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Abstract 

The graph S(G) obtained from a graph G(V,E), by adding a new vertex w for every vertex         

v  V and joining w to all neighbours of v in G, is called the splitting graph of G. The cosplitting 

graph CS(G) is obtained from G, by adding a new vertex w for each vertex v  V and joining w to 

those vertices of G which are not adjacent to v in G. In this paper, we introduce the concept of 

cosplitting graph and characterise the graphs for which splitting and cosplitting graphs are 

isomorphic. 
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1    Introduction 

Throughout this paper, we consider only finite, simple and undirected graphs. For notations and 

terminology, we follow [2]. A graph G is said to be r - regular if every vertex of G has degree r. For r 

≠ k, a graph G is said to be (r,k) – biregular  if d(v) is either r or k for any vertex v in G. A 1 – factor of 

G is a 1 – regular spanning subgraph of G and it is denoted by F. For any vertex v  V in a graph 

G(V,E), the open neighbourhood N(v) of v is the set of all vertices adjacent to v. That is,  N(v) = {u  V 

/ uv  E}. The closed neighbourhood N[v] of v is defined by N[v] = N(v)  {v}.  

A vertex of degree one is called a pendant vertex. A vertex v is said to be a k – regular adjacency 

vertex (or simply a k – RA vertex) if d(u) = k for all u  N(v).   A vertex is called an  RA vertex if it is a 

k – RA vertex for some k ≥ 1. A graph G in which every vertex is an RA vertex, is said to be an RA 

graph. A full vertex of a graph G is a vertex which is adjacent to all other vertices of G.  

Let G1 and G2 be any two graphs. The graph G1◦ G2 obtained from one copy of G1 and |V(G1)| 

copies of G2 by joining each vertex in the i
th
 copy of G2 to the i

th
 vertex of G1 is called the corona of G1 

and G2.  

The cartesian product of G1 and G2 is denoted by G1  G2, whereas, the join of G1 and G2 is denoted 

by G1  G2.  (G) denotes the domination number of a graph G and χ(G) denotes its chromatic 

number.   
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The concept of splitting graph was introduced by Sampath Kumar and Walikar [4]. The graph S(G), 

obtained from G, by adding a new vertex w for every vertex v  V and joining w to all vertices of G 

adjacent to v, is called the splitting graph of G. For example, a graph G and its splitting graph S(G) are 

shown in Figure 1.  

 

Figure 1: A graph G and its splitting graph S(G). 

In [4], the following result has been proved. 

Result 1.1. [4]  A graph G is a splitting graph if and only if V(G) can be partitioned into two sets V1 

and V2 such that there exists a bijective mapping f from V1 to V2 and N(f(v)) = N(v)  V1, for any                       

v  V1. 

On a similar line, Ponraj and Somasundaram [3] have introduced the concept of degree splitting 

graph DS(G) of  a graph G. For a graph G = (V, E) with vertex set partition Vi = {v  V / d(v) = i}, the 

degree splitting graph DS(G) is obtained from G, by adding a new vertex wi for each partition Vi that 

contains at least two vertices and joining wi to each vertex of Vi. For example, a graph G and its degree 

splitting graph DS(G) are shown in Figure 2. 

 

 

Figure 2: A graph G and its degree splitting graph DS(G). 

It is obvious that every graph is an induced subgraph of DS(G). The following results on DS(G) 

have been proved in [1]: 
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Result 1.2. [1]  The  degree splitting graph  DS(G) is  regular  if and only if G ≅ Kr, r ≥ 1or (K2k – F)  

K1 , where F is a 1-factor of K2k and k ≥ 1. 

If Kn,2n+1 is the complete bipartite graph with bipartition (X,Y) where X = { v1, v2, ..., vn} and            

Y = {w1, w2, ..., w2n+1}, then        
  denotes the graph obtained from Kn,2n+1 by deleting the edges     

viw2i-1 and viw2i for all i, 1≤ i ≤ n. 

Result 1.3. [1] Let G be a connected graph. Then DS(G) is a biregular RA graph if and only if                    

G ≅ K1,n or        
  , where n ≥ 2. 

Result 1.4. [1] For any n ≥ 2, there are n non isomorphic graphs whose degree splitting graphs are all 

isomorphic. 

