and only if $G \cong K_{l, l}$ or K_{l}.
Proof: Suppose $C S(G)$ is a tree. Then $C S(G)$ is bipartite and G is acyclic. Therefore, by the above theorem, $G \cong K_{l, l}$ or K_{l}. And the converse is obvious.

From the above corollary, P_{2} and P_{4} are the only cosplitting trees.

Next we prove that $K_{3} \circ K_{1}$ and C_{4} are the only unicyclic cosplitting graphs.
Theorem 2.15. The cosplitting graph $C S(G)$ of a graph G is unicyclic if and only if $G \cong K_{3}$ or K_{2}^{c}.
Proof: Let G be any graph such that $C S(G)$ is unicyclic with the cycle C. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G and $w_{l}, w_{2}, \ldots, w_{n}$ be the corresponding newly added vertices in $\operatorname{CS}(G)$. Since $\left\{w_{l}, w_{2}, \ldots\right.$, $\left.w_{n}\right\}$ is independent, either $V(C) \subseteq V(G)$ or $w_{i} \in V(C)$ for some i.

Case (i): Suppose $V(C) \subseteq V(G)$.
It is clear that the cosplitting graph of a disconnected graph other than K_{n}^{c} contains more than one triangle. Hence G must be connected. Also by Result 2.10 , every vertex of G is a full vertex and therefore the newly added vertices do not form any new cycle. Hence, $G \cong K_{3}$.

Case (ii): Suppose $w_{i} \in V(C)$ for some i.
Then G is acyclic and so every component of G is a tree. Since $C S(G)$ is unicyclic, by Result 2.10 every component of G contains only one non full vertex. This is possible only when G is empty. If G contains more than two isolated vertices, then $C S(G)$ is not unicyclic. Thus $G \cong K_{2}^{c}$.

Conversely, the cosplitting graphs of K_{3} and K_{2}^{c} are $K_{3} \circ K_{1}$ and C_{4} respectively which are unicyclic.

Theorem 2.16. No two non - isomorphic graphs can have the same cosplitting graph.
Proof: Suppose there are two non-isomorphic graphs G_{1} and G_{2} such that $\operatorname{CS}\left(G_{I}\right) \cong C S\left(G_{2}\right)$.
Case (i): Suppose G_{I} has no isolated vertex. Then by Result 2.3, no newly added vertex in $\operatorname{CS}\left(G_{I}\right)$ is of degree n. Therefore the subgraph induced by the set of all vertices of degree n in $\operatorname{CS}\left(G_{l}\right)$ is isomorphic to G_{l}. Since $C S\left(G_{l}\right) \cong C S\left(G_{2}\right)$, we have $C S\left(G_{2}\right)$ also contains exactly n vertices of degree n, and the subgraph induced by them is isomorphic to G_{2}. This implies that $G_{I} \cong G_{2}$, a contradiction.

Case (ii): Let $G_{l}=H_{l} \cup K_{m}^{c}$, where H_{l} contains no isolated vertex. Then $\operatorname{CS}\left(G_{l}\right)$ contains $n+m$ vertices of degree n and it contains $K_{m, m}$ as an induced subgraph. Since $\operatorname{CS}\left(G_{l}\right) \cong C S\left(G_{2}\right)$, it is clear that $C S\left(G_{2}\right)$ also contains $n+m$ vertices of degree n. Therefore, $G_{2}=H_{2} \cup K_{m}^{c}$, for some graph H_{2} which contains no isolated vertex. From Result 2.3, by removing $2 m$ vertices that induces $K_{m, m}$ in $\operatorname{CS}\left(G_{l}\right)$ and $C S\left(G_{2}\right)$, we get $C S\left(H_{l}\right)$ and $C S\left(H_{2}\right)$ respectively. This implies that $C S\left(H_{l}\right) \cong C S\left(H_{2}\right)$. Now using Case (i), we conclude that $H_{l} \cong H_{2}$ and so $G_{1} \cong G_{2}$, which is again a contradiction. Hence the result follows.

3 Co-regular Graphs

In this section, we define a new type of graphs called co - regular graphs and prove that co regular graphs are the only graphs for which splitting and cosplitting graphs are isomorphic.

Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then the co-regular graph of G denoted by $C R(G)$ is the graph with vertex set $V(C R(G))=\left\{u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ and edge set $E(C R(G))$ $=\left\{u_{i} u_{j}, w_{i} w_{j} / v_{i} v_{j} \in E(G), i \neq j\right.$ and $\left.1 \leq i, j \leq n\right\} \cup\left\{u_{i} w_{j} / v_{i} v_{j} \notin E(G)\right.$ and $\left.1 \leq i, j \leq n\right\}$.

For example, a graph G and its co-regular graph $C R(G)$ are shown in Figure 5.

Figure 5: A graph G and its co-regular graph $C R(G)$.
The following results can be easily verified for a co-regular graph:
Result 3.1. A co - regular graph is an n-regular graph on $2 n$ vertices.
Result 3.2. $G \times P_{2}$ is a spanning subgraph of $C R(G)$. In particular, $C R\left(K_{n}\right)=K_{n} \times P_{2}$.
Result 3.3. $C R\left(K_{n}^{c}\right)=K_{n}^{c} \vee K_{n}^{c}=K_{n, n}$.
Result 3.4. For any graph $G, C R(G)$ is connected.
For, if G is connected since $G \times P_{2}$ is a spanning subgraph of $C R(G)$, then $C R(G)$ is also connected. If G is disconnected, then every vertex in each component of one copy of G is adjacent to all vertices in the other components of another copy of G and hence $C R(G)$ is connected.

Result 3.5. For any graph $G, \gamma(C R(G))=2$.
For, $C R(G)$ does not contain a full vertex and hence $\gamma(C R(G)) \neq 1$, and $\left\{u_{i}, w_{i}\right\}$ is a minimum dominating set of $C R(G)$ for any $i, 1 \leq i \leq n$.
Theorem 3.6. A graph G is co - regular if and only if its vertex set can be partitioned into two element subsets $\left\{u_{i}, w_{i}\right\}, 1 \leq i \leq n$, such that for any $i, N\left(u_{i}\right)$ and $N\left(w_{i}\right)$ form a partition of $V(G)$, that is, such that $N\left(u_{i}\right) \cup N\left(w_{i}\right)=V(G)$ and $N\left(u_{i}\right) \cap N\left(w_{i}\right)=\phi$, for every $i=1,2, \ldots, n$.

Proof: Let G be the co - regular graph of some graph H. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ such that $\left\langle\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\right\rangle \cong\left\langle\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right\rangle \cong H$. Without loss of generality, let u_{i} be the isomorphic image of w_{i}. Consider the pair $\left\{u_{i}, w_{i}\right\}$. By the definition of co - regular graph, any vertex $u_{j}, 1 \leq j \leq n$, $i \neq j$, is adjacent to either u_{i} or w_{i} but not both. Similar condition holds with any $w_{j}, 1 \leq j \leq n, i \neq j$. Since u_{i} and w_{i} are adjacent, $u_{i} \in N\left(w_{i}\right)$ and $w_{i} \in N\left(u_{i}\right)$. Therefore, the neighbour sets of u_{i} and w_{i} form a partition of $V(G)$.

Conversely, suppose the vertex set of any graph G can be partitioned into two element subsets such that any vertex in G is a neighbour of any one vertex but not to both in each subset. Therefore G contains even number of vertices. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ such that $\left\{u_{1}, w_{1}\right\},\left\{u_{2}, w_{2}\right\}$, $\ldots,\left\{u_{n}, w_{n}\right\}$ be the partition of $\mathrm{V}(\mathrm{G})$.

First we claim that $\left\langle\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\right\rangle \cong\left\langle\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right\rangle$. Suppose u_{r} is adjacent to u_{s}. Then $u_{s} \notin$ $N\left(w_{r}\right)$ and hence $w_{r} \in N\left(w_{s}\right)$. In a similar way, we prove that if u_{r} and u_{s} are non adjacent, then w_{r} and w_{s} are non adjacent. Since r and s are arbitrary, $\left\langle\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\right\rangle \cong\left\langle\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right\rangle \cong H$, say.