We define the cosplitting graph CS(G) of a graph G as follows: 

Let G be a graph with vertex set {v1, v2, … , vn}. The cosplitting graph CS(G) is the graph obtained 

from G, by adding a new vertex wi for each vertex vi and joining wi to all vertices which are not 

adjacent to vi in G. For example, a graph G and its cosplitting graph CS(G) are shown in Figure 3. 

 

 

Figure 3: A graph G and its cosplitting graph CS(G). 

In this paper, we characterise the graphs for which the cosplitting graph is regular, biregular or 

bipartite. Also we give a necessary and sufficient condition for a graph to be a cosplitting graph. And 

finally we characterise the graphs for which the splitting graph and the cosplitting graph are 

isomorphic. 

2    Properties of Cosplitting Graph 

Let K(m,n) denote the bipartite graph with vertex set bipartition (X,Y) where X = {u1, u2, ..., um+n} 

and Y = {v1, v2, ..., vm+n} and edge set E(K(m,n)) = {uivj / 1 ≤ i ≤ m and 1≤ j ≤ m+n}  {uivj / 1 ≤ i ≤ 

m+n and 1≤ j ≤ n}. For example, the graph K(2,3) is shown in Figure 4. 

 

 

 

 

 

 

 

Figure 4: The graph K(2,3). 
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For any graph G of order n, clearly CS(G) contains 2n vertices. Let v1, v2, ... , vn be the vertices of G 

and w1, w2, ... , wn be the corresponding newly added vertices in CS(G). Let d’(v) and d*(v) denote the 

degrees of a vertex v in CS(G) and S(G) respectively. 

For the cosplitting graph CS(G), the following results can be easily verified: 

Result 2.1.  d’(vi) = n and  d’(wi) + d(vi) =  n, for all i, 1≤ i ≤ n. 

Result 2.2.  If G has n vertices and m edges, then CS(G) has 2n vertices and n
2
 – m edges. 

Result 2.3.  For a connected graph G, 1≤ d’(wi) ≤ n – 1. d’(wi) = 1 implies that vi is a full vertex in G 

and d’(wi) = n – 1 implies that vi is a pendant vertex in G. 

 It is important to note that Result 2.3 is also true for any disconnected graph G unless G contains 

an isolated vertex. In other words, d’(wi) = n if and only if vi is an isolated vertex. Hence             

(CS(G)) = n. Also CS(G) contains n + m vertices of degree n, if and only if G contains m isolated 

vertices. Let them be denoted by u1, u2, ..., um. Note that in such case, CS(G) contains Km,m as an 

induced subgraph. The removal of the 2m vertices that induces Km,m from CS(G) results in a graph 

which is isomorphic to CS(G \ {u1, u2, ..., um}). 

Result 2.4.  CS(Kn) ≅ Kn ◦  1, CS(  
 ) ≅ Kn,n and CS(Km,n) ≅ K(m,n).   

It is easy to observe that G ◦  1 is a spanning subgraph of CS(G) and G ◦  1 = CS(G) if and only if 

G ≅ Kn. 

Result 2.5.   Every graph G is an induced subgraph of its cosplitting graph CS(G).  

Result 2.6.   In CS(G), the subgraph induced by the set of all vertices of degree n is isomorphic to G. 

Result 2.7.  For any graph G, the cosplitting graph CS(G) is always connected. But in case of splitting       

graph, S(G) is connected if and only if G is connected. 

Result 2.8.  The cosplitting graph CS(G) is r - regular if and only if G ≅   
 . 

Result 2.9.  The cosplitting graph CS(G) is (r, n – r) – biregular if and only if G is an r – regular graph     

for any positive integer r. 

Result 2.10.  In the cosplitting graph of a connected graph, every newly added vertex that corresponds 

to a non - full vertex lies on at least one new cycle. 

Result 2.11.  For any graph G, χ(CS(G)) = χ(G) or χ(G) + 1. 

The following theorem gives a characterisation of cosplitting graphs. 

Theorem 2.12.  A graph G is a cosplitting graph if and only if V(G) can be partitioned into two sets V1 

and V2 such that there exists a bijection f from V1 to V2 which satisfies the following conditions:                        

(i) N(v)  N(f(v)) = V \ f(N(v)) and  

(ii) N(v)  N(f(v)) = , for any v  V1. 



Cosplitting and Co-regular graphs 61 

Proof: Let G be a cosplitting graph of a graph H. To construct G from H, we  add a new vertex w for 

each vertex v of H and join w with every vertex of H which is not adjacent to v. Let V1 = V(H) and V2 = 

V(G) \ V(H). For vi  V1, let wi  V2, be the corresponding newly added vertex where 1≤ i ≤ |V1|.  

 Now define a function f : V1V2 by f(vi) = wi, 1≤ i ≤ |V1|. Then clearly f is a bijection from V1 

onto V2. Also by definition N(f(vi)) = V1 \ N(vi). Hence (ii) is proved. In H, each vi is adjacent not only 

to its neighbours in G, but also to all newly added vertices corresponding to its non-neighbours. 

Therefore we get N(vi)  N(f(vi)) = V \ f(N(vi)). 

 Conversely, let the given conditions be true for a graph G. Let H be the subgraph of G induced by 

V1. We claim that CS(H) ≅ G. Since f is bijective, it is clear that for every vertex vi in H, there is a 

unique vertex f(vi) in G \ H. Also by the assumptions (i) and (ii), vi and f(vi) are adjacent for every i,               

1 ≤ i ≤ n and every vertex in V1 is a neighbour of either vi or f(vi) but not both. 

 Let us prove that < G \ H > contains no edge. Suppose not, let f(vi) and f(vj) be adjacent for some i 

≠ j. Then by assumption (ii),  f(vj)  N(vi).  In other words, vi  N(f(vj)) which implies that vi  N(vj) 

which is a contradiction to (i) since N(vi)  N(f(vi)) does not contain any vertex of  f(N(vi)). Therefore 

< G \ H > is a null graph. Hence if we consider f(vi) to be the corresponding newly added vertex for vi, 

then G is the cosplitting graph of H.                               ■ 

 The following theorem characterises all bipartite cosplitting graphs. 

Theorem 2.13.  For any graph G, CS(G) is bipartite if and only if G ≅ Km,n or   
 . 

Proof:  Let G be any graph for which CS(G) is bipartite. Since G is an induced subgraph of CS(G),      

G is also bipartite. Let (X,Y) be the bipartition of G. 

Case (i):  Suppose G is connected. Let x  X and y  Y. We claim that x and y are adjacent in G. 

Suppose not, then there exists an (x, y) – path P of odd length in G. Also the newly added vertex w 

corresponding to x, is adjacent to both x and y in CS(G). Therefore the path P together with the edges 

xw and wy forms a cycle of odd length in CS(G), which is a contradiction. Therefore every x X is 

adjacent to any yY in G and we have G ≅ Km,n. 

Case (ii):  Suppose G is disconnected. If G ≇   
   then there is a component, say G1 of G containing at 

least one edge xy. Let v be a vertex of G not in G1 and let w be the newly added vertex corresponding 

to v in CS(G). Clearly w is adjacent to both x and y in CS(G). Thus wxyw forms a triangle in CS(G). 

This is a contradiction to the assumption that CS(G) is bipartite. Hence G ≅   
 . 

Conversely if G ≅ Km,n or   
 , then CS(G) ≅ K(m,n) or Kn,n respectively and hence the result 

follows.                      ■ 

Corollary 2.14. CS(G) is a tree if and only if G ≅ K1,1 or K1. 

Proof:  Suppose CS(G) is a tree. Then CS(G) is bipartite and G is acyclic. Therefore, by the above 

theorem, G ≅ K1,1 or K1. And the converse is obvious.                  ■

From the above corollary,  P2 and P4 are the only cosplitting trees.  
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Next we prove that K3 ◦  1 and C4 are the only unicyclic cosplitting graphs. 

Theorem 2.15. The cosplitting graph CS(G) of a graph G is unicyclic if and only if G ≅ K3 or   
 . 

Proof: Let G be any graph such that CS(G) is unicyclic with the cycle C. Let v1, v2, ... , vn be the 

vertices of G and w1, w2, ... , wn be the corresponding newly added vertices in CS(G). Since {w1, w2, ..., 

wn} is independent, either V(C)  V(G) or wi  V(C) for some i.  

Case (i): Suppose V(C)  V(G). 