For $1 \leq i \leq n$, since $N\left(u_{i}\right) \cup N\left(w_{i}\right)=V(G)$, we have $u_{i} \in N\left(w_{i}\right)$. Hence, u_{i} is adjacent to w_{i}. Also since $N\left(u_{i}\right) \cap N\left(w_{i}\right)=\phi$, both u_{i} and w_{i} have no common neighbours. Combining the two conditions we get $\left[N\left(u_{i}\right)\right]^{c}=N\left(w_{i}\right)$. Thus we conclude that $G=C R(H)$.

Theorem 3.7. Let G be any graph of order n. Then $S(G) \cong C S(G)$ if and only if $G \cong C R(H)$ for some graph H.

Proof: Let G be any graph of order n such that its splitting graph $S(G)$ is isomorphic to its cosplitting graph $C S(G)$. Hence by Result $2.7, G$ is connected. For any vertex u in $G, \mathrm{~d}^{*}(u)=2 \mathrm{~d}(u)$ and $\mathrm{d}^{\prime}(u)=n$. Since $S(G) \cong C S(G)$, we have $\mathrm{d}(u)=n / 2$ for all $u \in V(G)$. That is, G is an $n / 2-$ regular graph on n vertices.

Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and let $v_{l}, v_{2}, \ldots, v_{n}$ be the newly added vertices in $S(G)$. From the definition of splitting graph, for every vertex v_{i}, there exists a unique vertex $u_{k} \notin N\left(v_{i}\right)$ in G such that $N\left(u_{k}\right) \cap V(G)=N\left(v_{i}\right)$ by Result 1.1. Since $S(G) \cong C S(G)$, there will be a one to one correspondence between the newly added vertices in $S(G)$ and $C S(G)$. Therefore from the definition of cosplitting graph, corresponding to every v_{i}, there exists a unique vertex $u_{m} \in N\left(v_{i}\right)$ in G such that $N\left(v_{i}\right)=V(G) \backslash$ $N\left(u_{m}\right)$ by Theorem 2.12.

Combining the above two conditions we get $N\left(u_{m}\right) \cup N\left(u_{k}\right)=V(G), N\left(u_{m}\right) \cap N\left(u_{k}\right)=\phi$. Then clearly u_{k} and u_{m} are adjacent. Thus u_{k} and u_{m} are two adjacent vertices in G, whose neighbour sets form a partition of $V(G)$. In a similar manner, we can pair off vertices of G such that each pair has distinct neighbour set whose union is $V(G)$ itself. Thus by the above theorem, G is isomorphic to $C R(H)$ for some H.

Conversely, assume that G is a co - regular graph of a graph H. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots\right.$, $\left.w_{n}\right\}$ such that $\left\langle\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\right\rangle \cong\left\langle\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}\right\rangle \cong H$. Without loss of generality, let $u_{\text {i }}$ be the isomorphic image of w_{i}. Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ and $c_{1}, c_{2}, \ldots, c_{n}, d_{1}, d_{2}, \ldots, d_{n}$ be the newly added vertices in $S(G)$ and $C S(G)$ respectively corresponding to the vertices $u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{n}$. Then a function $f: S(G) \rightarrow C S(G)$ defined by $f\left(u_{i}\right)=u_{i}, f\left(w_{i}\right)=w_{i}, f\left(a_{i}\right)=d_{i}, f\left(b_{i}\right)=c_{i}$, where $1 \leq i \leq n$, can be easily verified to be an isomorphism. Hence the theorem is proved.

References

[1] Selvam Avadayappan and M. Bhuvaneshwari, Degree Splitting Graph, Preprint.
[2] R. Balakrishnan and K. Ranganathan, A Text Book of graph Theory, Springer-verlag, New York, Inc., 1999.
[3] R. Ponraj and S. Somasundaram, On the degree splitting graph of a graph, NATL ACAD SCI LETT, Vol-27, No. 7 \& 8(2004), 275 - 278.
[4] E. Sampath Kumar and H.B. Walikar, On the Splitting graph of a graph, Karnatak Uni. Sci., 25: 13, 1980.