 It is clear that the cosplitting graph of a disconnected graph other than   
  contains more than one 

triangle. Hence G must be connected. Also by Result 2.10, every vertex of G is a full vertex and 

therefore the newly added vertices do not form any new cycle. Hence, G ≅ K3. 

Case (ii):  Suppose wi  V(C) for some i. 

 Then G is acyclic and so every component of G is a tree. Since CS(G) is unicyclic, by Result 2.10 

every component of G contains only one non full vertex. This is possible only when G is empty. If G 

contains more than two isolated vertices, then CS(G) is not unicyclic. Thus G ≅    
  

 Conversely, the cosplitting graphs of K3 and   
  are K3 ◦  1 and C4 respectively which are 

unicyclic.                           ■

Theorem 2.16. No two non – isomorphic graphs can have the same cosplitting graph.  

Proof: Suppose there are two non-isomorphic graphs G1 and G2 such that CS(G1) ≅ CS(G2).  

Case (i):  Suppose G1 has no isolated vertex. Then by Result 2.3, no newly added vertex in CS(G1) is 

of degree n. Therefore the subgraph induced by the set of all vertices of degree n in CS(G1) is 

isomorphic to G1. Since CS(G1) ≅ CS(G2), we have CS(G2) also contains exactly n vertices of degree 

n, and the subgraph induced by them is isomorphic to G2. This implies that G1≅ G2, a contradiction. 

Case (ii): Let G1 = H1    
 , where H1 contains no isolated vertex. Then CS(G1) contains n + m 

vertices of degree n and it contains Km,m as an induced subgraph. Since CS(G1) ≅ CS(G2), it is clear that 

CS(G2) also contains n + m vertices of degree n. Therefore, G2 = H2    
 , for some graph H2 which 

contains no isolated vertex. From Result 2.3, by removing 2m vertices that induces Km,m in CS(G1) and 

CS(G2), we get CS(H1) and CS(H2) respectively. This implies that CS(H1) ≅ CS(H2). Now using Case 

(i), we conclude that  H1 ≅ H2 and so G1 ≅ G2, which is again a contradiction. Hence the result 

follows.                         ■ 

3    Co-regular Graphs 

In this section, we define a new type of graphs called co – regular graphs and prove that co – 

regular graphs are the only graphs for which splitting and cosplitting graphs are isomorphic. 

 Let G be a graph with vertex set V(G) = {v1,v2,...,vn}. Then the co – regular graph of G denoted 

by CR(G) is the graph with vertex set V(CR(G)) = {u1, u2, ..., un, w1, w2, ..., wn} and edge set E(CR(G)) 

= {uiuj, wiwj / vivj  E(G), i ≠ j and 1≤ i, j ≤ n}  {uiwj / vivj  E(G) and 1≤ i, j ≤ n}.  

 For example, a graph G and its co-regular graph CR(G) are shown in Figure 5. 
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Figure 5: A graph G and its co-regular graph CR(G). 
 

 The following results can be easily verified for a co-regular graph: 

Result 3.1. A co – regular graph is an n – regular graph on 2n vertices. 

Result 3.2. G  P2 is a spanning subgraph of CR(G). In particular, CR(Kn) = Kn  P2. 

Result 3.3. CR(  
 ) =   

     
   Kn,n. 

Result 3.4. For any graph G, CR(G) is connected. 

 For, if G is connected since G  P2 is a spanning subgraph of CR(G), then CR(G) is also  

connected. If G is disconnected, then every vertex in each component of one copy of G is adjacent to 

all vertices in the other components of another copy of G and hence CR(G) is connected. 

Result 3.5. For any graph G, (CR(G)) = 2. 

 For, CR(G) does not contain a full vertex and hence (CR(G)) ≠ 1, and {ui, wi} is a minimum 

dominating set of CR(G) for any i, 1 ≤ i ≤ n. 

Theorem 3.6.  A graph G is co – regular if and only if its vertex set can be partitioned into two 

element subsets {ui, wi}, 1 ≤ i ≤ n, such that for any i, N(ui) and N(wi) form a partition of V(G), that is, 

such that N(ui)  N(wi) = V(G) and N(ui)  N(wi) = , for every i = 1, 2, … ,  . 

Proof:  Let G be the co – regular graph of some graph H. Let V(G) = {u1, u2, ..., un, w1, w2, ..., wn} such 

that <{u1, u2, ..., un}> ≅ <{w1, w2, ..., wn}> ≅ H. Without loss of generality, let ui be the isomorphic 

image of wi. Consider the pair {ui, wi}. By the definition of co – regular graph, any vertex uj, 1 ≤ j ≤ n, 

i ≠ j, is adjacent to either ui or wi but not both. Similar condition holds with any wj, 1 ≤ j ≤ n, i ≠ j. 

Since ui and wi are adjacent, ui  N(wi) and wi  N(ui). Therefore, the neighbour sets of ui and wi form 

a partition of V(G).   

 Conversely, suppose the vertex set of any graph G can be partitioned into two element subsets such 

that any vertex in G is a neighbour of any one vertex but not to both in each subset. Therefore G 

contains even number of vertices. Let V(G) = {u1, u2, ..., un, w1, w2, ..., wn} such that {u1,w1}, {u2,w2}, 

..., {un,wn} be the partition of V(G).  

First we claim that <{u1, u2, ..., un}> ≅ <{w1, w2, ..., wn}>. Suppose ur is adjacent to us. Then us  

N(wr) and hence wr  N(ws). In a similar way, we prove that if ur and us are non adjacent, then wr and 

ws are non adjacent. Since r and s are arbitrary, <{u1, u2, ..., un}> ≅ <{w1, w2, ..., wn}> ≅ H, say.   
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For 1 ≤ i ≤ n, since N(ui)  N(wi) = V(G), we have ui  N(wi). Hence,  ui is adjacent to wi. Also 

since N(ui)  N(wi) = , both ui and wi have no common neighbours. Combining the two conditions we 

get [N(ui)]
c
 = N(wi). Thus we conclude that G = CR(H).                      ■

Theorem 3.7.  Let G be any graph of order n. Then S(G) ≅ CS(G) if and only if G ≅ CR(H) for some 

graph H. 

Proof:  Let G be any graph of order n such that its splitting graph S(G) is isomorphic to its cosplitting 

graph CS(G). Hence by Result 2.7, G is connected. For any vertex u in G, d*(u) = 2d(u) and                    

d’(u) = n. Since S(G) ≅ CS(G), we have d(u) = n/2 for all u  V(G). That is, G is an n/2 – regular 

graph on n vertices. 

Let V(G) = {u1,u2,...,un} and let v1, v2, ..., vn be the newly added vertices in S(G). From the 

definition of splitting graph, for every vertex vi, there exists a unique vertex uk  N(vi) in G such that 

N(uk)  V(G) = N(vi) by Result 1.1. Since S(G) ≅ CS(G), there will be a one to one correspondence 

between the newly added vertices in S(G) and CS(G). Therefore from the definition of cosplitting 

graph, corresponding to every vi, there exists a unique vertex um  N(vi) in G such that N(vi) = V(G) \ 

N(um) by Theorem 2.12.  

Combining the above two conditions we get N(um)  N(uk) = V(G), N(um)  N(uk) = . Then clearly 

uk and um are adjacent. Thus uk and um are two adjacent vertices in G, whose neighbour sets form a 

partition of V(G). In a similar manner, we can pair off vertices of G such that each pair has distinct 

neighbour set whose union is V(G) itself. Thus by the above theorem, G is isomorphic to CR(H) for 

some H.  

Conversely, assume that G is a co – regular graph of a graph H. Let V(G) = {u1, u2, ..., un, w1, w2, ..., 

wn} such that <{u1, u2, ..., un}> ≅ <{w1, w2, ..., wn}> ≅ H. Without loss of generality, let ui be the 

isomorphic image of wi. Let a1, a2, ..., an, b1, b2, ..., bn and c1, c2, ..., cn, d1, d2, ..., dn be the newly added 

vertices in S(G) and CS(G) respectively corresponding to the vertices u1, u2, ..., un, w1, w2, ..., wn. Then 

a function f : S(G)  CS(G) defined by f(ui) = ui, f(wi) = wi, f(ai) = di, f(bi) = ci, where 1≤ i ≤ n, can be 

easily verified to be an isomorphism. Hence the theorem is proved.         ■
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